Articles | Volume 15, issue 3
https://doi.org/10.5194/esd-15-671-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-15-671-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Are physiological and ecosystem-level tipping points caused by ocean acidification? A critical evaluation
Christopher E. Cornwall
CORRESPONDING AUTHOR
School of Biological Sciences and Coastal People: Southern Skies Centre of Research Excellence, Victoria University of Wellington, Wellington, 6012, New Zealand
Steeve Comeau
Sorbonne Université, CNRS-INSU, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
Ben P. Harvey
Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
Labex ICONA International CO2 Natural Analogues Network, Shimoda, Japan
Related authors
Paul Pearce-Kelly, Andrew H. Altier, John F. Bruno, Christopher E. Cornwall, Melanie McField, Aarón Israel Muñiz-Castillo, Juan Rocha, Renee O. Setter, Charles Sheppard, Rosa Maria Roman-Cuesta, and Chris Yesson
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-35, https://doi.org/10.5194/esd-2023-35, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Coral reefs face unprecedented threats from multiple stressors, many of which are linked to human activities. Some stressors have tipping points, that if exceeded, will cause coral collapse. These include temperatures rising 1.2 °C above pre-industrial levels and atmospheric CO2 above 350 parts per million. Uncertainty remains for these thresholds as many stressors interact in ways we don’t understand. It is important to study these and employ a precautionary principle when planning our actions.
This article is included in the Encyclopedia of Geosciences
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
This article is included in the Encyclopedia of Geosciences
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024, https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Short summary
We tested the effects of warming, low salinity, and low irradiance on Arctic kelps. We show that growth rates were similar across species and treatments. Alaria esculenta is adapted to low-light conditions. Saccharina latissima exhibited nitrogen limitation, suggesting coastal erosion and permafrost thawing could be beneficial. Laminaria digitata did not respond to the treatments. Gene expression of Hedophyllum nigripes and S. latissima indicated acclimation to the experimental treatments.
This article is included in the Encyclopedia of Geosciences
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
This article is included in the Encyclopedia of Geosciences
Paul Pearce-Kelly, Andrew H. Altier, John F. Bruno, Christopher E. Cornwall, Melanie McField, Aarón Israel Muñiz-Castillo, Juan Rocha, Renee O. Setter, Charles Sheppard, Rosa Maria Roman-Cuesta, and Chris Yesson
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-35, https://doi.org/10.5194/esd-2023-35, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Coral reefs face unprecedented threats from multiple stressors, many of which are linked to human activities. Some stressors have tipping points, that if exceeded, will cause coral collapse. These include temperatures rising 1.2 °C above pre-industrial levels and atmospheric CO2 above 350 parts per million. Uncertainty remains for these thresholds as many stressors interact in ways we don’t understand. It is important to study these and employ a precautionary principle when planning our actions.
This article is included in the Encyclopedia of Geosciences
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
This article is included in the Encyclopedia of Geosciences
Caitlyn R. Witkowski, Sylvain Agostini, Ben P. Harvey, Marcel T. J. van der Meer, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, https://doi.org/10.5194/bg-16-4451-2019, 2019
Short summary
Short summary
Carbon dioxide concentrations (pCO2) in the atmosphere play an integral role in Earth system dynamics, especially climate. Past climates help us understand future ones, but reconstructing pCO2 over the geologic record remains a challenge. This research demonstrates new approaches for exploring past pCO2 via the carbon isotope fractionation in general algal lipids, which we test over a high CO2 gradient from a naturally occurring CO2 seep.
This article is included in the Encyclopedia of Geosciences
Steeve Comeau, Peter J. Edmunds, Coulson A. Lantz, and Robert C. Carpenter
Biogeosciences, 14, 3549–3560, https://doi.org/10.5194/bg-14-3549-2017, https://doi.org/10.5194/bg-14-3549-2017, 2017
Short summary
Short summary
Here we investigate how CO2 enrichment affects the relationships light–production and light–calcification in coral reef communities. For the three communities tested, CO2 did not affect the light–production relationships, while calcification was lower at elevated CO2 for all light levels. Our result indicates that CO2 can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification without affecting community photosynthesis.
This article is included in the Encyclopedia of Geosciences
Cited articles
Agostini, S., Harvey, B. P., Wada, S., Kon, K., Milazzo, M., Inaba, K., and Hall-Spencer, J. M.: Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone, Sci. Rep., 8, 11354, https://doi.org/10.1038/s41598-018-29251-7, 2018.
Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J., Wolfe, K., Zhu, K., and Caldeira, K.: Reversal of ocean acidification enhances net coral reef calcification, Nature, 531, 362, https://doi.org/10.1038/nature17155, 2016.
Albright, R., Takeshita, Y., Koweek, D. A., Ninokawa, A., Wolfe, K., Rivlin, T., Nebuchina, Y., Young, J., and Caldeira, K.: Carbon dioxide addition to coral reef waters suppresses net community calcification, Nature, 555, 516–519, https://doi.org/10.1038/nature25968, 2018.
Allemand, D., Ferrier-Pagés, C., Furla, P., Houlbréque, F., Puverel, S., Reynaud, S., Tambutte, E., Tambutte, S., and Zoccola, D.: Biomineralisation in reef-building corals: from molecular mechanisms to environmental control, C.R. Palevol., 3, 453–467, 2004.
Allen, R. J., Summerfield, T. C., Harvey, B. P., Agostini, S., Rastrick, S. P., Hall-Spencer, J. M., and Hoffmann, L. J.: Species turnover underpins the effect of elevated CO2 on biofilm communities through early succession, Climate Change Ecology, 2, 100017, https://doi.org/10.1016/j.ecochg.2021.100017, 2021.
Andersson, A. J. and Gledhill, D. K.: Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification, Annu. Rev. Mar. Sci., 5, 1–28, 2013.
Andersson, A. J., Mackenzie, F. T., and Bates, N. R.: Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers, Mar. Ecol. Prog. Ser., 373, 265–273, 2008.
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O.: Ocean acidification causes bleaching and productivity loss in coral reef builders, P. Natl. Acad. Sci. USA, 105, 17442–17446, 2008.
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 °C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022.
Baggini, C., Salomidi, M., Voutsinas, E., Bray, L., Krasakopoulou, E., and Hall-Spencer, J.: Seasonality affects macroalgal community response to increases in pCO2, PLoS ONE, 9, e106520, https://doi.org/10.1371/journal.pone.0106520, 2014.
Bathurst, R. G. (Ed.): Carbonate Sediments and Their Diagenesis, 1st Edn., Vol. 12, Elsevier, ISBN 9780080869230, 1972.
Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P. V., Kessouri, F., León, P., Lischka, S., Maas, A. E., McLaughlin, K., Nezlin, N. P., Sutula, M., and Weisberg, S. B.: Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming, Front. Mar. Sci., 6, 227, https://doi.org/10.3389/fmars.2019.00227, 2019.
Bednaršek, N., Calosi, P., Feely, R. A., Ambrose, R., Byrne, M., Chan, K. Y. K., Dupont, S., Padilla-Gamiño, J. L., Spicer, J. I., Kessouri, F., Roethler, M., Sutula, M., and Weisberg, S. B.: Synthesis of Thresholds of Ocean Acidification Impacts on Echinoderms, Front. Mar. Sci., 8, 602601, https://doi.org/10.3389/fmars.2021.602601, 2021.
Blain, C. O., Kulins, S., Radford, C. A., Sewell, M. A., and Shears, N. T.: Heterogeneity around CO2 vents obscures the effects of ocean acidification on shallow reef communities, ICES J. Mar. Sci., 78, 3162–3175, https://doi.org/10.1093/icesjms/fsab184, 2021.
Caillon, C., Pernet, F., Lutier, M., and Di Poi, C.: Differential reaction norms to ocean acidification in two oyster species from contrasting habitats, J. Exp. Biol., 226, jeb246432, https://doi.org/10.1242/jeb.246432, 2023.
Carrier-Belleau, C., Pascal, L., Nozais, C., and Archambault, P.: Tipping points and multiple drivers in changing aquatic ecosystems: A review of experimental studies, Limnol. Oceanogr., 67, S312–S330, https://doi.org/10.1002/lno.11978, 2022.
Carter, H. A., Ceballos-Osuna, L., Miller, N. A., and Stillman, J. H.: Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes, J. Exp. Biol., 216, 1412–1422, https://doi.org/10.1242/jeb.078162, 2013.
Cattano, C., Giomi, F., and Milazzo, M.: Effects of ocean acidification on embryonic respiration and development of a temperate wrasse living along a natural CO2 gradient, Conserv. Physiol., 4, cov073, https://doi.org/10.1093/conphys/cov073, 2016.
Chan, N. C. S. and Connolly, S. R.: Sensitivity of coral calcification to ocean acidification: A meta-analysis, Glob. Change Biol., 19, 282–290, 2013.
Comeau, S., Carpenter, R. C., and Edmunds, P. J.: Coral reef calcifiers buffer their responses to ocean acidification using both bicarbonate and carbonate, P. Roy. Soc. B, 280, 20122374, https://doi.org/10.1098/rspb.2012.2374, 2013a.
Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C.: The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point, Limnol. Oceanogr., 58, 388–398, 2013b.
Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C.: Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations, Limnol. Oceanogr., 59, 1081–1091, https://doi.org/10.4319/lo.2014.59.3.1081, 2014.
Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E., and McCulloch, M. T.: Similar controls on calcification under ocean acidification across unrelated coral reef taxa, Glob. Change Biol., 24, 4857–4868, https://doi.org/10.1111/gcb.14379, 2018.
Comeau, S., Cornwall, C. E., DeCarlo, T. M., Doo, S. S., Carpenter, R. C., and McCulloch, M. T.: Resistance to ocean acidification in coral reef taxa is not gained by acclimatization, Nat. Clim. Change, 9, 477–483, https://doi.org/10.1038/s41558-019-0486-9, 2019.
Comeau, S., Cornwall, C. E., Shlesinger, T., Hoogenboom, M., Mana, R., McCulloch, M. T., and Rodolfo-Metalpa, R.: pH variability at volcanic CO2 seeps regulates coral calcifying fluid chemistry, Glob. Change Biol., 28, 2751–2763, https://doi.org/10.1111/gcb.16093, 2022.
Cornwall, C. E., Comeau, S., and McCulloch, M. T.: Coralline algae elevate pH at the site of calcification under ocean acidification, Glob. Change Biol., 23, 4245–4256, 2017a.
Cornwall, C. E., Revill, A. T., Hall-Spencer, J. M., Milazzo, M., Raven, J. A., and Hurd, C. L.: Inorganic carbon physiology underpins macroalgal responses to elevated CO2, Sci. Rep., 7, 46297, https://doi.org/10.1038/srep46297, 2017b.
Cornwall, C. E., Comeau, S., DeCarlo, T. M., Moore, B., D'Alexis, Q., and McCulloch, M. T.: Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability, P. Roy. Soc. B, 285, doi;10.1098/rspb.2018.1168, 2018.
Cornwall, C. E., Comeau, S., DeCarlo, T. M., Larcombe, E., Moore, B., Giltrow, K., Puerzer, F., D'Alexis, Q., and McCulloch, M. T.: A coralline alga gains tolerance to ocean acidification over multiple generations of exposure, Nat. Clim. Change, 10, 143–146, https://doi.org/10.1038/s41558-019-0681-8, 2020.
Cornwall, C. E., Comeau, S., Kornder, N. A., Perry, C. T., van Hooidonk, R., DeCarlo, T. M., Pratchett, M. S., Anderson, K. D., Browne, N., Carpenter, R., Diaz-Pulido, G., D'Olivo, J. P., Doo, S. S., Figueiredo, J., Fortunato, S. A. V., Kennedy, E., Lantz, C. A., McCulloch, M. T., González-Rivero, M., Schoepf, V., Smithers, S. G., and Lowe, R. J.: Global declines in coral reef calcium carbonate production under ocean acidification and warming, P. Natl. Acad. Sci. USA, 118, e2015265118, https://doi.org/10.1073/pnas.2015265118, 2021.
Cornwall, C. E., Harvey, B. P., Comeau, S., Cornwall, D. L., Hall-Spencer, J. M., Peña, V., Wada, S., and Porzio, L.: Understanding coralline algal responses to ocean acidification: Meta-analysis and synthesis, Glob. Change Biol., 28, 362–374, https://doi.org/10.1111/gcb.15899, 2022.
Cornwall, C. E., Carlot, J., Branson, O., Courtney, T. A., Harvey, B. P., Perry, C. T., Andersson, A. J., Diaz-Pulido, G., Johnson, M. D., Kennedy, E., Krieger, E. C., Mallela, J., McCoy, S. J., Nugues, M. M., Quinter, E., Ross, C. L., Ryan, E., Saderne, V., and Comeau, S.: Crustose coralline algae can contribute more than corals to coral reef carbonate production, Commun. Earth Environ., 4, 105, https://doi.org/10.1038/s43247-023-00766-w, 2023.
DeCarlo, T. M., Comeau, S., Cornwall, C. E., and McCulloch, M. T.: Coral resistance to ocean acidification linked to increased calcium at the site of calcification, P. Roy. Soc. B, 285, 20180564, https://doi.org/10.1098/rspb.2018.0564, 2018.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean acidification: the other CO2 problem, Annu. Rev. Mar. Sci., 1, 169–192, 2009.
Drake, J. L., Mass, T., Haramaty, L., Zelzion, E., Bhattacharya, D., and Falkowski, P. G.: Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata, P. Natl. Acad. Sci. USA, 110, 3788–3793, https://doi.org/10.1073/pnas.1301419110, 2013.
Enochs, I. C., Manzello, D. P., Donham, E. M., Kolodziej, G., Okano, R., Johnston, L., Young, C., Iguel, J., Edwards, C. B., Fox, M. D., Valentino, L., Johnson, S., Benavente, D., Clark, S. J., Carlton, R., Burton, T., Eynaud, Y., and Price, N. N.: Shift from coral to macroalgae dominance on a volcanically acidified reef, Nat. Clim. Change, 5, 1083–1088, https://doi.org/10.1038/nclimate2758, 2015.
Fabricius, K., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De'ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M.: Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations, Nat. Clim. Change, 1, 165–169, 2011.
Fabricius, K. E., De'ath, G., Noonan, S., and Uthicke, S.: Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities, P. Roy. Soc. B, 281, 20132479, https://doi.org/10.1098/rspb.2013.2479, 2014.
Fabricius, K., Kluibenschedl, A., Harrington, L., Noonan, S., and De'Ath, G.: In situ changes of tropical crustose coralline algae along carbon dioxide gradients, Sci. Rep.-UK, 5, 9537, https://doi.org/10.1038/srep09537, 2015.
Fabricius, K. E., Noonan, S. H. C., Abrego, D., Harrington, L., and De'ath, G.: Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification, P. Roy. Soc. B, 284, 20171536, https://doi.org/10.1098/rspb.2017.1536, 2017.
Falkenberg, L. J., Styan, C. A., and Havenhand, J. N.: Sperm motility of oysters from distinct populations differs in response to ocean acidification and freshening, Sci. Rep., 9, 7970, https://doi.org/10.1038/s41598-019-44321-0, 2019.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J. A., Fabry, V. J., and Millero, F. J.: Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362–366, 2004.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: Evidence for upwelling of corrosive “acidified” water onto the coastal shelf, Science, 320, 1490–1492, 2008.
Garilli, V., Rodolfo-Metalpa, R., Scuderi, D., Brusca, L., Parrinello, D., Rastrick, S. P. S., Foggo, A., Twitchett, R. J., Hall-Spencer, J. M., and Milazzo, M.: Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans, Nat. Clim. Change, 5, 678–682, https://doi.org/10.1038/nclimate2616, 2015.
Gazeau, F., Parker, L. M., Comeau, S., Gattuso, J.-P., O'Connor, W. A., Martin, S., Pörtner, H.-O., and Ross, P. M.: Impacts of ocean acidification on marine shelled molluscs, Mar. Biol., 160, 2207–2245, https://doi.org/10.1007/s00227-013-2219-3, 2013.
Ghedini, G. and Connell, S. D.: Organismal homeostasis buffers the effects of abiotic change on community dynamics, Ecology, 97, 2671–2679, https://doi.org/10.1002/ecy.1488, 2016.
Ghedini, G., Russell, B. D., and Connell, S. D.: Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances, Ecol. Lett., 18, 182–187, 2015.
Glynn, P. W.: Eastern Pacific Coral Reef Ecosystems, in: Coastal Marine Ecosystems of Latin America, edited by: Seeliger, U. and Kjerfve, B., Springer Berlin Heidelberg, Berlin, Heidelberg, 281–305, https://doi.org/10.1007/978-3-662-04482-7_20, 2001.
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M. C.: Volcanic carbon dioxide vents show ecosystem effects of ocean acidification, Nature, 454, 96–99, 2008.
Harvey, B. P., Gwynn-Jones, D., and Moore, P. J.: Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming, Ecol. Evol., 3, 1016–1030, 2013.
Harvey, B. P., McKeown, N. J., Rastrick, S. P. S., Bertolini, C., Foggo, A., Graham, H., Hall-Spencer, J. M., Milazzo, M., Shaw, P. W., Small, D. P., and Moore, P. J.: Individual and population-level responses to ocean acidification, Sci. Rep., 6, 20194, https://doi.org/10.1038/srep20194, 2016.
Harvey, B. P., Agostini, S., Wada, S., Inaba, K., and Hall-Spencer, J. M.: Dissolution: The Achilles' Heel of the Triton Shell in an Acidifying Ocean, Front. Mar. Sci., 5, 371, https://doi.org/10.3389/fmars.2018.00371, 2018.
Harvey, B. P., Allen, R., Agostini, S., Hoffmann, L. J., Kon, K., Summerfield, T. C., Wada, S., and Hall-Spencer, J. M.: Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site, Commun. Biol., 4, 219, https://doi.org/10.1038/s42003-021-01712-2, 2021.
Hendriks, I. E., Duarte, C. M., and Álvarez, M.: Vulnerability of marine biodiversity to ocean acidification: a meta-analysis, Estuar. Coast. Shelf S., 86, 157–164, 2010.
Hepburn, C. D., Pritchard, D. W., Cornwall, C. E., McLeod, R. J., Beardall, J., Raven, J. A., and Hurd, C. L.: Diversity of Carbon use strategies in a kelp forest community: implications for a high CO2 ocean, Glob. Change Biol., 17, 2488–2497, 2011.
Hudson, C. J., Agostini, S., Wada, S., Hall-Spencer, J. M., Connell, S. D., and Harvey, B. P.: Ocean acidification increases the impact of typhoons on algal communities, Sci. Total Environ., 865, 161269, https://doi.org/10.1016/j.scitotenv.2022.161269, 2023.
Hurd, C. L., Beardall, J., Comeau, S., Cornwall, C. E., Havenhand, J. N., Munday, P. L., Parker, L. M., Raven, J. A., and McGraw, C. M.: Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life, Mar. Freshwater Res., 71, 263–274, https://doi.org/10.1071/MF19267, 2019.
Inoue, S., Kayanne, H., Yamamoto, S., and Kurihara, H.: Spatial community shift from hard to soft corals in acidified water, Nat. Clim. Change, 3, 683–687, https://doi.org/10.1038/nclimate1855, 2013.
Jokiel, P. L.: Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification, P. Roy. Soc. B, 280, 1764, https://doi.org/10.1098/rspb.2013.0031, 2013.
Kerfahi, D., Hall-Spencer, J. M., Tripathi, B. M., Milazzo, M., Lee, J., and Adams, J. M.: Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy, Microb. Ecol., 67, 819–828, https://doi.org/10.1007/s00248-014-0368-7, 2014.
Knowlton, N.: Thresholds and Multiple Stable States in Coral Reef Community Dynamics, Am. Zool., 32, 674–682, https://doi.org/10.1093/icb/32.6.674, 1992.
Kornder, N. A., Riegl, B. M., and Figueiredo, J.: Thresholds and drivers of coral calcification responses to climate change, Glob. Change Biol., 24, 5084–5095, https://doi.org/10.1111/gcb.14431, 2018.
Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G.: Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecol. Lett., 13, 1419–1434, 2010.
Kroeker, K. J., Micheli, F., Gambi, M. C., and Martz, T. R.: Divergent ecosystem responses within a benthic marine community to ocean acidification, P. Natl. Acad. Sci. USA, 108, 14515–14520, 2011.
Kroeker, K. J., Gambi, M. C., and Micheli, F.: Community dynamics and ecosystem simplification in a high-CO2 ocean, P. Natl. Acad. Sci. USA, 110, 12721–12726, 2013a.
Kroeker, K. J., Kordas, R. L., Crim, R. N., Hendriks, I. E., Ramajo, L., Singh, G. G., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, 2013b.
Kurihara, H., Watanabe, A., Tsugi, A., Mimura, I., Hongo, C., Kawai, T., Reimer, J. D., Kimoto, K., Gouezo, M., and Golbuu, Y.: Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau, Sci. Rep., 11, 11192, https://doi.org/10.1038/s41598-021-90614-8, 2021.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci., 105, 1786–1793, 2008.
Leung, J. Y. S., Zhang, S., and Connell, S. D.: Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades, Small, 18, 2107407, https://doi.org/10.1002/smll.202107407, 2022.
Linares, C., Vidal, M., Canals, M., Kersting, D. K., Amblas, D., Aspillaga, E., Cebrian, E., Delgado-Huertas, A., Diaz, D., Garrabou, J., Hereu, B., Navarro, L., Teixido, N., and Ballesteros, E.: Persistent natural acidification drives major distribution shifts in marine benthic ecosystems, P. Roy. Soc. B, 282, 20150587, https://doi.org/10.1098/rspb.2015.0587, 2015.
Lutier, M., Di Poi, C., Gazeau, F., Appolis, A., Le Luyer, J., and Pernet, F.: Revisiting tolerance to ocean acidification: Insights from a new framework combining physiological and molecular tipping points of Pacific oyster, Glob. Change Biol., 28, 3333–3348, https://doi.org/10.1111/gcb.16101, 2022.
Maberly, S. C., Berthelot, S. A., Stott, A. W., and Gontero, B.: Adaptation by macrophytes to inorganic carbon down river with naturally variable concentrations of CO2, J. Plant Physiol., 172, 120–127, 2014.
Maggioni, F., Pujo-Pay, M., Aucan, J., Cerrano, C., Calcinai, B., Payri, C., Benzoni, F., Letourneur, Y., and Rodolfo-Metalpa, R.: The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions, Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, 2021.
Manzello, D. P.: Ocean acidification hot spots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs, Limnol. Oceanogr., 55, 239–248, 2010.
Manzello, D. P., Kleypas, J. A., Budd, D. A., Eakin, C. M., Glynn, P. W., and Langdon, C.: Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world, P. Natl. Acad. Sci. USA, 105, 10450, https://doi.org/10.1073/pnas.0712167105, 2008.
Marin, F., Luquet, G., Marie, B., and Medakovic, D.: Molluscan Shell Proteins: Primary Structure, Origin, and Evolution, in: Current Topics in Developmental Biology, Academic Press, 209–276, https://doi.org/10.1016/S0070-2153(07)80006-8, 2007.
McCoy, S. J., Pueschel, C. M., Cornwall, C. E., Comeau, S., Kranz, S. A., Spindel, N. B., and Borowitzka, M. A.: Calcification in the coralline red algae: a synthesis, Phycologia, 62, 648–666, https://doi.org/10.1080/00318884.2023.2285673, 2023.
McCulloch, M. T., Falter, J., Trotter, J., and Montagna, P.: Coral resilience to ocean acidification and global warming through pH up-regulation, Nat. Clim. Change, 2, 623–627, 2012.
McCulloch, M. T., D'Olivo, J. P., Falter, J., Holcomb, M., and Trotter, J. A.: Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation, Nat. Commun., 8, 15686, https://doi.org/10.1038/ncomms15686, 2017.
Meyer, J. and Riebesell, U.: Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, 12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015, 2015.
Moore, B., Comeau, S., Bekaert, M., Cossais, A., Purdy, A., Larcombe, E., Puerzer, F., McCulloch, M. T., and Cornwall, C. E.: Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification, P. Roy. Soc. B, 288, 20210130, https://doi.org/10.1098/rspb.2021.0130, 2021.
Morse, J. W. and MacKenzie, F. T. (Eds.): Geochemistry of Sedimentary Carbonates, 1st Edn., Vol. 48, Elsevier, ISBN 9780444887818, 1990.
Moy, F. E. and Christie, H.: Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway, Mar. Biol. Res., 8, 309–321, https://doi.org/10.1080/17451000.2011.637561, 2012.
Nagelkerken, I., Russell, B. D., Gillanders, B. M., and Connell, S. D.: Ocean acidification alters fish populations indirectly through habitat modification, Nat. Clim. Change, 6, 89–93, https://doi.org/10.1038/nclimate2757, 2016.
Okazaki, R. R., Towle, E. K., van Hooidonk, R., Mor, C., Winter, R. N., Piggot, A. M., Cunning, R., Baker, A. C., Klaus, J. S., Swart, P. K., and Langdon, C.: Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs, Glob. Change Biol., 23, 1023–1035, https://doi.org/10.1111/gcb.13481, 2017.
Parker, L. M., Ross, P. M., Connor, W. A., Pörtner, H. O., Scanes, E., and Wright, J. M.: Predicting the Response of Molluscs to the Impact of Ocean Acidification, Biology, 2, 651–692, 2013.
Parker, L. M., Scanes, E., O'Connor, W. A., and Ross, P. M.: Transgenerational plasticity responses of oysters to ocean acidification differ with habitat, J. Exp. Biol., 224, jeb239269, https://doi.org/10.1242/jeb.239269, 2021.
Plaisance, L., Matterson, K., Fabricius, K., Drovetski, S., Meyer, C., and Knowlton, N.: Effects of low pH on the coral reef cryptic invertebrate communities near CO2 vents in Papua New Guinea, PLOS ONE, 16, e0258725, https://doi.org/10.1371/journal.pone.0258725, 2021.
Porzio, L., Buia, M. C., and Hall-Spencer, J. M.: Effects of ocean acidification on macroalgal communities, J. Exp. Mar. Biol. Ecol., 400, 278–287, 2011.
Ramajo, L., Pérez-León, E., Hendriks, I. E., Marbà, N., Krause-Jensen, D., Sejr, M. K., Blicher, M. E., Lagos, N. A., Olsen, Y. S., and Duarte, C. M.: Food supply confers calcifiers resistance to ocean acidification, Sci. Rep., 6, 19374, https://doi.org/10.1038/srep19374, 2016.
Raven, J. A. and Beardall, J.: CO2 concentrating mechanisms and environmental change, Aquat. Bot., 118, 24–37, 2014.
Raven, J. A. and Beardall, J.: The ins and outs of CO2, J. Exp. Bot., 67, 1–13, 2016.
Raven, J. A., Johnston, A. M., Kübler, J. E., Korb, R. E., McInroy, S. G., Handley, L. L., Scrimgeour, C. M., Walker, D. I., Beardall, J., Vanderklift, M. A., Fredriksen, S., and Dunton, K. H.: Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses, Funct. Plant Biol., 29, 355–378, 2002a.
Raven, J. A., Johnston, A. M., Kübler, J. E., Korb, R., McInroy, S. G., Handley, L. L., Scrimgeour, C. M., Walker, D. I., Beardall, J., Clayton, M. N., Vanderklift, M. A., Fredriksen, S., and Dunton, K. H.: Seaweeds in cold seas: evolution and carbon acquisition, Ann. Bot., 90, 525–536, 2002b.
Raven, J. A., Ball, L. A., Beardall, J., Giordano, M., and Maberly, S. C.: Algae lacking carbon-concentrating mechanisms, Can. J. Botany, 83, 879–890, https://doi.org/10.1139/b05-074, 2005.
Raven, J. A., Cockell, C. S., and De La Rocha, C. L.: The evolution of inorganic carbon concentrating mechanisms in photosynthesis, Philos. T. R. Soc. B, 363, 2641–2650, 2008.
Raven, J. A., Giodarno, M., Beardall, J., and Maberly, S. C.: Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change, Photosynth. Res., 109, 281–296, 2011.
Raven, J. A., Giordano, M., Beardall, J., and Maberly, S. C.: Agal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation, Philos. T. R. Soc. B, 367, 493–507, 2012.
Raven, J. A., Suggett, D. J., and Giordano, M.: Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids, J. Phycol., 56, 1377–1397, https://doi.org/10.1111/jpy.13050, 2020.
Ries, J. B.: Acid ocean cover up, Nat. Clim. Change, 1, 294–295, 2011.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131–1134, 2009.
Rivest, E. B., Comeau, S., and Cornwall, C. E.: The role of natural variability in shaping the response of coral reef organisms to climate change, Current Climate Change Reports, 3, 271–281, 2017.
Roberts, R. D.: A review of settlement cues for larval abalone (Haliotis spp.), J. Shell. Res., 20, 571–586, 2001.
Scheffer, M.: Foreseeing tipping points, Nature, 467, 411–412, https://doi.org/10.1038/467411a, 2010.
Schneider, K. and Erez, J.: The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma, Limnol. Oceanogr., 51, 1284–1293, 2006.
Schoepf, V., Carrion, S. A., Pfeifer, S. M., Naugle, M., Dugal, L., Bruyn, J., and McCulloch, M. T.: Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures, Nat. Commun., 10, 4031, https://doi.org/10.1038/s41467-019-12065-0, 2019.
Schubert, N., Alvarez-Filip, L., and Hofmann, L. C.: Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal carbonate production, Clim. Change Ecol., 4, 100059, https://doi.org/10.1016/j.ecochg.2022.100059, 2023.
Stumpp, M., Hu, M. Y., Melzner, F., Gutowska, M. A., Dorey, N., Himmerkus, N., Holtmann, W. C., Dupont, S. T., Thorndyke, M. C., and Bleich, M.: Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification, P. Natl. Acad. Sci. USA, 109, 18192–18197, https://doi.org/10.1073/pnas.1209174109, 2012.
Sunday, J. M., Fabricius, K. E., Kroeker, K. J., Anderson, K. M., Brown, N. E., Barry, J. P., Connell, S. D., Dupont, S., Gaylord, B., Hall-Spencer, J. M., Klinger, T., Milazzo, M., Munday, P. L., Russell, B. D., Sanford, E., Thiyagarajan, V., Vaughan, M. L. H., Widdicombe, S., and Harley, C. D. G.: Ocean acidification can mediate biodiversity shifts by changing biogenic habitat, Nat. Clim. Change, 7, 81, https://doi.org/10.1038/nclimate3161, 2016.
Taise, A., Krieger, E., Bury, S. J., and Cornwall, C. E.: Physiological responses of Caulerpa spp. (with different dissolved inorganic carbon physiologies) to ocean acidification, New Zeal. J. Bot., 1–25, https://doi.org/10.1080/0028825X.2023.2289432, 2023.
Tanvet, C., Camp, E. F., Sutton, J., Houlbrèque, F., Thouzeau, G., and Rodolfo-Metalpa, R.: Corals adapted to extreme and fluctuating seawater pH increase calcification rates and have unique symbiont communities, Ecol. Evol., 13, e10099, https://doi.org/10.1002/ece3.10099, 2023.
Taylor, J. D., Ellis, R., Milazzo, M., Hall-Spencer, J. M., and Cunliffe, M.: Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient, FEMS Microbiol. Ecol., 89, 670–678, https://doi.org/10.1111/1574-6941.12368, 2014.
Teixidó, N., Gambi, M. C., Parravacini, V., Kroeker, K., Micheli, F., Villéger, S., and Ballesteros, E.: Functional biodiversity loss along natural CO2 gradients, Nat. Commun., 9, 5149, https://doi.org/10.1038/s41467-018-07592-1, 2018.
Thomsen, J. and Melzner, F.: Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis, Mar. Biol., 157, 2667–2676, 2010.
van Nes, E. H., Arani, B. M. S., Staal, A., van der Bolt, B., Flores, B. M., Bathiany, S., and Scheffer, M.: What Do You Mean, `Tipping Point'?, Trend. Ecol. Evol., 31, 902–904, https://doi.org/10.1016/j.tree.2016.09.011, 2016.
Venn, A. A., Tambutté, E., Holcomb, M., Laurent, J., Allemand, D., and Tambutté, S.: Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals, P. Natl. Acad. Sci. USA, 110, 1634–1639, https://doi.org/10.1073/pnas.1216153110, 2013.
Venn, A. A., Bernardet, C., Chabenat, A., Tambutté, E., and Tambutté, S.: Paracellular transport to the coral calcifying medium: effects of environmental parameters, J. Exp. Biol., 223, jeb227074, https://doi.org/10.1242/jeb.227074, 2020.
Ventura, A., Schulz, S., and Dupont, S.: Maintained larval growth in mussel larvae exposed to acidified under-saturated seawater, Sci. Rep., 6, 23728, https://doi.org/10.1038/srep23728, 2016.
Wernberg, T., Bennett, S., Babcock, R. C., de Bettignies, T., Cure, K., Depczynski, M., Dufois, F., Fromont, J., Fulton, C. J., and Hovey, R. K.: Climate-driven regime shift of a temperate marine ecosystem, Science, 353, 169–172, 2016.
Wittmann, A. C. and Pörtner, H. O.: Sensitivities of extant animal taxa to ocean acidification, Nat. Clim. Change, 3, 995–1001, 2013.
Download
- Article
(2572 KB) - Full-text XML
Short summary
Ocean acidification will cause profound shifts in many marine ecosystems by impairing the ability of calcareous taxa to grow and by influencing the photophysiology of many others. Physiological tipping points will likely be reached in the next 20 years. Small changes in organism physiology result in larger ecological tipping points being crossed. Ecosystems will shift from having higher abundances of calcifying taxa and towards increased abundances of non-calcareous species under elevated CO2.
Ocean acidification will cause profound shifts in many marine ecosystems by impairing the...
Special issue
Altmetrics
Final-revised paper
Preprint