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Abstract. The role of plants in sequestering carbon is a critical component in mitigating climate change. A key
aspect of this role involves plant nitrogen (N) uptake (Nup) and N use efficiency (NUE), as these factors directly
influence the capacity of plants to store carbon. However, the additive contribution of N deposition, soil factors
(biotic and abiotic), and climate to the plant N cycle remains inadequately understood, introducing significant
uncertainties into climate change projections. Here, we used ground-based observations across 159 field experi-
ments (including above and belowground information) to calculate Nup and NUE and identify their main drivers
in natural ecosystems. We found that global plant Nup is primarily driven by N deposition, mean temperature,
and precipitation, with Nup increasing in warmer and wetter areas. In contrast, NUE is driven by soil biotic and
abiotic factors. Specifically, NUE decreased with the intensity of colonization by arbuscular mycorrhizal fungi
and increased with soil pH and soil microbial stocks. Nup and NUE presented opposite latitudinal distributions,
with Nup higher on tropical latitudes and NUE higher towards the poles. Total soil N stocks were not found to be
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a driver of Nup or NUE. We also compared our results with TRENDY models and found that models may over-
estimate Nup by ∼ 100 TgNyr−1 in the tropics and triple the standard deviation at boreal latitudes. Our findings
emphasize the effect of N deposition and soil microbes that, in addition to climate and soil pH, are crucial for
accurately predicting ecosystems’ capacity to sequester carbon and mitigate climate change at a global scale.

1 Introduction

Climate and nutrient availability play significant roles in the
capacity of plants to sequester carbon (C). Nitrogen uptake
(Nup) and nitrogen use efficiency (NUE) are fundamental
processes in plant-soil N cycling, which in turn impact bio-
diversity, ecosystem productivity, C sequestration, food se-
curity, and human health (Peñuelas et al., 2020). Hence, re-
alistic quantifications of Nup and NUE and the understand-
ing of their drivers are crucial to predicting the fate of ter-
restrial ecosystems under a changing environment. Climate,
biomass production, and Nup are strongly intertwined, where
hotter and wetter ecosystems have the capacity to grow more,
increasing their N demand, and therefore absorb more N if
available (Berntson et al., 1998; Wu et al., 2011). Nonethe-
less, several factors can affect N availability. Traditionally,
total soil N stocks were used to proxy N availability or plant
Nup. Although this correlation is weak, it is still used from
a modelling perspective (Stevens et al., 2015; Vicca et al.,
2018) assuming that total soil N positively correlates with
N availability.

The soil community (i.e. microbes and fungi) plays a cru-
cial role in global biogeochemical cycles governing pro-
cesses such as N fixation, nitrification, denitrification, and
general organic matter and nutrient turnover (Aber and
Melillo, 2001; Sinsabaugh et al., 2002; Sinsabaugh et al.,
2008; Crowther et al., 2019; Delgado-Baquerizo et al., 2020).
In turn, the soil community can also act as a buffer in case of
nutrient excess (Wall et al., 2015) or contribute to nutrient
foraging in case of nutrient deficiencies (Chen et al., 2018),
shaping ecosystem functioning (Bardgett and van der Putten,
2014). Therefore, the soil community is expected to interfere
substantially with plant Nup and NUE. N deposition is an-
other agent relevant for global N cycles, which has increased
from∼ 30 to∼ 80 TgNyr−1 worldwide since 1850 (Kanaki-
dou et al., 2016) with an associated increase in N availability
(Elser et al., 2010; Battye et al., 2017; Peñuelas et al., 2020).
Consequently, reliable quantifications of plant Nup and NUE
need to include climatic factors as well as soil biotic factors
and N deposition.

N regulates the capacity of ecosystems to store C (Hungate
et al., 2003; Fernández-Martínez et al., 2014, 2019; Wang
et al., 2017) and respond to climate change drivers (Fleischer
et al., 2019; Terrer et al., 2019; Walker et al., 2021; Zhou
et al., 2022) being the C-N assembly relevant for land sur-
face models (LSMs). Eight of the LSM of the TRENDY en-
semble v8 (Sitch et al., 2015), a model ensemble designed to

disentangle the effects of climate, CO2, land use, and land
cover change, include representations of the N cycle and
plant Nup. Nonetheless, their parameterization of N cycling
is poorly constrained by observations (Zaehle et al., 2014;
Fowler et al., 2015; Braghiere et al., 2022). Consequently,
when models are assembled, the result leads to accumulated
uncertainty (Prentice et al., 2015; Franklin et al., 2020) and
therefore divergent predictions of the land sink (Zaehle et al.,
2014; Stocker et al., 2016; Arora et al., 2020). Furthermore,
when accounting for N interactions, LSMs do not generally
consider the direct effects of microorganisms, missing out
on the role of soil bacteria or mycorrhizae on plant nutri-
ent uptake. Including global calculations of plant Nup and
NUE based on empirical data, as well as accounting for cli-
mate, N deposition, and soil biomass interactions, would po-
tentially refine the N accountability in LSM.

Here, we gathered information from 159 plots world-
wide that describe woodlands and grasslands across differ-
ent biomes to calculate plot-based plant Nup and plant NUE
using exclusively empirical field data. Our analyses com-
bine N concentration and net primary productivity (NPP)
data in different aboveground and belowground plant tissues
(i.e. leaves, roots and stem). We used linear models to iden-
tify the drivers of Nup and NUE, including N deposition,
soil microbes, woodiness, and climatic factors. We then up-
scaled those results using machine-learning models to quan-
tify yearly plant Nup and plant NUE at a global scale in nat-
ural terrestrial ecosystems (woodlands and grasslands) and
compared these results with simulations from LSM. We hy-
pothesize that factors such as N deposition and soil microor-
ganisms have significant impacts on Nup and NUE, respec-
tively, playing a role as important as climatic drivers. We
expect the ground-based data, and incorporation of these N-
relevant drivers, to increase the accuracy of global Nup quan-
tifications. Thus, a mismatch between our estimation and cur-
rent TRENDY simulation outputs is expected.

2 Results and discussion

2.1 Nitrogen uptake and nitrogen use efficiency

Our findings indicate that N deposition and climate are fun-
damental factors explaining plant Nup on a global scale
(Fig. 1). We found a positive relationship between Nup and
accumulated N deposition, mean annual temperature (MAT),
and mean annual precipitation (MAP). Thus, regions that are
warm, wet, and with higher levels of N deposition exhibit
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Figure 1. (a) Variable importance plot for the general linear model (GLM) describing plant nitrogen uptake (Nup). The dashed line is
set at 0.75, separating the threshold for important variables. The GLM model pseudoR2 was 0.349. Linear regressions were displayed
describing plants’ nitrogen and important variables (b) accumulated Nox deposition from 1901 to 2021, (c) mean annual temperature, and
(d) mean annual precipitation. Equation and p value per regression are displayed. Acronyms: Nox: oxidized nitrogen, N: nitrogen, Myco %:
mycorrhizal percentage.

the highest rates of Nup. Our results show that N deposition
is strongly contributing to fulfilling the N demand in pro-
ductive environments, alleviating potential N limitations, and
allowing high plant Nup levels. On the other hand, our em-
pirical results did not show important relationships between
plant Nup and soil microbial interactions nor soil physico-
chemical variables (Fig. 1a). Those results include no signif-
icant relationship between soil N stocks and Nup at a global
scale (Fig. S1a in the Supplement), which has been further
tested following a univariate approach. This result discour-
ages the use of soil N to infer N availability.

In contrast, our model selection analysis identified soil bi-
otic and abiotic factors as the main NUE drivers (Fig. 2).

We found that NUE decreased with AM % and increased
with soil pH and soil microbial N stocks. Thus, plant species
prone to be colonized by arbuscular mycorrhizae are less ef-
ficient in N use to build biomass. In contrast, basic pH and
abundant soil microbial stocks facilitate higher NUE rates.
Even though soil variables appear to be important for NUE,
soil N stocks remain unrelated to NUE in the model and
when tested individually (Fig. S1b). Despite climatic vari-
ables such as MAT and MAP not appearing as important vari-
ables explaining NUE, they are to some extent represented in
the soil variables. As shown in Table S2 in the Supplement,
soil variables are not independent of climatic variables since
they have some degree of correlation.
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Figure 2. (a) Variable importance plot for the generalized linear model describing nitrogen use efficiency (NUE). The model preudoR2 was
0.355. The dashed line is set at 0.75, separating the threshold for important variables. In (b) arbuscular mycorrhizae percentage is divided
into low, medium, and high, and NUE is displayed. ∗=P value < 0.05, ∗∗=P value < 0.01, ∗∗∗=P value < 0.001. Linear regressions
were displayed describing plants’ nitrogen use efficiency (c) soil pH and (d) microbial N stocks. Equation and p value per regression are
displayed.

2.2 Global maps of Nup and NUE

Next, we used a machine-learning model, XGBoost, to esti-
mate the global magnitude and distribution of Nup and NUE
by extrapolating the site-level relationships to the global
scale. For methodological consistency, the XGBoost model
was trained using the same nine variables as the linear
model. The model identified temperature, precipitation, and
N deposition as the most critical factors for describing Nup
(Fig. S2), consistent with the linear model, though ranked
in a slightly different order. Partial dependence plots fur-
ther supported the relationships observed in the linear models
(Fig. S3).

The upscaled Nup map showed a total yearly Nup of
842.215± 236.11 TgN, with a mean coefficient of variation
of 26.77 % (Fig. S4) and an R2 of 0.54 (Fig. S2). The low-
est Nup values were on boreal latitudes and mountain ranges
such as the Rockies (USA), Andes (South America), var-
ious European ranges, and the Himalayan plateau (Asia).
In contrast, higher rates of Nup were predicted in temper-
ate latitudes in Europe, the eastern United States, Southeast
Asia, eastern Australia, much of South America, and central
Africa. The highest values were found in the Congo region,
where high N deposition, temperature and precipitation con-
verge (Fig. 3a). The Nup map shows a strong NPP influence
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Figure 3. Upscaled global maps describing (a) plant nitrogen uptake and (b) nitrogen use efficiency. The total amount of nitrogen up-
take calculated per year is 842.215 TgN with a standard deviation of ± 236.11. The mean value of global nitrogen use efficiency is
110.26 kgC per kgN and its standard deviation is 19.40. White areas indicate no data due to absence of grasslands or woody vegetation.

that is driven by temperature and precipitation and also in-
cludes N deposition.

The machine-learning model for NUE identified micro-
bial N stocks, altitude, precipitation, soil pH, and AM % as
the most important drivers (Fig. S5). The direction of these
effects matched those found in the linear model, with the
addition of precipitation and altitude (Fig. S6). The global
mean NUE estimate was 110.262 units of C per unit of N
with a mean coefficient of variation of 17.89 % (Fig. S4)
and an R2 of 0.44 (Fig. S5). The global map showed lower
NUE around the Equator, progressively increasing towards
the poles. Nonetheless, some heterogeneous patches of high

and low NUE appeared between 50 and 60° latitude north
(Fig. 3b).

2.3 Global-scale Nup comparison with TRENDY models

We compared our estimates for total yearly Nup, upscaled
from field observations, with the mean Nup across the eight
N models included in TRENDY. TRENDY models simulate
higher Nup in the tropical regions, reaching differences of
around 100 kgNha−1 yr−1 in those areas (Fig. 4a), represent-
ing more than 100 % of the Nup estimated by field observa-
tions (Fig. 4b). Other areas like northern and northeastern
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Figure 4. Comparison between the mean of the nitrogen uptake provided by TRENDY v8 models minus the upscaled nitrogen uptake. The
red colour stands for higher values on the TRENDY model and the blue colour stands for higher nitrogen uptake values on the upscaled
approach. In (a) units in kgNha−1 yr−1 and in (b) units in percentage of deviation from field upscaling. Latitudinal aggregation on the
right, with a red vertical line showing (a) the mean of the total comparison at 16.61kgNha−1 yr−1 and (b) the mean percentage of deviation
at 48.54 %.

North America, Southeast Asia, and northern Eurasia also
show higher Nup values in TRENDY models than in field
observations. In boreal latitudes, TRENDY model deviations
for Nup exceeded 300 % overestimation. On the other hand,
areas where the machine-learning models predict higher val-
ues than TRENDY models include the southern latitudes,
Middle Eastern regions, the Somali peninsula, and the Rocky
Mountains (Fig. 4). Overall, TRENDY models estimate Nup
values that are higher by 16.61 kgNha−1 yr−1 on average,
accounting for 48.54 % of the variability. When aggregating
total yearly Nup, LPX-Bern and CLM5.0 were the models
that predicted overall values exceeding our confidence range,
suggesting significantly higher Nup (Fig. S7).

2.4 Nup global drivers and implications

Our models estimated annual global plant Nup at
842± 236 TgN. This figure is consistent with the find-
ings of Peng et al., 2023, which estimated 950± 260 TgN,
and Braghiere et al., 2022, with an estimated uptake of
841.8 TgN. The slight variations can be attributed to dif-
ferences in methodologies and data sources (simultaneous
plot-averaged records vs individual-level records) used in
these studies. In our study, linear models and machine learn-
ing models consistently identify N deposition, temperature,
and precipitation as global drivers of Nup. Hotter and wet-
ter environments increase biological activity, leading to more
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biomass production and therefore more N demand. An in-
crease in N demand with enough N availability is associated
with an increase in Nup. The accumulation of N deposition
throughout time originating from anthropogenic sources has
been increasing the N availability in some areas, generally
close to industrial or agroforestry pools. Hence, in a global
change context where CO2 fertilization and temperature in-
crease have generated a greening effect (Ruehr et al., 2023),
areas with higher N deposition were able to better supply the
increasing N demand. Thus, according to our results, anthro-
pogenic N supply may now be as important a driver of Nup
as climate.

These results are concerning since our data emphasize
the far-reaching influence of human-induced N deposition in
shaping global Nup patterns. Some regions such as Europe,
the eastern USA, and the tropics have decreased their N de-
position levels during the last four decades (Ackerman et al.,
2019). Nonetheless, these reductions have not yet translated
into measurable changes in how N deposition affects natu-
ral woodlands and grasslands, which still appear to be pri-
marily driven by N deposition. This sustained input of an-
thropogenic N has been associated with a fertilization ef-
fect, enhancing the land C sink by 0.72 PgCyr−1 during the
2010s (Gurmesa et al., 2022). However, this N fertilization
effect has showed signs of saturation in forests and grass-
lands (Tian et al., 2016; Peng et al., 2020), where increases
in biomass production (and therefore C sink strength) have
slowed. Consequently, this excess N input from N deposi-
tion may no longer be captured by biomass and instead con-
tributes to N leaching, eutrophication, acidification, loss of
biodiversity, and N2O emissions (Aber et al., 1989; Gunder-
sen et al., 1998; Bobbink et al., 2010), exacerbating environ-
mental problems.

2.5 NUE global drivers and implications

Our results predict a mean NUE of 110± 19 kgC per kgN,
driven by soil biotic and abiotic factors. The main divergence
between linear models and machine learning models is the
importance of altitude and precipitation, which showed ex-
plicit relevance only in the machine learning model. We at-
tribute these differences to the nature of the models, where
machine-learning models accommodate correlations with-
out modifying their variable importance. Thus, the impor-
tant variables in the linear model could also have embed-
ded important latitudinal gradients and therefore altitudi-
nal or precipitation gradients. Our NUE predictions differ
from Peng et al. (2023), who reported a mean NUE of
76± 26 kgC per kg N. The main distinction is that our ap-
proach included biotic factors, such as mycorrhizal associa-
tions and microbial interactions, which explained NUE bet-
ter than abiotic factors. In contrast, Peng et al. (2023) based
their estimates solely on abiotic factors. We do not consider
environmental variables such as precipitation to be totally
independent from NUE relations, as they influence impor-

tant biotic variables such as AM % and microbial N stocks.
Nonetheless, the results showed that including biotic vari-
ables may result in more efficient use of N by plants at a
global scale.

The response of NUE has been postulated as a method to
assess N saturation in plant communities (Shcherbak et al.,
2014). A negative relationship between N addition and NUE,
along with lower NUE levels, can indicate N saturation
(Iversen et al., 2010). In our study, tropical areas exhibit
the lowest NUE, suggesting lower N limitation, consistent
with previous global upscaling studies using different meth-
ods (Du et al., 2020; Vallicrosa et al., 2022). According to
the soil age hypothesis (Walker and Syers, 1976), N accumu-
lates in ecosystems over time through biological processes.
Thus, younger ecosystems, such as those at high elevations
or with lower pH, show higher values of NUE and are likely
to be more N-limited. Our results show only a modest effect
of N saturation due to N deposition, so further studies are
needed to better assess where and under what circumstances
areas are N saturated due to N deposition at a global scale.

Biological activity, particularly the type of mycorrhizal as-
sociations and soil microbial N stocks, had a strong impact
on N dynamics. Arbuscular mycorrhizal associations, which
dominate tropical ecosystems (Soudzilovskaia et al., 2019),
are hypothesized to be more efficient in nutrient acquisition
and more abundant in areas with fast N cycling (Averill et al.,
2019). Our models show that AM associations are linked to
lower NUE, possibly due to abundant N and the high effi-
ciency of AM fungi in acquiring it. Conversely, N acqui-
sition appears more efficient in regions with higher micro-
bial N stocks. As described by Kuzyakov and Xu (2013),
we hypothesize a potential competition effect between soil
microbes and plants for N, but further studies are needed to
corroborate this mechanism. Given the central role of biolog-
ical processes in regulating N transformation and uptake, it
is reasonable to conclude that total soil N stocks (which in-
clude all forms and pools of N) are not reliable indicators of
N availability or plant Nup.

2.6 Latitudinal discrepancies between Nup map and
TRENDY

LPX-Bern and CLM5.0 models projected Nup values
significantly above our estimates, reporting 1471 and
1454 TgNyr−1, respectively (Fig. S7). Although the aver-
age of all TRENDY models falls within our Nup confidence
range, spatial discrepancies are large. In tropical and northern
latitudes, TRENDY models predicted higher Nup than our
estimates. In contrast, TRENDY models predicted lower Nup
values in southern latitudes, western Asia, and the Rocky
Mountains. This mismatch could result in an overestimation
of the terrestrial C sink and a misinterpretation of the role
of vegetation in N cycling. One possible explanation is that
LSMs overestimate biomass production by failing to account
for growth-limiting factors such as phosphorus limitation,
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drought, or biotic competition. Alternatively, overestimation
of tissue N concentration could also lead to inflated Nup val-
ues, which would inherently result in lower modelled NUE.
In our calculations, we explicitly accounted for the variabil-
ity of N concentration and net primary productivity among
tissues, including leaf resorption, to generate more accurate
Nup and NUE estimates.

2.7 Representativity and future research

An inherent challenge in ecological studies of this scale is
to ensure the global representativeness of the dataset since
systematic geographical sampling biases underrepresent the
global South (Auge et al., 2024). In this study, 28 % of the
data comes from areas below 15° latitude or outside the US,
Europe, or China (Fig. S8). In terms of ecosystem repre-
sentation, the Whittaker diagram shows coverage across all
biomes (Fig. S9), with subtropical deserts, tundra, and tem-
perate rainforest being the least represented. Nonetheless, we
acknowledge that calculations based on empirical data, espe-
cially when a portion of the data has undergone a gap-filling
process, may still carry biases related to sampling and upscal-
ing. These biases are primarily shaped by the biomes with
higher observational density. Still, we argue that calibrating
and validating models built on mathematical assumptions us-
ing field measurements is essential to better anchor model
outputs to reality. Global scale approaches like this one aim
to provide broad estimates of planetary processes, accepting
a scale-precision tradeoff. As such, we do not recommend ap-
plying our approach to fine-scale predictions since local het-
erogeneity, including forest type, species composition, and
land management practices may not be captured accurately.

This study is focused on a quantitative approach at a global
scale, attempting to target variables’ relative importance on
Nup and NUE along with its correlations to environmental
and biotic variables. In future research, specific data detail-
ing the different N fractions obtained at a global scale (e.g.
organic-inorganic, ammonium-nitrate) and a more mechanis-
tic framework are strongly encouraged. We also encourage
empirical studies targeting underrepresented biomes, espe-
cially from the global South. Approaches such as those in
Niu et al. (2016) quantifying the fraction of Nup taken by
plants, leached, or retained in the soil at a global scale are
crucial to enhancing our understanding of the N cycle and its
interactions with ecosystems.

3 Methods

3.1 Data extraction

We gathered 159 field plot data representing 129 different
sites in natural conditions coming from published data or
repositories (Table S1). The data included information on the
dominant species and vegetation type (grassland, coniferous,
or broadleaved), foliar and root N concentration, foliar and

root biomass production, and stem biomass production in the
case of woody plants at the same location and time. In situ
measurements for foliage and fine roots are the most rele-
vant for Nup calculation (Dybzinski et al., 2024), so all our
data points include biomass production (NPP) and N con-
tent (N%) of leaves and roots. We gathered 45 data points,
representing 28 % of the data, coming from latitudes under
15°, despite the systematic lack of field sampling on some
regions of the earth such as the global South. We also com-
plemented the dataset with field values of litter biomass pro-
duction, litter N concentration, stem N concentration, soil
pH, soil C%, soil N%, soil texture, soil moisture, mean
annual precipitation, mean annual air temperature, and al-
titude. We included woody and grassland natural environ-
ments (Fig. S8), including representation from most biomes
according to Whittaker’s diagram (Fig. S9). Each data point
covered by the analysis has been collected from 1984 to
2022. If stem N was missing, happening in 25 % of the data
entries, we gap-filled it with the mean value of its vegeta-
tion type (coniferous= 0.33 or broadleaved= 0.52 %). With
leaves, stem, and roots we calculated the gross Nup (see in
the next section). By subtracting the amount of N recov-
ered during leaf senescence we obtain the net Nup. If litter
biomass was missing, which occurred 52 % of the time, we
assumed it to be the same amount of green leaf biomass pro-
duction. If litter N concentration was missing, we calculated
the net Nup using the predicted value from a linear model
created with net Nup in the base of gross Nup, which oc-
curred in 33 % of the entries. This model had an r2 of 0.88,
a p value < 2.2× 10−16, and a correlation of 0.72 between
gross and net Nup.

We extracted mean annual precipitation from WorldClim2
(Fick and Hijmans, 2017) and soil pH, soil C, soil N, soil
moisture, soil bulk density, and soil texture from soilGrids
(Poggio et al., 2021). All soil data was recorded for the top-
soil layer (0–15 cm). We also identified the potential mycor-
rhizal association from the dominant species (% of coloniza-
tion) based on Soudzilovskaia et al. 2020 and categorized
it into 0, 50, or 100 arbuscular mycorrhizal (AM) percent-
ages, since AM is the most abundant and common mycor-
rhizal fungi throughout the globe. When dominant species
were not provided, we extracted the AM % of colonization
based on the AM map of Soudzilovskaia et al. (2019) and
the coordinates of our samples. Moreover, we extracted the
microbial N stock from Xu et al. (2013). We calculated and
obtained the accumulated oxidized N deposition from Yang
and Tian (2022) from 1901 to 2022 by georeferencing each
field plot. Oxidized and reduced N deposition are correlated
and are thought to have similar ecological effects (Sutton and
Fowler, 1993; Yang and Tian, 2022). Oxidized forms gener-
ally come from combustion reactions while reduced forms
generally come from agricultural practices. We decided to
use the oxidized form because it is the most equally dis-
tributed at a global scale.
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3.2 Nitrogen uptake and nitrogen use efficiency
calculation

We calculated the increase in annual N stock for each tissue
(leaves, stem, roots, and litter) by multiplying the biomass in-
crease by its N concentration. We obtained the gross annual
Nup by aggregating tissue’s Nup (roots, leaves, and stem if
woody). To account for the N that has been reabsorbed be-
fore senescence, we subtracted the litter N stock from the
green leaves N stock. We subtracted the reabsorbed N from
the gross Nup to obtain the final net Nup value as follows:

Nup= (NPPleaves×Nleaves+NPPstem×Nstem

+NPProots×Nroots)− (NPPleaves×Nleaves

−NPPlitter×Nlitter),

where Nup= plant nitrogen uptake (kgNha−1 yr−1);
NPP= net primary production (kg biomass ha−1 yr−1); and
N= nitrogen (% in dry weight).

We calculated the nitrogen use efficiency (NUE) by calcu-
lating the total amount of biomass produced in leaves, stems,
and root tissue divided by the amount of nitrogen in each tis-
sue. It will give the amount of biomass produced by a unit of
nitrogen.

NUE= (NPPleaves/Nupleaves)+ (NPPstem/Nupstem)

+ (NPProots/Nuproots),

where NUE= nitrogen use efficiency (kgC(kgN)−1);
NPP= net primary production (kg biomass ha−1 yr−1); and
Nup= plant nitrogen uptake (kgNha−1 yr−1).

3.3 Linear statistical analysis

Nup and NUE values correlate 34 % (Fig. S10). From the
available variables collected, we selected the less correlated
ones using the cor function in R to deal with multicollinear-
ity. The less correlated variables selected were mean an-
nual air temperature, mean annual precipitation, altitude, ar-
buscular mycorrhizae percentage, microbial N stock, soil
N stock, soil pH, accumulated oxidized N deposition from
1901 to 2022, and woodiness. The biggest collinearity among
variables was 0.52 between mean annual temperature and
AM presence (Table S2). With the less correlated variables,
we created generalized linear models using Nup and NUE as
dependent variables. The family was set up as Gamma with
an inverse link to fulfil the residual normality requirements.
We also calculated the variance inflation factor (VIF) with
the vif function of the car R package (Fox and Weisberg,
2019) of the aggregated model to validate VIFs lower than
4. We performed a model selection using the dredge func-
tion in the MuMIn R package (Barton, 2023) and chose the
best linear model based on its lowest AIC. We calculated the
variable importance using the function sw on the MuMIN
R package (Barton, 2023), which is a standard method based

on Akaike weights (Giam and Olden, 2016). We calculated
the pseudo R2 of the models using the function pR2 from the
package pscl (Jackman, 2020). Figures were created using
the R package ggplot2 (Wickham, 2016).

3.4 Nitrogen uptake and nitrogen use efficiency
upscaling

To upscale Nup and NUE to global grasslands and woody
vegetation, we used extreme gradient boosting (XGBoost)
models splitting the database into training, testing, and vali-
dation using a standard ratio of 70:20:10, respectively (Lever
et al., 2016). Extreme gradient boosting is a machine learning
algorithm that builds ensemble decision trees, applying reg-
ularization and pruning techniques to improve performance
and prevent overfitting (Chen and Guestrin, 2016). XGBoost
is a non-parametric model particularly indicated for high
performance in sample sizes above 100 data points, over-
coming potential problems of autocorrelation and optimizing
predictive power. We trained an XGBoost model using the
R package xgboost (Chen et al., 2023), forcing an early stop
based on minimum root mean squared error to avoid over-
fitting and setting up the objective as a gamma regression.
We optimized the parameters based on performance (predic-
tion R2) at a maximum depth of 6, minimum child weight
of 1, and eta of 0.3, which are generally standard values.
We considered the same independent variables included in
the linear model without interactions. We repeated this pro-
cess 20 times with random database separation to stabilize
the variability due to randomness in subset splitting. We ex-
tracted the variable importance of each model using the func-
tion xgb.plot.importance on the xgboost R package (Chen
et al., 2023), calculated the mean of the values among the
20 different training sets, and displayed it using ggplot. We
calculated partial dependence plots using the function partial
in purrr R package (Wickham and Henry, 2023) to explore
the non-linear relations on the models. To calculate the model
performance, we calculated the mean squared error of the test
set and the r squared of the predicted vs observed in the val-
idation subset, considering the validation set as completely
independent.

To predict the values at a global scale, we used the spatially
explicit mean annual precipitation, mean annual temperature,
and altitude variables provided by WorldClim2 (Fick and Hi-
jmans, 2017), the microbial N stocks by Xu et al. (2013), the
oxidized accumulated N deposition from 1909 to 2022 cal-
culated from Yang and Tian (2022), and soil N stocks and
soil pH provided by soilGrids 2.0 (Poggio et al., 2021) at
15 cm depth. We reclassified the European Space Agency
Land Cover (ESA-LC) map (Defourny, 2019) (Table S3)
and we downscaled its resolution to 2 km using the raster
R package (Hijmans, 2023). We upscaled each of the 20
Nup and NUE models using the trained XGBoost models
and their prediction per pixel at 2 km resolution and calcu-
lated the mean to obtain the final maps. We parallelized the
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process using the parallel function and spaDES.tools R pack-
age (McIntire and Chubaty, 2023) to accelerate the upscaling.
We masked areas not considered woodlands or grasslands in
natural conditions according to the European Space Agency
cover map (Defourny, 2019) (Table S3) and then we obtained
maps of the yearly Nup, Nup standard deviation, and annual
NUE. We obtained the final number of yearly Nup by sum-
ming all the pixels available.

3.5 Nitrogen uptake comparison with TRENDY models
ensemble

We obtained the available nitrogen uptake of vegetation
(fNup) variable associated with all the available models
in TRENDY v8 S3 (Sitch et al., 2015; Le Quéré et al.,
2018). The models containing fNup are ORCHIDEE, LPX-
Bern, LPJ-GUESS, JULES, JSBACH, DLEM, CLM5.0, and
Cable-POP, and the S3 experiment in the simulation consid-
ering the adaptation of CO2, land use, N deposition, and cli-
mate from 1850 representing current environmental condi-
tions. We calculated the yearly mean Nup from 1984 to 2022
for each model, and the average of all of them combined, to
obtain a final yearly value. Then, we calculated the difference
between each model included in the TRENDY ensemble and
our Nup estimations. After, we averaged all the fNup values
in a unique spatially explicit representation and compared it
with our estimations. We also calculated the latitudinal mean
of the difference to achieve a latitudinal profile and calcu-
lated the overall mean.

4 Conclusion

We found that N deposition and climatic variables are the
main global-scale factors explaining Nup. Regions that are
warm and wet and subject to higher levels of N deposition
exhibit the highest rates of Nup. This result highlights the far-
reaching influence of anthropogenic N deposition in shap-
ing global Nup patterns. Interestingly, NUE was shown to
be driven by soil biotic and abiotic factors, emphasizing the
importance of soil microorganisms and pH as regulators of
the N cycle. We further demonstrated that total soil N stocks
are not significant drivers of either Nup or NUE. Our up-
scaling results showed large spatially explicit discrepancies
compared to TRENDY Nup values, with TRENDY simulat-
ing higher absolute values in tropical regions and larger devi-
ations in boreal latitudes. This spatial mismatch between em-
pirical data and land system models could substantially affect
model accuracy and future projections of the C sink, partic-
ularly if tropical C storage capacity has been overestimated.
Our findings offer key insights for improving understanding
of C–N interactions, N cycling, and N uptake in terrestrial
ecosystems, and they underscore that N deposition remains a
dominant global driver of plant Nup.
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