Articles | Volume 16, issue 4
https://doi.org/10.5194/esd-16-1135-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-16-1135-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future changes in regional inter-monthly precipitation patterns of the East Asian summer monsoon and associated uncertainty factors
Yeon-Hee Kim
Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, South Korea
Related authors
Liying Qiu, Eun-Soon Im, Seung-Ki Min, Yeon-Hee Kim, Dong-Hyun Cha, Seok-Woo Shin, Joong-Bae Ahn, Eun-Chul Chang, and Young-Hwa Byun
Earth Syst. Dynam., 14, 507–517, https://doi.org/10.5194/esd-14-507-2023, https://doi.org/10.5194/esd-14-507-2023, 2023
Short summary
Short summary
This study evaluates four bias correction methods (three univariate and one multivariate) for correcting multivariate heat-stress indices. We show that the multivariate method can benefit the indirect correction that first adjusts individual components before index calculation, and its advantage is more evident for indices relying equally on multiple drivers. Meanwhile, the direct correction of heat-stress indices by the univariate quantile delta mapping approach also has comparable performance.
Liying Qiu, Eun-Soon Im, Seung-Ki Min, Yeon-Hee Kim, Dong-Hyun Cha, Seok-Woo Shin, Joong-Bae Ahn, Eun-Chul Chang, and Young-Hwa Byun
Earth Syst. Dynam., 14, 507–517, https://doi.org/10.5194/esd-14-507-2023, https://doi.org/10.5194/esd-14-507-2023, 2023
Short summary
Short summary
This study evaluates four bias correction methods (three univariate and one multivariate) for correcting multivariate heat-stress indices. We show that the multivariate method can benefit the indirect correction that first adjusts individual components before index calculation, and its advantage is more evident for indices relying equally on multiple drivers. Meanwhile, the direct correction of heat-stress indices by the univariate quantile delta mapping approach also has comparable performance.
Seungmok Paik, Seung-Ki Min, Seok-Woo Son, Soon-Il An, Jong-Seong Kug, and Sang-Wook Yeh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-187, https://doi.org/10.5194/acp-2022-187, 2022
Revised manuscript not accepted
Short summary
Short summary
This paper investigates Earth’s surface climate response to volcanic eruptions at different latitudes. By analyzing last millennium ensemble simulations of a coupled climate model, we have identified physical processes associated with the diverse impacts of volcanic eruption latitudes, focusing on the tropical ocean surface warming and the stratospheric polar vortex intensification. Our results provide important global implications for atmospheric responses to future volcanic aerosols.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Cited articles
Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation, Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018.
Chen, C.-A., Hsu, H.-H., and Liang, H.-C.: Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia, Weather Clim. Extremes, 31, 100303, https://doi.org/10.1016/j.wace.2021.100303, 2021.
Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W., and Jiang, J.: Global land monsoon precipitation changes in CMIP6 projections, Geophy. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902, 2020.
Endo, H. and Kitoh, A.: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate, Geophys. Res. Lett., 41, 1704–1711, https://doi.org/10.1002/2013GL059158, 2014.
ESGF: CMIP6, ESGF [data set], https://esgf-metagrid.cloud.dkrz.de/ (last access: 11 June 2025), 2025.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M., Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A., Krasting, J. P., Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass, A. G., Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., and Williamson, M. S.: Taking climate model evaluation to the next level, Nat. Clim. Chang., 9, 102–110, https://doi.org/10.1038/s41558-018-0355-y, 2019.
Freychet, N., Hsu, H. H., Chou, C., and Wu, C. H.: Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics, J. Climate, 28, 1477–1493, https://doi.org/10.1175/JCLI-D-14-00449.1, 2015.
Gao, Y., Leung, L. R., Salathé Jr., E. P., Dominguez, F., Nijssen, B., and Lettenmaier, D. P.: Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change, Geophys. Res. Lett., 39, L09711, https://doi.org/10.1029/2012GL051560, 2012.
Ha, K.-J., Moon, S., Timmermann, A., and Kim, D.: Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations, Geophys. Res. Lett., 47, e2020GL087492, https://doi.org/10.1029/2020GL087492, 2020.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions, B. Am. Meteorol. Soc., 90, 1095–1108, https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dynam., 37, 407–418, https://doi.org/10.1007/s00382-010-0810-6, 2011.
He, C. and Zhou, T.: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian ocean–tropical western Pacific SST gradient, J. Climate, 28, 365–380, https://doi.org/10.1175/jcli-d-13-00494.1, 2015.
Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K. L., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne, S. I., Thomas, A., Warren, R., and Zhou, G.: Impacts of 1.5 °C global warming on natural and human systems, in: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 175–311, ISBN 978-1-009-15795-7, 2018.
Huang, D., Liu, A., Zheng, Y., and Zhu, J.: Inter-model spread of the simulated East Asian summer monsoon rainfall and the associated atmospheric circulations from the CMIP6 models, J. Geophys. Res.-Atmos, 127, e2022JD037371, https://doi.org/10.1029/2022JD037371, 2022.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., ISBN 978-1-107-05799-1, 2013.
Jiang, C., Hu, D., Tian, Z., and Lang, Z.: Differences between CMIP6 and CMIP6 models in simulating climate over China and the East Asian monsoon, Adv. Atmos. Sci., 37, 1102–1118, https://doi.org/10.1007/s00376-020-2034-y, 2020.
Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J., and Sandstad, M.: Evaluation of the CMIP6 multi-model ensemble for climate extreme indices, Weather. Clim. Extremes, 29, 100269, https://doi.org/10.1016/j.wace.2020.100269, 2020.
Kitoh, A., Endo, H., Kumar, K. K., Cavalcanti, I. F. A., Goswami, P., and Zhou, T.: Monsoons in a changing world: a regional perspective in a global context, J. Geophys. Res.-Atmos., 118, 3053–3065, https://doi.org/10.1002/jgrd.50258, 2013.
Kusunoki, S. and Arakawa, O.: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia?, J. Climate, 28, 5601–5621, https://doi.org/10.1175/JCLI-D-14-00585.1, 2015.
Lee, D., Min, S.-K., Jin, J., Lee, J.-W., Cha, D.-H., Suh, M.-S., Ahn, J.-B., Hong, S.-Y., Kang, H.-S., and Joh, M.: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: A multi-RCM study, Clim. Dynam., 49, 4121–4139, https://doi.org/10.1007/s00382-017-3566-4, 2017.
Lee, D., Min, S.-K., Fischer, E., Shiogama, H., Bethke, I., Lierhammer, L., and Scinocca, J.: Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics, Environ. Res. Lett., 13, 044033, https://doi.org/10.1088/1748-9326/aab55d, 2018.
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020.
Li, X., Ting, M., Li, C., and Henderson, N.: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models, J. Climate, 28, 4107–4125, https://doi.org/10.1175/JCLI-D-14-00559.1, 2015.
Marotzke, J., Jakob, C., Bony, S., Dirmeyer, P. A., O'Gorman, P. A., Hawkins, E., Perkins-Kirkpatrick, S., Le Quéré, C., Nowicki, S., Paulavets, K., Seneviratne, S. I., Stevens, B., and Tuma, M.: Climate research must sharpen its view, Nat. Clim. Chang., 7, 89–91, https://doi.org/10.1038/nclimate3206, 2017.
Moon, S. and Ha, K.-J.: Future changes in monsoon duration and precipitation using CMIP6, npj Clim. Atmos. Sci., 3, 45, https://doi.org/10.1038/s41612-020-00151-w, 2020.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Paik, S., Min, S.-K., Zhang, X., Donat, M. G., King, A. D., and Sun, Q.: Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation, Geophys. Res. Lett., 47, e2019GL086875, https://doi.org/10.1029/2019GL086875, 2020.
Park, C. and Min, S.-K.: Multi-RCM near-term projections of summer climate extremes over East Asia, Clim. Dynam., 52, 4937–4952, https://doi.org/10.1007/s00382-018-4425-7, 2019.
Seager, R. and Naik, N.: A mechanisms-based approach to detecting recent anthropogenic hydro climate change, J. Climate, 25, 236–261, https://doi.org/10.1175/JCLI-D-11-00056.1, 2012.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Wang, B., Biasutti, M., Byrne, M. P., Castro, C., Chang, C.-P., Cook, K., Fu, R., Grimm, A. M., Ha, K.-J., Hendon, H., Kitoh, A., Krishnan, R., Lee, J.-Y., Li, J., Liu, J., Moise, A., Pascale, S., Roxy, M. K., Seth, A., Sui, C.-H., Turner, A., Yang, S., Yun, K.-S., Zhang, L., and Zhou, T.: Monsoons climate change assessment, B. Am. Meteorol. Soc., 102, E1–E19, https://doi.org/10.1175/BAMS-D-19-0335.1, 2021.
Wehner, M., Lee, J., Risser, M., Ullrich, P., Gleckler, P., and Collins, W. D.: Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations, Philos. T. Roy. Soc. A, 379, 20190545, https://doi.org/10.1098/rsta.2019.0545, 2021.
Xie, P. and Arkin, P.: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, B. Am. Meteorol. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2, 1997.
Xin, X., Wu, T., Zhang, J., Yao, J., and Fang, Y.: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon, Int. J. Climatol., 40, 6423–6440, https://doi.org/10.1002/joc.6590, 2020.
Xin, X., Wu, T., Jie, W., and Zhang. J.: Impact of Higher Resolution on Precipitation over China in CMIP6 HighResMIP Models, Atmosphere, 12, 762, https://doi.org/10.3390/atmos12060762, 2021.
Zhang, Q. Y., Tao, S. Y., and Chen, L. T.: The interannual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia, Acta Meteorol. Sin., 61, 559–568, 2003 (in Chinese).
Zhou, S., Huang, G., and Huang, P.: changes in the East Asian summer monsoon rainfall under global warming: Moisture budget decompositions and the sources of uncertainty, Clim. Dynam., 51, 1363–1373, 2018.
Zhou, S., Huang, G., and Huang, P.: A bias-corrected projection for the changes in East Asian summer monsoon rainfall under global warming, Clim. Dynam., 54, 1–16, 2019a.
Zhou, S., Huang, P., Huang, G., and Hu, K.: Leading source and constraint on the systematic spread of the changes in East Asian and western North Pacific summer monsoon, Environ. Res. Lett., 14, 124059, https://doi.org/10.1088/1748-9326/ab547c, 2019b.
Zhou, S., Huang, G., and Huang, P.: Inter-model spread of the changes in the East Asian summer monsoon system in CMIP5/6 models, J. Geophys. Res.-Atmos, 125, e2020JD033016, https://doi.org/10.1029/2020JD033016, 2020a.
Zhou, T., Lu, J., Zhang, W., and Chen, Z.: The sources of uncertainty in the projection of global land monsoon precipitation, Geophys. Res. Lett., 47, e2020GL088415, https://doi.org/10.1029/2020GL088415, 2020b.
Short summary
This study evaluated the performance of CMIP6 (Coupled Model Intercomparison Project Phase 6) climate models in simulating East Asian summer precipitation and projected its future changes using regional inter-monthly pattern metrics. CMIP6 models better captured observations with reduced biases compared to CMIP5 models. Future projections indicate an overall intensified monsoon band due to the increased moisture availability. The relative importance of atmospheric circulation and moisture change is identified for inter-model and scenario uncertainty, respectively.
This study evaluated the performance of CMIP6 (Coupled Model Intercomparison Project Phase 6)...
Altmetrics
Final-revised paper
Preprint