Articles | Volume 16, issue 5
https://doi.org/10.5194/esd-16-1585-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-16-1585-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Food trade disruption after global catastrophes
Alliance to Feed the Earth in Disasters (ALLFED), Lafayette, CO 80026, USA
Łukasz G. Gajewski
Alliance to Feed the Earth in Disasters (ALLFED), Lafayette, CO 80026, USA
Johanna Hedlund
Stockholm Environment Institute, Stockholm, Sweden
Constantin W. Arnscheidt
Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK
Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
Nico Wunderling
Center for Critical Computational Studies (CS), Goethe University Frankfurt, Frankfurt am Main, Germany
Earth Resilience Science Unit, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
David Denkenberger
Alliance to Feed the Earth in Disasters (ALLFED), Lafayette, CO 80026, USA
Department of Mechanical Engineering, University of Canterbury, Ōtautahi / Christchurch, Aotearoa / New Zealand
Related authors
Florian Ulrich Jehn, James Mulhall, Simon Blouin, Łukasz G. Gajewski, and Nico Wunderling
EGUsphere, https://doi.org/https://doi.org/10.31223/X55B25, https://doi.org/https://doi.org/10.31223/X55B25, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Large crop failures happen regularly around the world, threatening food security. We analyzed sixty years of global crop production data and found that every country has experienced major crop losses. Climate events like droughts cause most severe disruptions, with some African nations losing up to eighty percent of production. While global crop shocks above five percent are rare, regional disruptions occur frequently. These findings show our food system faces regular large-scale threats.
Florian Ulrich Jehn, John-Oliver Engler, Constantin W. Arnscheidt, Magdalena Wache, Ekaterina Ilin, Laura Cook, Lalitha S. Sundaram, Frederic Hanusch, and Luke Kemp
Earth Syst. Dynam., 16, 1053–1084, https://doi.org/10.5194/esd-16-1053-2025, https://doi.org/10.5194/esd-16-1053-2025, 2025
Short summary
Short summary
This study presents the first systematic analysis of the global catastrophic risk and existential risk literature, examining 3437 documents from OpenAlex. Using bibliographic coupling, we identify and describe 10 research clusters aligned with major risks. The field shows geographic concentration in the US/UK, gender imbalance, and a small number of prolific authors. We recommend improving diversity, fostering cross-cluster collaboration, and building connections with adjacent disciplines.
Florian Ulrich Jehn, James Mulhall, Simon Blouin, Łukasz G. Gajewski, and Nico Wunderling
EGUsphere, https://doi.org/https://doi.org/10.31223/X55B25, https://doi.org/https://doi.org/10.31223/X55B25, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Large crop failures happen regularly around the world, threatening food security. We analyzed sixty years of global crop production data and found that every country has experienced major crop losses. Climate events like droughts cause most severe disruptions, with some African nations losing up to eighty percent of production. While global crop shocks above five percent are rare, regional disruptions occur frequently. These findings show our food system faces regular large-scale threats.
Jacques Bara, Nico Wunderling, and Wolfram Barfuss
EGUsphere, https://doi.org/10.5194/egusphere-2025-4077, https://doi.org/10.5194/egusphere-2025-4077, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
When one tipping element collapses the likelihood of another collapsing may be significantly affected. Using our simplified network model, we find that on the whole these interactions destabilise the Earth system, both in the short term and at equilibrium, though the effects are most noticeable after the year 2100. We find that to minimise tipping risks, it is essential to keep temperatures as close as possible to 1.5 °C in the short term and below 1 °C in the longer run.
Florian Ulrich Jehn, John-Oliver Engler, Constantin W. Arnscheidt, Magdalena Wache, Ekaterina Ilin, Laura Cook, Lalitha S. Sundaram, Frederic Hanusch, and Luke Kemp
Earth Syst. Dynam., 16, 1053–1084, https://doi.org/10.5194/esd-16-1053-2025, https://doi.org/10.5194/esd-16-1053-2025, 2025
Short summary
Short summary
This study presents the first systematic analysis of the global catastrophic risk and existential risk literature, examining 3437 documents from OpenAlex. Using bibliographic coupling, we identify and describe 10 research clusters aligned with major risks. The field shows geographic concentration in the US/UK, gender imbalance, and a small number of prolific authors. We recommend improving diversity, fostering cross-cluster collaboration, and building connections with adjacent disciplines.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Seyed Vahid Mousavi, Khalil Karami, Simone Tilmes, Helene Muri, Lili Xia, and Abolfazl Rezaei
Atmos. Chem. Phys., 23, 10677–10695, https://doi.org/10.5194/acp-23-10677-2023, https://doi.org/10.5194/acp-23-10677-2023, 2023
Short summary
Short summary
Understanding atmospheric dust changes in the Middle East and North Africa (MENA) region under future climate scenarios is essential. By injecting sulfate aerosols into the stratosphere, stratospheric aerosol injection (SAI) geoengineering reflects some of the incoming sunlight back to space. This study shows that the MENA region would experience lower dust concentration under both SAI and RCP8.5 scenarios compared to the current climate (CTL) by the end of the century.
Alan Robock, Lili Xia, Cheryl S. Harrison, Joshua Coupe, Owen B. Toon, and Charles G. Bardeen
Atmos. Chem. Phys., 23, 6691–6701, https://doi.org/10.5194/acp-23-6691-2023, https://doi.org/10.5194/acp-23-6691-2023, 2023
Short summary
Short summary
A nuclear war could produce a nuclear winter, with catastrophic consequences for global food supplies. Nuclear winter theory helped to end the nuclear arms race in the 1980s, but more than 10 000 nuclear weapons still exist. This means they can be used, by unstable leaders, accidently from technical malfunctions or human error, or by terrorists. Therefore, it is urgent for scientists to study these issues, broadly communicate their results, and work for the elimination of nuclear weapons.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Cited articles
Abdelkhaliq, M., Denkenberger, D., Griswold, M., Cole, D. D., and Pearce, J.: Providing Non-food Needs if Industry is Disabled, IDRC DAVOS 2016, Integrative Risk Management – Towards Resilient Cities, 2016.
Ahvo, A., Heino, M., Sandström, V., Chrisendo, D., Jalava, M., and Kummu, M.: Agricultural input shocks affect crop yields more in the high-yielding areas of the world, Nat. Food, 4, 1037–1046, https://doi.org/10.1038/s43016-023-00873-z, 2023.
Alexander, P., Brown, C., Arneth, A., Finnigan, J., Moran, D., and Rounsevell, M. D. A.: Losses, inefficiencies and waste in the global food system, Agr. Syst., 153, 190–200, https://doi.org/10.1016/j.agsy.2017.01.014, 2017.
Alvarado, K. A., Mill, A., Pearce, J. M., Vocaet, A., and Denkenberger, D.: Scaling of greenhouse crop production in low sunlight scenarios, Sci. Total Environ., 707, 136012, https://doi.org/10.1016/j.scitotenv.2019.136012, 2020.
Anderson, W., Baethgen, W., Capitanio, F., Ciais, P., Cook, B. I., Cunha, C. G. R. da, Goddard, L., Schauberger, B., Sonder, K., Podestá, G., van der Velde, M., and You, L.: Climate variability and simultaneous breadbasket yield shocks as observed in long-term yield records, Agr. Forest Meteorol., 331, 109321, https://doi.org/10.1016/j.agrformet.2023.109321, 2023.
Bailey, R. and Wellesley, L.: Chokepoints and Vulnerabilities in Global Food Trade, Chatham House, ISBN 978 1 78413 230 9, 2017.
Barrett, A. M., Baum, S. D., and Hostetler, K.: Analyzing and Reducing the Risks of Inadvertent Nuclear War Between the United States and Russia, Science & Global Security, 21, 106–133, ISSN 0892-9882 (print), ISSN 1547-7800 (online), https://doi.org/10.1080/08929882.2013.798984, 2013.
Baum, S., Laber, M., Bruckner, M., Yang, L., Thurner, S., and Klimek, P.: Adaptive Shock Compensation in the Multi-layer Network of Global Food Production and Trade, arXiv [preprint], https://doi.org/10.48550/arXiv.2411.03502, 2024.
Baum, S. D.: Assessing natural global catastrophic risks, Nat. Hazards, 115, 2699–2719, https://doi.org/10.1007/s11069-022-05660-w, 2023.
Baum, S. D., Maher, T. M., and Haqq-Misra, J.: Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse, Environ. Syst. Decis., 33, 168–180, https://doi.org/10.1007/s10669-012-9429-y, 2013.
Bernard de Raymond, A., Alpha, A., Ben-Ari, T., Daviron, B., Nesme, T., and Tétart, G.: Systemic risk and food security. Emerging trends and future avenues for research, Glob. Food Secur., 29, 100547, https://doi.org/10.1016/j.gfs.2021.100547, 2021.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.: Fast unfolding of communities in large networks, J. Stat. Mech., 2008, P10008, https://doi.org/10.1088/1742-5468/2008/10/P10008, 2008.
Bostrom, N. and Cirkovic, M. M.: Global Catastrophic Risks, Oxford University Press, Oxford, Oxford, 577 pp., ISBN 9780191918100 (Online), ISBN 9780198570509 (Print), https://doi.org/10.1093/oso/9780198570509.001.0001, 2008.
Caparas, M., Zobel, Z., Castanho, A. D. A., and Schwalm, C. R.: Increasing risks of crop failure and water scarcity in global breadbaskets by 2030, Environ. Res. Lett., 16, 104013, https://doi.org/10.1088/1748-9326/ac22c1, 2021.
Centeno, M. A., Nag, M., Patterson, T. S., Shaver, A., and Windawi, A. J.: The Emergence of Global Systemic Risk, Annu. Rev. Sociol., 41, 65–85, https://doi.org/10.1146/annurev-soc-073014-112317, 2015.
Centeno, M. A., Callahan, P. W., Larcey, P. A., and Patterson, T.: Globalization and Fragility: A Systems Approach to Collapse, in: How Worlds Collapse What History, Systems, and Complexity Can Teach Us About Our Modern World and Fragile Future, edited by: Centeno, M., Callahan, P., Larcey, P., Patterson, T., Imprint Routledge, New York, ISBN 9781003331384 (eBook), https://doi.org/10.4324/9781003331384, 2023.
Chapman, C. R. and Morrison, D.: Impacts on the Earth by asteroids and comets: Assessing the hazard, Nature, 367, 33–40, https://doi.org/10.1038/367033a0, 1994.
Clapp, J.: Concentration and crises: exploring the deep roots of vulnerability in the global industrial food system, J. Peasant Stud., 50, 1–25, https://doi.org/10.1080/03066150.2022.2129013, 2023.
Clapp, J. and Moseley, W. G.: This food crisis is different: COVID-19 and the fragility of the neoliberal food security order, J. Peasant Stud., 47, 1393–1417, https://doi.org/10.1080/03066150.2020.1823838, 2020.
Cliver, E. W., Schrijver, C. J., Shibata, K., and Usoskin, I. G.: Extreme solar events, Living Rev. Sol. Phys., 19, 2, https://doi.org/10.1007/s41116-022-00033-8, 2022.
Cooper, C. and Sovacool, B. K.: Not Your Father's Y2K: Preparing the North American Power Grid for the Perfect Solar Storm, Electricity Journal, 24, 47–61, https://doi.org/10.1016/j.tej.2011.04.005, 2011.
Cotton-Barratt, O., Daniel, M., and Sandberg, A.: Defence in Depth Against Human Extinction: Prevention, Response, Resilience, and Why They All Matter, Glob. Policy, 11, 271–282, https://doi.org/10.1111/1758-5899.12786, 2020.
Coupe, J., Bardeen, C. G., Robock, A., and Toon, O. B.: Nuclear Winter Responses to Nuclear War Between the United States and Russia in the Whole Atmosphere Community Climate Model Version 4 and the Goddard Institute for Space Studies ModelE, J. Geophys. Res.-Atmos., 124, 8522–8543, https://doi.org/10.1029/2019JD030509, 2019.
Coupe, J., Harrison, C., Robock, A., DuVivier, A., Maroon, E., Lovenduski, N. S., Bachman, S., Landrum, L., and Bardeen, C.: Sudden Reduction of Antarctic Sea Ice Despite Cooling After Nuclear War, J. Geophys. Res.-Oceans, 128, e2022JC018774, https://doi.org/10.1029/2022JC018774, 2023.
De Domenico, M.: More is different in real-world multilayer networks, Nat. Phys., 19, 1247–1262, https://doi.org/10.1038/s41567-023-02132-1, 2023.
Denkenberger, D., Sandberg, A., Tieman, R. J., and Pearce, J. M.: Long-term cost-effectiveness of interventions for loss of electricity/industry compared to artificial general intelligence safety, European Journal of Futures Research, 9, 11, https://doi.org/10.1186/s40309-021-00178-z, 2021.
Denkenberger, D., Sandberg, A., Tieman, R. J., and Pearce, J. M.: Long term cost-effectiveness of resilient foods for global catastrophes compared to artificial general intelligence safety, Int. J. Disast. Risk Re., 73, 102798, https://doi.org/10.1016/j.ijdrr.2022.102798, 2022.
Deteix, L., Salou, T., and Loiseau, E.: Quantifying food consumption supply risk: An analysis across countries and agricultural products, Glob. Food Secur., 41, 100764, https://doi.org/10.1016/j.gfs.2024.100764, 2024.
D'Odorico, P., Carr, J. A., Laio, F., Ridolfi, L., and Vandoni, S.: Feeding humanity through global food trade, Earth's Future, 2, 458–469, https://doi.org/10.1002/2014EF000250, 2014.
Enger, E. R., Graversen, R. G., and Theodorsen, A.: Radiative forcing by super-volcano eruptions, Authorea [preprint], https://doi.org/10.22541/au.170967725.56351509/v1, 2024.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478, 337–342, https://doi.org/10.1038/nature10452, 2011.
Foti, N. J., Pauls, S., and Rockmore, D. N.: Stability of the World Trade Web over time – An extinction analysis, J. Econ. Dyn. Control, 37, 1889–1910, 2013.
Frame, D., Joshi, M., Hawkins, E., Harrington, L. J., and de Roiste, M.: Population-based emergence of unfamiliar climates, Nat. Clim. Change, 7, 407–411, https://doi.org/10.1038/nclimate3297, 2017.
García Martínez, J. B., Egbejimba, J., Throup, J., Matassa, S., Pearce, J. M., and Denkenberger, D. C.: Potential of microbial protein from hydrogen for preventing mass starvation in catastrophic scenarios, Sustainable Production and Consumption, 25, 234–247, https://doi.org/10.1016/j.spc.2020.08.011, 2021.
García Martínez, J. B., Pearce, J. M., Throup, J., Cates, J., Lackner, M., and Denkenberger, D. C.: Methane Single Cell Protein: Potential to Secure a Global Protein Supply Against Catastrophic Food Shocks, Frontiers in Bioengineering and Biotechnology, 10, https://doi.org/10.3389/fbioe.2022.906704, 2022.
Gaupp, F., Hall, J., Hochrainer-Stigler, S., and Dadson, S.: Changing risks of simultaneous global breadbasket failure, Nat. Clim. Change, 10, 54–57, https://doi.org/10.1038/s41558-019-0600-z, 2020.
Glomseth, R. E.: Resilience Beyond Food Production – Trade and Supply Chains in the Nuclear Winter Context, Zenodo [preprint], https://doi.org/10.5281/zenodo.10720784, 2024.
Goldin, I. and Vogel, T.: Global Governance and Systemic Risk in the 21st Century: Lessons from the Financial Crisis, Glob. Policy, 1, 4–15, https://doi.org/10.1111/j.1758-5899.2009.00011.x, 2010.
Green, W.: Nuclear War Impacts on Distant, Non-Combatant Countries, Toda Peace Institute, Policy Brief No. 187, 2024.
Guimerà, R. and Nunes Amaral, L. A.: Functional cartography of complex metabolic networks, Nature, 433, 895–900, https://doi.org/10.1038/nature03288, 2005.
Hagberg, A., Schult, D., Swart, P., and Hagberg, J. M.: Exploring Network Structure, Dynamics, and Function using NetworkX, in: Proceedings of the 7th Python in Science Conference (SciPy 2008), https://doi.org/10.25080/TCWV9851, 2008.
Hamilton, H., Henry, R., Rounsevell, M., Moran, D., Cossar, F., Allen, K., Boden, L., and Alexander, P.: Exploring global food system shocks, scenarios and outcomes, Futures, 123, 102601, https://doi.org/10.1016/j.futures.2020.102601, 2020.
Hedlund, J., Carlsen, H., Croft, S., West, C., Bodin, Ö., Stokeld, E., Jägermeyr, J., and Müller, C.: Impacts of climate change on global food trade networks, Environ. Res. Lett., 17, 124040, https://doi.org/10.1088/1748-9326/aca68b, 2022.
Helbing, D.: Globally networked risks and how to respond, Nature, 497, 51–59, https://doi.org/10.1038/nature12047, 2013.
Hochman, G., Zhang, H., Xia, L., Robock, A., Saketh, A., van der Mensbrugghe, D. Y., and Jägermeyr, J.: Economic incentives modify agricultural impacts of nuclear war, Environ. Res. Lett., 17, 054003, https://doi.org/10.1088/1748-9326/ac61c7, 2022.
Hoyer, D., Bennett, J. S., Reddish, J., Holder, S., Howard, R., Benam, M., Levine, J., Ludlow, F., Feinman, G., and Turchin, P.: Navigating polycrisis: long-run socio-cultural factors shape response to changing climate, Philos. T. Roy. Soc. B, 378, 20220402, https://doi.org/10.1098/rstb.2022.0402, 2023.
Hoyer, D., Holder, S., Bennett, J. S., François, P., Whitehouse, H., Covey, A., Feinman, G., Korotayev, A., Vustiuzhanin, V., Preiser-Kapeller, J., Bard, K., Levine, J., Reddish, J., Orlandi, G., Ainsworth, R., and Turchin, P.: All Crises are Unhappy in their Own Way: The role of societal instability in shaping the past, SocArXiv [preprint], https://doi.org/10.31235/osf.io/rk4gd, 2024.
Ibrahim, S. E., Centeno, M. A., Patterson, T. S., and Callahan, P. W.: Resilience in Global Value Chains: A Systemic Risk Approach, Global Perspectives, 2, 27658, https://doi.org/10.1525/gp.2021.27658, 2021.
Isobe, H., Takahashi, T., Seki, D., and Yamashiki, Y.: Extreme Solar Flare as a Catastrophic Risk, J. Disast. Res., 17, 230–236, https://doi.org/10.20965/jdr.2022.p0230, 2022.
Jaccard, P.: Etude de la distribution florale dans une portion des Alpes et du Jura, Bulletin de la Societe Vaudoise des Sciences Naturelles, 37, 547–579, https://doi.org/10.5169/seals-266450, 1901.
Jagtap, S., Trollman, H., Trollman, F., Garcia-Garcia, G., Parra-López, C., Duong, L., Martindale, W., Munekata, P. E. S., Lorenzo, J. M., Hdaifeh, A., Hassoun, A., Salonitis, K., and Afy-Shararah, M.: The Russia-Ukraine Conflict: Its Implications for the Global Food Supply Chains, Foods, 11, 2098, https://doi.org/10.3390/foods11142098, 2022.
Jagtap, S., Trollman, H., Trollman, F., Garcia-Garcia, G., and Martindale, W.: Surviving the storm: navigating the quadruple whammy impact on Europe's food supply chain, Int. J. Food Sci. Tech., 59, ijfs.17106, https://doi.org/10.1111/ijfs.17106, 2024.
Jahn, M.: How “Multiple Breadbasket Failure” Became a Policy Issue, Issues in Science and Technology, JSTOR, 37, 80–82, 84–86, https://www.jstor.org/stable/27092034 (last access: 17 September 2025), 2021.
Janssens, C., Havlík, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T., Leclère, D., Ohrel, S., Ragnauth, S., Schmid, E., Valin, H., Van Lipzig, N., and Maertens, M.: Global hunger and climate change adaptation through international trade, Nat. Clim. Change, 10, 829–835, https://doi.org/10.1038/s41558-020-0847-4, 2020.
Jehn, F. U.: Anthropocene Under Dark Skies: The Compounding Effects of Nuclear Winter and Overstepped Planetary Boundaries, in: Intersections, Reinforcements, Cascades: Proceedings of the 2023 Stanford Existential Risks Conference, Stanford, California, 119–132, https://doi.org/10.25740/zb109mz2513, 2023.
Jehn, F. U. and Gajewski, Ł. G.: allfed/pytradeshifts: Feature complete, Zenodo [code], https://doi.org/10.5281/zenodo.10785381, 2024a.
Jehn, F. U., Dingal, F. J., Mill, A., Harrison, C., Ilin, E., Roleda, M. Y., James, S. C., and Denkenberger, D.: Seaweed as a Resilient Food Solution After a Nuclear War, Earth's Future, 12, e2023EF003710, https://doi.org/10.1029/2023EF003710, 2024.
Ji, G., Zhong, H., Feukam Nzudie, H. L., Wang, P., and Tian, P.: The structure, dynamics, and vulnerability of the global food trade network, J. Clean. Prod., 434, 140439, https://doi.org/10.1016/j.jclepro.2023.140439, 2024.
Kang, H., Lee, K.-M., and Yang, J.-S.: The potential for cascading failures in the international trade network, PLOS ONE, 19, e0299833, https://doi.org/10.1371/journal.pone.0299833, 2024.
Karger, E., J, R., Jacobs, Z., Hickman, M., Hadshar, R., Gamin, K., Smith, T., Williams, B., McCaslin, T., and Tetlock, P.: Forecasting Existential Risks: Evidence from a Long-Run Forecasting Tournament (FRI Working Paper #1), Forecasting Research Institute, https://static1.squarespace.com/static/635693acf15a3e2a14a56a4a/t/64f0a7838ccbf43b6b5ee40c/1693493128111/XPT.pdf, last access: 23 September 2025, 2023.
Key, R., Parrado, R., Delpiazzo, E., King, R., and Bosello, F.: Potential climate-induced impacts on trade: the case of agricultural commodities and maritime chokepoints, Journal of Shipping and Trade, 9, 11, https://doi.org/10.1186/s41072-024-00170-3, 2024.
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A.: Multilayer networks, Journal of Complex Networks, 2, 203–271, https://doi.org/10.1093/comnet/cnu016, 2014.
Kornhuber, K., Lesk, C., Schleussner, C. F., Jägermeyr, J., Pfleiderer, P., and Horton, R. M.: Risks of synchronized low yields are underestimated in climate and crop model projections, Nat. Commun., 14, 3528, https://doi.org/10.1038/s41467-023-38906-7, 2023.
Linkov, I., Galaitsi, S. E., Trump, B. D., Pinigina, E., Rand, K., Cline, E. H., and Kitsak, M.: Are civilizations destined to collapse? Lessons from the Mediterranean Bronze Age, Global Environ. Chang., 84, 102792, https://doi.org/10.1016/j.gloenvcha.2023.102792, 2024.
Ma, J., Li, M., and Li, H.-J.: Robustness of the International Wheat Trade Network, IEEE Transactions on Network Science and Engineering, 11, 1–11, https://doi.org/10.1109/TNSE.2023.3283251, 2023.
Mamonova, N., Wengle, S., and Dankevych, V.: Queen of the fields in wartime: What can Ukrainian corn tell us about the resilience of the global food system?, J. Peasant Stud., 50, 2513–2538, https://doi.org/10.1080/03066150.2023.2255568, 2023.
Mani, L., Tzachor, A., and Cole, P.: Global catastrophic risk from lower magnitude volcanic eruptions, Nat. Commun., 12, 4756, https://doi.org/10.1038/s41467-021-25021-8, 2021.
McLaughlin, C., Shi, Y., Viswanathan, V., Leonard, L., Sawers, R. J., Kemanian, A., and Lasky, J. R.: Maladaptation in cereal crop landraces following a soot-producing climate catastrophe, Nat Commun 16, 4289, https://doi.org/10.1038/s41467-025-59488-6, 2025.
Méjean, A., Collins-Sowah, P., Guivarch, C., Piontek, F., Soergel, B., and Taconet, N.: Climate change impacts increase economic inequality: evidence from a systematic literature review, Environ. Res. Lett., 19, 043003, https://doi.org/10.1088/1748-9326/ad376e, 2024.
Miller, S. J., Dee, L. E., Hayden, M. T., Jarrett, U., Carrico, A. R., Brauman, K. A., and Aceves-Bueno, E.: Telecoupled systems are rewired by risks, Nat. Sustain., 7, 247–254, https://doi.org/10.1038/s41893-024-01273-2, 2024.
Moersdorf, J., Rivers, M., Denkenberger, D., Breuer, L., and Jehn, F. U.: The Fragile State of Industrial Agriculture: Estimating Crop Yield Reductions in a Global Catastrophic Infrastructure Loss Scenario, Global Challenges, 8, 2300206, https://doi.org/10.1002/gch2.202300206, 2024.
Myers, S., Fanzo, J., Wiebe, K., Huybers, P., and Smith, M.: Current guidance underestimates risk of global environmental change to food security, BMJ, 378, e071533, https://doi.org/10.1136/bmj-2022-071533, 2022.
Nelson, D., Turchin, A., and Denkenberger, D.: Wood Gasification: A Promising Strategy to Extend Fuel Reserves after Global Catastrophic Electricity Loss, Biomass, 4, 610–624, https://doi.org/10.3390/biomass4020033, 2024.
Nyström, M., Jouffray, J.-B., Norström, A. V., Crona, B., Søgaard Jørgensen, P., Carpenter, S. R., Bodin, Ö., Galaz, V., and Folke, C.: Anatomy and resilience of the global production ecosystem, Nature, 575, 98–108, https://doi.org/10.1038/s41586-019-1712-3, 2019.
Ogie, R. I.: Cyber Security Incidents on Critical Infrastructure and Industrial Networks, in: Proceedings of the 9th International Conference on Computer and Automation Engineering, USA, Sydney Australia, 18–21 February 2017, 254–258, https://doi.org/10.1145/3057039.3057076, 2017.
Paluch, R., Gajewski, Ł. G., Suchecki, K., and Hołyst, J. A.: Impact of interactions between layers on source localization in multilayer networks, Physica A, 582, 126238, https://doi.org/10.1016/j.physa.2021.126238, 2021.
Pham, A., García Martínez, J. B., Brynych, V., Stormbjorne, R., Pearce, J. M., and Denkenberger, D. C.: Nutrition in Abrupt Sunlight Reduction Scenarios: Envisioning Feasible Balanced Diets on Resilient Foods, Nutrients, 14, 492, https://doi.org/10.3390/nu14030492, 2022.
Puma, M. J., Bose, S., Chon, S. Y., and Cook, B. I.: Assessing the evolving fragility of the global food system, Environ. Res. Lett., 10, 024007, https://doi.org/10.1088/1748-9326/10/2/024007, 2015.
Quante, L., Willner, S. N., Otto, C., and Levermann, A.: Global economic impact of weather variability on the rich and the poor, Nat. Sustain., 7, 1419–1428, https://doi.org/10.1038/s41893-024-01430-7, 2024.
Rampino, M. R.: Supereruptions as a Threat to Civilizations on Earth-like Planets, Icarus, 156, 562–569, https://doi.org/10.1006/icar.2001.6808, 2002.
Reis, T. N. P. dos, Meyfroidt, P., zu Ermgassen, E. K. H. J., West, C., Gardner, T., Bager, S., Croft, S., Lathuillière, M. J., and Godar, J.: Understanding the Stickiness of Commodity Supply Chains Is Key to Improving Their Sustainability, One Earth, 3, 100–115, https://doi.org/10.1016/j.oneear.2020.06.012, 2020.
Rivers, M., Hinge, M., Rassool, K., Blouin, S., Jehn, F. U., García Martínez, J. B., Amaral Grilo, V., Jaeck, V., Tieman, R. J., Mulhall, J., Butt, T. E., and Denkenberger, D. C.: Food system adaptation and maintaining trade could mitigate global famine in abrupt sunlight reduction scenarios, Glob. Food Sec., 43, 100807, https://doi.org/10.1016/j.gfs.2024.100807, 2024a.
Rivers, M., Gajewski, L. G., and Denkenberger, D.: Global transformer overheating from geomagnetic storms, arXiv [preprint] https://doi.org/10.48550/arXiv.2403.18070, 26 March 2024b.
Rivington, M., Bailey, R., Benton, T., Challinor, A., Elliott, J., Gustafson, D., Hiller, B., Jones, A., Jahn, M., Kent, C., Lewis, K., Meacham, T., Robson, D., Tiffin, R., and Wuebbles, D.: Extreme weather and resilience of the global food system – Synthesis Report, Foreign and Common Wealth Office/UK Science and Innovation Network/Global Food Security, https://www.foodsecurity.ac.uk/publications/extreme-weather-resilience-global-food-system.pdf (last access: 17 September 2025) 2015.
Rougier, J., Sparks, R. S. J., Cashman, K. V., and Brown, S. K.: The global magnitude–frequency relationship for large explosive volcanic eruptions, Earth Planet. Sci. Lett., 482, 621–629, https://doi.org/10.1016/j.epsl.2017.11.015, 2018.
Sandström, V., Huan-Niemi, E., Niemi, J., and Kummu, M.: Dependency on imported agricultural inputs – global trade patterns and recent trends, Environ. Res. Food Syst., 1 015002 https://doi.org/10.1088/2976-601X/ad325e, 2024.
Savary, S., Akter, S., Almekinders, C., Harris, J., Korsten, L., Rötter, R., Waddington, S., and Watson, D.: Mapping disruption and resilience mechanisms in food systems, Food Secur., 12, 695–717, https://doi.org/10.1007/s12571-020-01093-0, 2020.
Scherrer, K. J. N., Harrison, C. S., Heneghan, R. F., Galbraith, E., Bardeen, C. G., Coupe, J., Jägermeyr, J., Lovenduski, N. S., Luna, A., Robock, A., Stevens, J., Stevenson, S., Toon, O. B., and Xia, L.: Marine wild-capture fisheries after nuclear war, P. Natl. Acad. Sci. USA, 117, 29748–29758, https://doi.org/10.1073/pnas.2008256117, 2020.
Spaiser, V., Juhola, S., Constantino, S. M., Guo, W., Watson, T., Sillmann, J., Craparo, A., Basel, A., Bruun, J. T., Krishnamurthy, K., Scheffran, J., Pinho, P., Okpara, U. T., Donges, J. F., Bhowmik, A., Yasseri, T., Safra de Campos, R., Cumming, G. S., Chenet, H., Krampe, F., Abrams, J. F., Dyke, J. G., Rynders, S., Aksenov, Y., and Spears, B. M.: Negative social tipping dynamics resulting from and reinforcing Earth system destabilization, Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, 2024.
Tabor, C. R., Bardeen, C. G., Otto-Bliesner, B. L., Garcia, R. R., and Toon, O. B.: Causes and Climatic Consequences of the Impact Winter at the Cretaceous-Paleogene Boundary, Geophys. Res. Lett., 47, e60121, https://doi.org/10.1029/2019GL085572, 2020.
Thang, D. N.: How do regional extreme events shape supply-chain trade?, Int. Econ. Econ. Policy, 21, 117–149, https://doi.org/10.1007/s10368-023-00582-9, 2024.
Throup, J., García Martínez, J. B., Bals, B., Cates, J., Pearce, J. M., and Denkenberger, D. C.: Rapid repurposing of pulp and paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes, Food Bioprod. Process., 131, 22–39, https://doi.org/10.1016/j.fbp.2021.10.012, 2022.
Toon, O. B., Robock, A., and Turco, R. P.: Environmental consequences of nuclear war, Phys. Today, 61, 37, https://doi.org/10.1063/1.3047679, 2008.
Tukey, J. W.: Exploratory Data Analysis, 1st edition, Pearson, Reading, Mass, 503 pp., ISBN 9780201076165, 1977.
Wang, X., Ma, L., Yan, S., Chen, X., and Growe, A.: Trade for Food Security: The Stability of Global Agricultural Trade Networks, Foods, 12, 271, https://doi.org/10.3390/foods12020271, 2023.
Wellesley, L., Preston, F., Lehne, J., and Bailey, R.: Chokepoints in global food trade: Assessing the risk, Research in Transportation Business & Management, 25, 15–28, https://doi.org/10.1016/j.rtbm.2017.07.007, 2017.
White, S.: The climate of rebellion in the early modern Ottoman Empire, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511844058, 2013.
Wieland, A. and Durach, C. F.: Two perspectives on supply chain resilience, J. Bus. Logist., 42, 315–322, https://doi.org/10.1111/jbl.12271, 2021.
Wiliński, M., Sienkiewicz, A., Gubiec, T., Kutner, R., and Struzik, Z. R.: Structural and topological phase transitions on the German Stock Exchange, Physica A, 392, 5963–5973, https://doi.org/10.1016/j.physa.2013.07.064, 2013.
Wilson, C.: High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments, Defense Technical Information Center, 26 pp., https://apps.dtic.mil/sti/pdfs/ADA449540.pdf (last access: 17 September 2025), 2006.
Woo, G.: Downward Counterfactual Search for Extreme Events, Front. Earth Sci., 7, 340, https://doi.org/10.3389/feart.2019.00340, 2019.
World Economic Forum: The global risks report 2023, 18th ed., World Economic Forum, Geneva, ISBN 13 978-2-940631-36-0, 2023.
Xia, L., Robock, A., Scherrer, K., Harrison, C. S., Bodirsky, B. L., Weindl, I., Jägermeyr, J., Bardeen, C. G., Toon, O. B., and Heneghan, R.: Global food insecurity and famine from reduced crop, marine fishery and livestock production due to climate disruption from nuclear war soot injection, Nat. Food, 3, 586–596, https://doi.org/10.1038/s43016-022-00573-0, 2022.
Yıldırım, C. and Önen, H. G.: Vulnerabilities of the neoliberal global food system: The Russia–Ukraine War and COVID-19, J. Agr. Change, 24, e12601, https://doi.org/10.1111/joac.12601, 2024.
Zhang, J., Wu, T., Li, L., Furtado, K., Xin, X., Xie, C., Zheng, M., Zhao, H., and Zhou, Y.: Constraint on regional land surface air temperature projections in CMIP6 multi-model ensemble, npj Clim. Atmos. Sci., 6, 1–9, https://doi.org/10.1038/s41612-023-00410-6, 2023a.
Zhang, Y.-T., Nguyen, D. K., and Zhou, W.-X.: Spatiotemporal characteristics of agricultural food import shocks, arXiv [preprint], https://doi.org/10.48550/arXiv.2303.00919, 2023b.
Zhang, Y.-T., Li, M.-Y., and Zhou, W.-X.: Impact of the Russia-Ukraine conflict on the international staple agrifood trade networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2403.12496, 2024.
Chief editor
While there are many dystopian articles on post-catastrophic scenarios, rigorous, science-based analysis are limited. This paper will be a significant addition to the limited literature in this area and should have broader public and media interests.
While there are many dystopian articles on post-catastrophic scenarios, rigorous, science-based...
Short summary
The global food trade system can handle small disturbances, but large disasters could cause major disruptions. We looked at how nuclear war or severe infrastructure loss would affect global trade in key crops. Both would be catastrophic, but a nuclear war would cause more severe disruptions, with many countries losing most of their food imports. Both scenarios highlight the need for better preparation to protect global food security.
The global food trade system can handle small disturbances, but large disasters could cause...
Special issue
Altmetrics
Final-revised paper
Preprint