Articles | Volume 16, issue 4
https://doi.org/10.5194/esd-16-1183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-1183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrogen deposition and climate drive plant nitrogen uptake while soil factors drive nitrogen use efficiency in terrestrial ecosystems
Helena Vallicrosa
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering ENAC, EPFL, 1015 Lausanne, Switzerland
Katrin Fleischer
Department of Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Jena, Germany
Section Systems Ecology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Manuel Delgado-Baquerizo
Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
Marcos Fernández-Martínez
CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
Jakub Černý
Forestry and Game Management Research Institute, Strnady 136, Jíloviště 252 02, Czech Republic
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
Angeliki Kourmouli
Lancaster Environment Centre, Lancaster University, Lancaster, UK
Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
Carolina Mayoral
Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
School of Biosciences, Edgbaston Campus, University of Birmingham, Birmingham, UK
Diego Grados
Department of Agroecology, Climate and Water, Aarhus University, 8830 Tjele, Denmark
Mingzhen Lu
Department of Environmental Studies, New York University, New York, NY 10012, USA
Santa Fe Institute, Santa Fe, NM 87501, USA
César Terrer
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
Related authors
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Écio Souza Diniz, Eladio Rodríguez-Penedo, Roger Grau-Andrés, Jordi Vayreda, and Marcos Fernández-Martínez
Biogeosciences, 22, 2115–2132, https://doi.org/10.5194/bg-22-2115-2025, https://doi.org/10.5194/bg-22-2115-2025, 2025
Short summary
Short summary
In this study, we found that the accumulation of nutrients (e.g., carbon, nitrogen, phosphorus, calcium) in leaves is an important factor in explaining tree growth in forest ecosystems. This result provides evidence for forest growth studies aimed at forest conservation and restoration to better direct their resources to data collection and measurement. Collecting data on nutrient stocks in tree leaves can also provide valuable information to broaden our understanding of forest functioning.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Thomas Janssen, Katrin Fleischer, Sebastiaan Luyssaert, Kim Naudts, and Han Dolman
Biogeosciences, 17, 2621–2645, https://doi.org/10.5194/bg-17-2621-2020, https://doi.org/10.5194/bg-17-2621-2020, 2020
Short summary
Short summary
The frequency and severity of droughts are expected to increase in the tropics, impacting the functioning of tropical forests. Here, we synthesized observed responses to drought in Neotropical forests. We find that, during drought, trees generally close their leaf stomata, resulting in reductions in photosynthesis, growth and transpiration. However, on the ecosystem scale, these responses are not visible. This indicates that resistance to drought increases from the leaf to ecosystem scale.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Suhui Ma, Anwar Eziz, Di Tian, Zhengbing Yan, Qiong Cai, Mingwei Jiang, Chengjun Ji, and Jingyun Fang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-87, https://doi.org/10.5194/bg-2019-87, 2019
Preprint withdrawn
Short summary
Short summary
Stem carbon (C) content is one of the important tree traits and widely used to present tree C content to estimate forest C stocks. Based on a 576 age-specific tree organ C content dataset, our results showed that C content of tree varied significantly among organs. Stem C content increased with the increasing tree size and age. Using stem C content as tree C content could produce an error of −2.49 %–5.87 %. This suggests considering tree organ C content of stand in estimating forest C stock.
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203–5215, https://doi.org/10.5194/gmd-11-5203-2018, https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Short summary
We propose a generic approach for a pixel-to-point comparison applicable for evaluation of models and remote-sensing products. We provide statistical measures accounting for the uncertainty in ecosystem variables. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest.
Suhui Ma, Feng He, Di Tian, Dongting Zou, Zhengbing Yan, Yulong Yang, Tiancheng Zhou, Kaiyue Huang, Haihua Shen, and Jingyun Fang
Biogeosciences, 15, 693–702, https://doi.org/10.5194/bg-15-693-2018, https://doi.org/10.5194/bg-15-693-2018, 2018
Short summary
Short summary
Plant carbon (C) content is critical to the assessment of the global C cycle. Our results showed that the global average C contents in organs were significantly lower than a canonical value of 50 %. Plant C content tended to decrease with increasing latitude, and life form explained more variation than climate. Our findings suggest that specific C content values of different organs and life forms should be incorporated into the estimations of regional and global vegetation biomass C stocks.
Di Tian, Peng Li, Wenjing Fang, Jun Xu, Yongkai Luo, Zhengbing Yan, Biao Zhu, Jingjing Wang, Xiaoniu Xu, and Jingyun Fang
Biogeosciences, 14, 3461–3469, https://doi.org/10.5194/bg-14-3461-2017, https://doi.org/10.5194/bg-14-3461-2017, 2017
Short summary
Short summary
Previous studies have mainly focused on the effects of N deposition on tree growth in temperate and tropical forests, however, the responses of different trees and understory plants in subtropical forests to N deposition remain unknown. We conducted a 3.4-year experimentally simulated N enrichment and found that small trees were hindered while medium and large trees were not significantly affected by N fertilization. Additionally, the growth of understories was suppressed by N fertilization.
Cited articles
Aber, J. and Melillo, J.: Terrestrial ecosystems. Second edition, Harcourt Academic Press, San Diego, California, USA, ISBN 13 9780120417551, 2001.
Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: Nitrogen saturation in northern forest ecosystems, BioScience, 39, 378–386, 1989.
Ackerman, D., Millet, D. B., and Chen, X.: Global estimates of inorganic nitrogen deposition across four decades, Global Biogeochem. Cy., 33, 100–107, https://doi.org/10.1029/2018GB005990, 2019.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.
Auge, G., Sunil, R. S., Ingle, R. A., Rahul, P. V., Mutwil, and M., and Estevez, J. M.: Current challenges for plant biology research in the Global South, New Phytol., 244, 1168–1174, 2024.
Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D., and Kivlin, S. N.: Global imprint of mycorrhizal fungi on whole-plant nutrient economics, P. Natl Acad. Sci. USA, 116, 23163–23168, 2019.
Bardgett, R. and van der Putten, W.: Belowground biodiversity and ecosystem functioning, Nature, 515, 505–511, https://doi.org/10.1038/nature13855, 2014.
Bartoń, K.: MuMIn: Multi-Model Inference, R package version 1.47.5, https://CRAN.R-project.org/package=MuMIn (last access: 25 July 2025), 2023.
Battye, W., Aneja, V. P., and Schlesinger, W. H.: Is nitrogen the next carbon?, Earths Future, 5, 894–904, https://doi.org/10.1002/2017EF000592, 2017.
Berntson, G. M., Rajakaruna, N., and Bazzaz, F. A.: Growth and nitrogen uptake in an experimental community of annuals exposed to elevated atmospheric CO2, Glob. Change Biol., 4, 607–626, https://doi.org/10.1046/j.1365-2486.1998.00171.x, 1998.
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries, W.: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis, Ecol. Appl., 20, 30–59, 2010.
Braghiere, R. K., Fisher, J. B., Allen, K., Brzostek, E., Shi, M., Yang, X., Ricciuto, D. M., Fischer, R. A., Zhu, Q., and Phillips, R. P.: Modeling global carbon costs of plant nitrogen and phosphorus acquisition, J. Adv. Model. Earth Sy., 14, e2022MS003204, https://doi.org/10.1029/2022MS003204, 2022.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16), Association for Computing Machinery, New York, NY, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., and Yuan, J.: xgboost: Extreme Gradient Boosting, R package version 1.7.5.1, https://CRAN.R-project.org/package=xgboost (last access: 25 July 2025), 2023.
Chen, W., Koide, R. T., and Eissenstat, D. M.: Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes, Funct. Ecol., 32, 858–869, https://doi.org/10.1111/1365-2435.13041, 2018.
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C., and Maynard, D. S.: The global soil community and its influence on biogeochemistry, Science, 365, eaav0550, https://doi.org/10.1126/science.aav0550, 2019.
Defourny, P.: ESA Land Cover Climate Change Initiative (Land_Cover_cci),Global Land Cover Maps, Version 2.0.7, Centre for Environmental Data Analysis, https://catalogue.ceda.ac.uk/uuid/b382ebe6679d44b8b0e68ea4ef4b701c (last access:: 25 July 2025), 2019.
Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., Bastida, F., Berhe, A. A., Cutler, N. A., Gallardo, A., García-Velázquez, L., Hart, S. C., Hayes, P. E., He, J., Hseu, Z., Hu, H., Kirchmair, M., Neuhauser, S., Pérez, C. A., Reed, S. C., Santos, F., Sullivan, B. W., Trivedi, P., Wang, J., Weber-Grullon, L., Williams, M. A., and Singh, B. K.: Multiple elements of soil biodiversity drive ecosystem functions across biomes, Nat. Ecol. Evol., 4, 210–220, 2020.
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström,A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X., and Jackson, R. B.: Global patterns of terrestrial nitrogen and phosphorus limitation, Nat. Geosci. 13, 221–226, https://doi.org/10.1038/s41561-019-0530-4, 2020.
Dybzinski, R., Segal, E., McCormack, M. L., Rollinson, C. R., Mascarenhas, R., Giambuzzi, P., Rivera, J., Fitzpatrick, L., Wiggins, C., and Midgley, M. G.: Calculating Nitrogen Uptake Rates in Forests: Which Components Can Be Omitted, Simplified, or Taken from Trait Databases and Which Must Be Measured In Situ?, Ecosystems, 27, 739–763, https://doi.org/10.1007/s10021-024-00919-8, 2024.
Elser, J. J., Fagan, W. F., Kerkhoff, A. J., Swensson, N. G., and Enquist, B. J.: Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change, New Phytol., 186, 593–608, 2010.
Fernández-Martínez, M., Vicca, S., Janssens, I., Sardans, J., Luyssaert, S., Campioli, M., Chapin III, F. S., Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S. L., Reichestein, M., Rodà, F., and Peñuelas, J.: Nutrient availability as the key regulator of global forest carbon balance, Nat. Clim. Change, 4, 471–476, https://doi.org/10.1038/nclimate2177, 2014.
Fernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S., Canadell, J. G., Bastos, A., Friedlingstein, P., Sitch, S., Piao, S. L., Janssens, I. A., and Peñuelas, J.: Global trends in carbon sinks and their relationships with CO2 and temperature, Nat. Clim. Change, 9, 73–79, https://doi.org/10.1038/s41558-018-0367-7, 2019.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas, Int.l J. Climatol., 37, 4302–4315, 2017.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F., Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E., Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A., Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y., Yang, X., Zaehle, S., Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741, https://doi.org/10.1038/s41561-019-0404-9, 2019.
Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., Skiba, U. M., Sutton, M. A., Cape, J. N., Dore, A. J., Vieno, M., Simpson, D., Zaehle, S., Stocker, B. D., Rinaldi, M., Facchini, M. C., Flechard, C. R., Nemitz, E., Twigg, M., Erisman, J. W., Butterbach-Bahl, K., and Galloway, J. N.: Effects of global change during the 21st century on the nitrogen cycle, Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, 2015.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, Third edition, Sage, Thousand Oaks CA, 2019.
Franklin, O., Harrison, S. P., Dewar, R., Farrior, C. E., Brännström, Å., Dieckmann, U., Pietsch, S., Falster, D., Cramer, W., Loreau, M., Wang, H., Mäkelä, A., Rebel, K. T., Meron, E., Schymanski, S. J., Rovenskaya, E., Stocker, B. D., Zaehle, S., Manzoni, S., van Oijen, M., Wright, I. J., Ciais, P., van Bodegom, P. M., Peñuelas, J., Hofhansl, F., Terrer, C., Soudzilovskaia, N. A., Midgley, G., and Prentice, I. C.: Organizing principles for vegetation dynamics, Nat. Plants 6, 444–453, https://doi.org/10.1038/s41477-020-0655-x, 2020.
Giam, X. and Olden, J. D.: Quantifying variable importance in a multimodel inference framework, Methods Ecol. Evol., 7, 388–397, https://doi.org/10.1111/2041-210X.12492, 2016.
Gundersen, P., Emmett, B. A., Kjonaas, O. J., Koopmans, C. J., and Tietema, A.: Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data, Forest Ecol. Manag., 101, 37–55, 1998.
Gurmesa, G. A., Wang, A., Li, S., Peng, S., de Vries, W., Gundersen, P., Ciais, P., Phillips, O. L., Hobbie, E. A., Zhu, W., Nadelhoffer, K., Xi, Y., Bai, E., Sun, T., Chen, D., Zhou, W., Zhang, Y., Guo, Y., Zhu, J., Duan, L., Li, D., Koba, K., Du, E., Zhou, G., Han, X., Han S., and Fang, Y.: Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink, Nat. Commun., 13, 880, https://doi.org/10.1038/s41467-022-28345-1, 2022.
Hijmans, R.: raster: Geographic Data Analysis and Modeling, R package version 3.6-20, https://CRAN.R-project.org/package=raster (last access: 25 July 2025), 2023.
Hungate, B. A., Dukes, J. S., Shaw, R., Luo, Y., and Field, C. B.: Nitrogen and Climate Change, Science, 302, 1512–1513, https://doi.org/10.1126/science.1091390, 2003.
Iversen, C. M., Bridgham, S. D., and Kellogg, L. E.: Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands, Ecology, 91, 693–707, 2010.
Jackman, S.: pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, R package version 1.5.5.1, United States Studies Centre, University of Sydney, Sydney, New South Wales, Australia, https://github.com/atahk/pscl/ (last access: 25 July 2025), 2020.
Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G., Nenes, A., Baker, A. R., Tsigaridis, K., and Mihalopoulos, N.: Past, present, and future atmospheric nitrogen deposition, J. Atmos. Sci., 73, 2039–2047, https://doi.org/10.1175/JAS-D-15-0278.1, 2016.
Kuzyakov, Y. and Xu, X.: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance, New Phytol., 198: 656-669, https://doi.org/10.1111/nph.12235, 2013.
Lever, J., Krzywinski, M., and Altman, N.: Model selection and overfitting, Nat. Methods, 13, 703–704, 2016.
McIntire, E. and Chubaty, A.: SpaDES.tools: Additional Tools for Developing Spatially Explicit Discrete Event Simulation (SpaDES) Models, R package version 2.0.0, https://CRAN.R-project.org/package=SpaDES.tools (last access: 25 July 2025), 2023.
Niu, S., Classen, A. T., Dukes, J. S., Kardol, P., Liu, L., Luo, Y., Rustad, L., Sun, J., Tang, J., Templer, P. H., Thomas, R. Q., Tian, D., Vicca, S., Wang, Y.-P., Xia, J., and Zaehle, S.: Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle, Ecol. Lett., 19: 697-709, https://doi.org/10.1111/ele.12591, 2016.
Peng, Y., Chen, H. Y. H., and Yang, Y.: Global pattern and drivers of nitrogen saturation threshold of grassland productivity, Funct. Ecol., 34, 1979–1990, https://doi.org/10.1111/1365-2435.13622, 2020.
Peng, Y., Prentice, I. C., Bloomfield, K. J., Campioli, M., Guo, Z., Sun, Y., Tian, Di, Wang, X., Vicca, S., and Stocker, B. D.: Global terrestrial nitrogen uptake and nitrogen use efficiency, J. Ecol., 111, 2676–2693, https://doi.org/10.1111/1365-2745.14208, 2023.
Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M., and Sardans, J.: Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health, Glob. Change Biol., 26 1962– 1985, https://doi.org/10.1111/gcb.14981, 2020.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Prentice, I. C., Liang, X., Medlyn, B. E., and Wang, Y.-P.: Reliable, robust and realistic: the three R's of next-generation land-surface modelling, Atmos. Chem. Phys., 15, 5987–6005, https://doi.org/10.5194/acp-15-5987-2015, 2015.
Ruehr, S., Keenan, T. F., Williams, C., Zhou, Y., Lu, X., Bastos, A., Canadell, J. G., Prentice, I. C., Sitch, S., and Terrer, C.: Evidence and attribution of the enhanced land carbon sink, Nat. Rev. Earth. Environ., 4, 518–534, https://doi.org/10.1038/s43017-023-00456-3, 2023.
Shcherbak, I., Millar, N., and Robertson, G. P.: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen, P. Natl. Acad. Sci. USA, 111, 9199–9204, 2014.
Sinsabaugh, R., Carreiro, M., and Repert, D.: Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss, Biogeochemistry, 60, 1–24, https://doi.org/10.1023/A:1016541114786, 2002.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak, D. R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global scale, Ecol. Lett., 11, 1252–1264, https://doi.org/10.1111/j.1461-0248.2008.01245.x, 2008.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Soudzilovskaia, N. A., van Bodegom, P. M., Terrer, C., van't Zelfde, M., McCallum, I., McCormack, M. L., Fisher, J. B., Brundrett, M. C., de Sá, N. C., and Tedersoo, L.: Global mycorrhizal plant distribution linked to terrestrial carbon stocks, Nat. Commun., 10, 5077, https://doi.org/10.1038/s41467-019-13019-2, 2019.
Soudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brundrett, M. C., Gomes, S. I. F., Merckx, V., and Tedersoo, L.: FungalRoot: global online database of plant mycorrhizal associations, New Phytol., 227, 955–966, https://doi.org/10.1111/nph.16569, 2020.
Stevens, C. J., Lind, E. M., Hautier, Y., and Harpole, W. S.: Anthropogenic nitrogen deposition predicts local grassland primary production worldwide, Ecology, 96, 1459–65, 2015.
Stocker, B. D., Prentice, I. C., Cornell, S. E., Davies-Barnard, T., Finzi, A. C., Franklin, O., Janssens, I., Larmola, T., Manzoni, S., Näsholm, T., Raven, J. A., Rebel, K. T., Reed, S., Vicca, S., Wiltshire, A., and Zaehle, S.: Terrestrial nitrogen cycling in Earth system models revisited, New Phytol., 210, 1165–1168, https://doi.org/10.1111/nph.13997, 2016.
Sutton, M. A. and Fowler, D.: Estimating the relative contribution of SOx, NOy and NHx inputs to effects of atmospheric deposition Critical loads: concept and applications, Grange-over-Sands Workshop, Critical loads: concept and applications. (Grange-over-Sands Workshop, 2/1992), edited by: Hornung, M. and Skeffington, R. A., HMSO, 119–126, 1993.
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A., Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A., Talhelm, A. F., Van Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M. J., Blumenthal, D. M., Liu, Y. Y., Müller, C., Winter, K., Field, C. B., Viechtbauer, W., Van Lissa, C. J., Hoosbeek, M. R., Watanabe, M., Koike, T., Leshyk, V. O., Polley, H. W., and Franklin, O.: Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass, Nat. Clim. Change, 9, 684–689, https://doi.org/10.1038/s41558-019-0545-2, 2019.
Tian, D., Wang H., Sun, J., and Niu, S.: Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity, Environ. Res. Lett., 11, 024012, https://doi.org/10.1088/1748-9326/11/2/024012, 2016.
Vallicrosa Pou, H.: Global plant nitrogen uptake and nitrogen use efficiency, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.13332734, 2024.
Vallicrosa, H., Sardans, J., Maspons, J., and Peñuelas, J.: Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P), Glob. Ecol. Biogeogr., 31, 861–71, 2022.
Vicca, S., Stocker, B. D., Reed, S., Wieder, W. R., Bahn, M., Fay, P. A., Janssens, I. A., Lambers, H., Peñuelas, J., Piao, S., Rebel, K. T., Sardans, J., Sigurdsson, B. D., Sundert, K. V., Wang, Y. P., Zaehle, S., and Ciais, P.: Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling, Environ. Res. Lett., 13, 125006, https://doi.org/10.1088/1748-9326/aaeae7, 2018.
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore, S. E., van Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2, New. Phytol., 229, 2413–2445, https://doi.org/10.1111/nph.16866, 2021.
Walker, T. W. and Syers, J. K.: Fate of Phosphorus during Pedogenesis, Geoderma, 15, 1–19, 1976.
Wall, D. H., Nielsen, U. N., and Six, J.: Soil biodiversity and human health, Nature, 528, 69–76, 2015.
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D., Boucher, O., Ciais, P., Janssens, I. A., Peñuelas, J., Guenet, B., Sardans, J., Bopp, L., Vuichard, N., Zhou, F., Li, B., Piao, S., Peng, S., Huang, Y., and Tao, S.: Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850–2100, Glob. Change Biol., 23, 4854–4872, 2017.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, ISBN 978-3-319-24277-4, 2016.
Wickham, H. and Henry, L.: purrr: Functional Programming Tools, R package version 1.0.2, https://CRAN.R-project.org/package=purrr (last access: 25 July 2025), 2023.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.: Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation, Glob. Change Biol., 17, 927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Xu, X., Thornton, P. E., and Post, W. M.: Global soil microbial biomass C, N and P, Glob. Ecol. Biogeogr., 22, 737–749, https://doi.org/10.1111/geb.12029, 2013.
Yang, J. and Tian, H.: ISIMIP3a N-deposition input data (v1.2), ISIMIP Repository, https://doi.org/10.48364/ISIMIP.759077.2, 2022.
Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y. P., El-Masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R., and Norby, R. J.: Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies, New Phytol., 202, 803–822, https://doi.org/10.1111/nph.12697, 2014.
Zhou, G., Terrer, C., Huang, A., Hungate, B. A., van Gestel, N., Zhou, X., and van Groenigen, K. J.: Nitrogen and water availability control plant carbon storage with warming, Sci. Total Environ., 851, 158243, https://doi.org/10.1016/j.scitotenv.2022.158243, 2022.
Short summary
We used field empirical data worldwide to calculate plant nitrogen uptake (Nup) and nitrogen use efficiency (NUE) in woodlands and grasslands to determine their drivers which can be used as empirical validation for models. Even though some regions of the world have decreased their N deposition, N deposition is still the most important driver explaining plant nitrogen uptake, aside from climatic variables. NUE is mainly driven by soil factors.
We used field empirical data worldwide to calculate plant nitrogen uptake (Nup) and nitrogen use...
Altmetrics
Final-revised paper
Preprint