Articles | Volume 15, issue 2
https://doi.org/10.5194/esd-15-485-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-15-485-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Social tipping dynamics in the energy system
Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
Bart de Bruin
Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
Amira El-Feiaz
Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
Francesco Pasimeni
Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
Leila Niamir
IIASA, Vienna, Austria
Robert Wade
Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
Related authors
No articles found.
Robert Wade and David Rudolph
Geogr. Helv., 79, 35–50, https://doi.org/10.5194/gh-79-35-2024, https://doi.org/10.5194/gh-79-35-2024, 2024
Short summary
Short summary
Renewable energy technologies require land. Landowners therefore often play a crucial role in wind energy development, shaping participation opportunities of various groups. Through case studies of the Netherlands and Scotland, we unpack how landownership influences the possible strategies for community energy. We find that securing community ownership of the land or wind resource itself is a potentially powerful, long-term strategy for community energy movements to achieve their goals.
This article is included in the Encyclopedia of Geosciences
Cited articles
Albinsson, P. I. A. A. and Perera, B. Y.: Alternative marketplaces in the 21st century: Building community through sharing events, J. Consum. Behav., 11, 303–315, https://doi.org/10.1002/cb.1389, 2012. a
Allcott, H.: Social norms and energy conservation, J. Public Econ., 95, 1082–1095, https://doi.org/10.1016/j.jpubeco.2011.03.003, 2011. a
Ameli, N. and Brandt, N.: Determinants of households' investment in energy efficiency and renewables: Evidence from the OECD survey on household environmental behaviour and attitudes, Environ. Res. Lett., 10, 044015, https://doi.org/10.1088/1748-9326/10/4/044015, 2015. a
Anfinson, K., Laes, E., Bombaerts, G., Standal, K., Krug, M., Nucci, M. R. D., and Schwarz, L.: Does polycentrism deliver? A case study of energy community governance in Europe, Energy Research and Social Science, 100, 103093, https://doi.org/10.1016/j.erss.2023.103093, 2023. a
Badullovich, N.: From influencing to engagement: a framing model for climate communication in polarised settings, Environ. Polit., 32, 207–226, https://doi.org/10.1080/09644016.2022.2052648, 2023. a
Baiardi, D.: What do you think about climate change?, J. Econ. Surv., 37, 1255–1313, https://doi.org/10.1111/joes.12535, 2022. a
Barnes, J., Hansen, P., Kamin, T., Golob, U., Musolino, M., and Nicita, A.: Energy communities as demand-side innovators? Assessing the potential of European cases to reduce demand and foster flexibility, Energy Research and Social Science, 93, 102848, https://doi.org/10.1016/j.erss.2022.102848, 2022. a
Batel, S.: Research on the social acceptance of renewable energy technologies: Past, present and future, Energy Research and Social Science, 68, 101544, https://doi.org/10.1016/j.erss.2020.101544, 2020. a
Baudrillard, J. (Ed.): The Consumer Society: Myths and Structures (revised edition), SAGE Publications Ltd, ISBN 9781473982383, 2016. a
Bauwens, T., Gotchev, B., and Holstenkamp, L.: What drives the development of community energy in Europe? the case of wind power cooperatives, Energy Research and Social Science, 13, 136–147, https://doi.org/10.1016/j.erss.2015.12.016, 2016. a
Bauwens, T., Schraven, D., Drewing, E., Radtke, J., Holstenkamp, L., Gotchev, B., and Yildiz, Ö: Conceptualizing community in energy systems: A systematic review of 183 definitions, Renew. Sust. Energ. Rev., 156, 111999, https://doi.org/10.1016/j.rser.2021.111999, 2022. a
Belmar, F., Baptista, P., and Neves, D.: Modelling renewable energy communities: assessing the impact of different configurations, technologies and types of participants, Energy, Sustainability and Society, 13, 18, https://doi.org/10.1186/s13705-023-00397-1, 2023. a
Biggs, M.: Positive feedback in collective mobilization: The American strike wave of 1886, Theor. Soc., 32, 217–254, https://doi.org/10.1023/A:1023905019461, 2003. a
Blasch, J., van der Grijp, N. M., Petrovics, D., Palm, J., Bocken, N., Darby, S. J., Barnes, J., Hansen, P., Kamin, T., Golob, U., Andor, M., Sommer, S., Nicita, A., Musolino, M., and Mlinarič, M.: New clean energy communities in polycentric settings: Four avenues for future research, Energy Research and Social Science, 82, 102276, https://doi.org/10.1016/j.erss.2021.102276, 2021. a, b
Bollinger, B. and Gillingham, K.: Peer Effects in the Diffusion of Solar Photovoltaic Panels, Market. Sci., 31, 900–912, https://doi.org/10.1287/mksc.1120.0727, 2012. a
Bonan, J., Cattaneo, C., d'Adda, G., and Tavoni, M.: The interaction of descriptive and injunctive social norms in promoting energy conservation, Nature Energy, 5, 900–909, https://doi.org/10.1038/s41560-020-00719-z, 2020. a
Brown, D., Hall, S., and Davis, M. E.: What is prosumerism for? Exploring the normative dimensions of decentralised energy transitions, Energy Research and Social Science, 66, 101475, https://doi.org/10.1016/j.erss.2020.101475, 2020. a
Büchs, M., Cass, N., Mullen, C., Lucas, K., and Ivanova, D.: Emissions savings from equitable energy demand reduction, Nature Energy, 8, 758–769, https://doi.org/10.1038/s41560-023-01283-y, 2023. a
Campos, I. and Marín-González, E.: People in transitions: Energy citizenship, prosumerism and social movements in Europe, Energy Research and Social Science, 69, 101718, https://doi.org/10.1016/j.erss.2020.101718, 2020. a
Charlier, C. and Kirakozian, A.: Public policies for household recycling when reputation matters, J. Evol. Econ., 30, 523–557, https://doi.org/10.1007/s00191-019-00648-5, 2020. a
Cherp, A. and Jewell, J.: The concept of energy security: Beyond the four As, Energy Policy, 75, 415–421, https://doi.org/10.1016/j.enpol.2014.09.005, 2014. a
Chilvers, J., Bellamy, R., Pallett, H., and Hargreaves, T.: A systemic approach to mapping participation with low-carbon energy transitions, Nature Energy, 6, 250–259, https://doi.org/10.1038/s41560-020-00762-w, 2021. a
Chung, M. G., Kang, H., Dietz, T., Jaimes, P., and Liu, J.: Activating values for encouraging pro-environmental behavior: the role of religious fundamentalism and willingness to sacrifice, Journal of Environmental Studies and Sciences, 9, 371–385, https://doi.org/10.1007/s13412-019-00562-z, 2019. a
Clayton, S., Devine-Wright, P., Stern, P. C., Whitmarsh, L., Carrico, A., Steg, L., Swim, J., and Bonnes, M.: Psychological research and global climate change, Nat. Clim. Change, 5, 640–646, https://doi.org/10.1038/nclimate2622, 2015. a
Creutzig, F., Fernandez, B., Haberl, H., Khosla, R., Mulugetta, Y., and Seto, K. C.: Beyond Technology: Demand-Side Solutions for Climate Change Mitigation, Annu. Rev. Env. Resour., 41, 173–198, https://doi.org/10.1146/annurev-environ-110615-085428, 2016. a
Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., and Pietzcker, R. C.: The underestimated potential of solar energy to mitigate climate change, Nat. Energy, 2, 17140, https://doi.org/10.1038/nenergy.2017.140, 2017. a
Creutzig, F., Niamir, L., Bai, X., Callaghan, M., Cullen, J., Díaz-José, J., Figueroa, M., Grubler, A., Lamb, W. F., Leip, A., Masanet, E., Érika Mata, Mattauch, L., Minx, J. C., Mirasgedis, S., Mulugetta, Y., Nugroho, S. B., Pathak, M., Perkins, P., Roy, J., de la Rue du Can, S., Saheb, Y., Some, S., Steg, L., Steinberger, J., and Ürge Vorsatz, D.: Demand-side solutions to climate change mitigation consistent with high levels of well-being, Nat. Clim. Change, 12, 36–46, https://doi.org/10.1038/s41558-021-01219-y, 2022. a, b
Dangerman, A. T. and Schellnhuber, H. J.: Energy systems transformation, P. Natl. Acad. Sci. USA, 110, E549–E558, https://doi.org/10.1073/pnas.1219791110, 2013. a
de Coninck, H., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Dong, W., Ford, J., Fuss, S., Hourcade, J.-C., Ley, D., Mechler, R., Newman, P., Revokatova, A., Schultz, S., Steg, L., and Sugiyama, T.: Strengthening and Implementing the Global Response, 313–444, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157940.006, 2018. a
Devine-Wright, P.: Reconsidering public attitudes and public acceptance of renewable energy technologies: a critical review, School of Environment and Development, University of Manchester, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8d23c43b8af92fc8a4a8668b5cd4efc5a2e2391e (last access: 11 July 2023), 2007. a
Du, S., Cao, G., and Huang, Y.: The effect of income satisfaction on the relationship between income class and pro-environment behavior, Appl. Econ. Lett., 31, 61–64, https://doi.org/10.1080/13504851.2022.2125491, 2022. a
Dudka, A., Moratal, N., and Bauwens, T.: A typology of community-based energy citizenship: An analysis of the ownership structure and institutional logics of 164 energy communities in France, Energ. Policy, 178, 113588, https://doi.org/10.1016/j.enpol.2023.113588, 2023. a
Dóci, G., Vasileiadou, E., and Petersen, A. C.: Exploring the transition potential of renewable energy communities, Futures, 66, 85–95, https://doi.org/10.1016/j.futures.2015.01.002, 2015. a
Edelenbosch, O. Y., McCollum, D. L., Pettifor, H., Wilson, C., and Vuuren, D. P. V.: Interactions between social learning and technological learning in electric vehicle futures, Environ. Res. Lett., 13, 124004, https://doi.org/10.1088/1748-9326/aae948, 2018. a, b
Eder, C. and Stadelmann-Steffen, I.: Bringing the political system (back) into social tipping relevant to sustainability, Energ. Policy, 177, 113529, https://doi.org/10.1016/j.enpol.2023.113529, 2023. a
Eker, S. and Wilson, C.: System Dynamics of Social Tipping Processes – Outcome Report of IIASA Expert Workshop on 18–19 November 2021, IIASA Report, Laxenburg, Austria, https://pure.iiasa.ac.at/id/eprint/17955/1/IIASA_SocialTippingPoints_WorkshopReport.pdf (last access: 21 October 2022), 2022. a
Ellis, G. and Ferraro, G.: The social acceptance of wind energy: Where we stand and the path ahead, EUR 28182 EN, Publications Office of the European Union, Luxembourg, JRC103743, https://doi.org/10.2789/696070, 2017. a
Fesenfeld, L. P., Schmid, N., Finger, R., Mathys, A., and Schmidt, T. S.: The politics of enabling tipping points for sustainable development, One Earth, 5, 1100–1108, https://doi.org/10.1016/j.oneear.2022.09.004, 2022. a
Freeman, C. and Louçã, F. (Eds.): As Time Goes By: From the Industrial Revolutions to the Information Revolution, Oxford University Press, USA, ISBN 9780199251056, 2001. a
Frenken, K. and Schor, J.: Putting the sharing economy into perspective, Environmental Innovation and Societal Transitions, 23, 3–10, https://doi.org/10.1016/j.eist.2017.01.003, 2017. a
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and Zeng, J.: Global Carbon Budget 2021, Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, 2022. a
Geels, F. W.: Demand-side emission reduction through behavior change or technology adoption? Empirical evidence from UK heating, mobility, and electricity use, One Earth, 6, 337–340, https://doi.org/10.1016/j.oneear.2023.03.012, 2023. a
Geels, F. W. and Ayoub, M.: A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration, Technological Forecasting and Social Change, 193, 122639, https://doi.org/10.1016/j.techfore.2023.122639, 2023. a, b, c, d
Geels, F. W., Sovacool, B. K., Schwanen, T., and Sorrell, S.: Sociotechnical transitions for deep decarbonization, Science, 357, 1242–1244, https://doi.org/10.1126/science.aao3760, 2017. a
Geels, F. W., Schwanen, T., Sorrell, S., Jenkins, K., and Sovacool, B. K.: Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates, Energy Research and Social Science, 40, 23–35, https://doi.org/10.1016/j.erss.2017.11.003, 2018. a
Gonzalez-Sanchez, R., Kougias, I., Moner-Girona, M., Fahl, F., and Jäger-Waldau, A.: Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa, Renew. Energ., 169, 687–699, https://doi.org/10.1016/j.renene.2021.01.041, 2021. a
Graziano, M. and Gillingham, K.: Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environmentz, J. Econ. Geogr., 15, 815–839, https://doi.org/10.1093/jeg/lbu036, 2015. a
Gui, E. M. and MacGill, I.: Typology of future clean energy communities: An exploratory structure, opportunities, and challenges, Energy Research and Social Science, 35, 94–107, https://doi.org/10.1016/j.erss.2017.10.019, 2018. a
Göckeritz, S., Schultz, P. W., Rendón, T., Cialdini, R. B., Goldstein, N. J., and Griskevicius, V.: Descriptive normative beliefs and conservation behavior: The moderating roles of personal involvement and injunctive normative beliefs, Eur. J. Soc. Psychol., 40, 514–523, https://doi.org/10.1002/ejsp.643, 2010. a
Haegel, N. M., Atwater, H., Barnes, T., Breyer, C., Burrell, A., Chiang, Y. M., Wolf, S. D., Dimmler, B., Feldman, D., Glunz, S., Goldschmidt, J. C., Hochschild, D., Inzunza, R., Kaizuka, I., Kroposki, B., Kurtz, S., Leu, S., Margolis, R., Matsubara, K., Metz, A., Metzger, W. K., Morjaria, M., Niki, S., Nowak, S., Peters, I. M., Philipps, S., Reindl, T., Richter, A., Rose, D., Sakurai, K., Schlatmann, R., Shikano, M., Sinke, W., Sinton, R., Stanbery, B. J., Topic, M., Tumas, W., Ueda, Y., Lagemaat, J. V. D., Verlinden, P., Vetter, M., Warren, E., Werner, M., Yamaguchi, M., and Bett, A. W.: Terawatt-scale photovoltaics: Transform global energy Improving costs and scale reflect looming opportunities, Science, 364, 836–838, https://doi.org/10.1126/science.aaw1845, 2019. a
Hasanov, M. and Zuidema, C.: The transformative power of self-organization: Towards a conceptual framework for understanding local energy initiatives in The Netherlands, Energy Research and Social Science, 37, 85–93, https://doi.org/10.1016/j.erss.2017.09.038, 2018. a
Hess, D. J.: The politics of niche-regime conflicts: Distributed solar energy in the United States, Environmental Innovation and Societal Transitions, 19, 42–50, https://doi.org/10.1016/j.eist.2015.09.002, 2016. a
Heuninckx, S., te Boveldt, G., Macharis, C., and Coosemans, T.: Stakeholder objectives for joining an energy community: Flemish case studies, Energy Policy, 162, 112808, https://doi.org/10.1016/j.enpol.2022.112808, 2022. a
Hicks, J. and Ison, N.: An exploration of the boundaries of “community” in community renewable energy projects: Navigating between motivations and context, Energ. Policy, 113, 523–534, https://doi.org/10.1016/j.enpol.2017.10.031, 2018. a
Hogan, J. L., Warren, C. R., Simpson, M., and McCauley, D.: What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance, Energ. Policy, 171, 113257, https://doi.org/10.1016/j.enpol.2022.113257, 2022. a
Horne, C. and Kennedy, E. H.: The power of social norms for reducing and shifting electricity use, Energ. Policy, 107, 43–52, https://doi.org/10.1016/j.enpol.2017.04.029, 2017. a
Hughes, T. P. (Ed.): Networks of power: electrification in Western society, 1880–1930, Johns Hopkins University Press, softshell books edn., ISBN 9780801846144, 1993. a
Husu, H. M.: Rethinking incumbency: Utilising Bourdieu's field, capital, and habitus to explain energy transitions, Energy Research and Social Science, 93, 102825, https://doi.org/10.1016/j.erss.2022.102825, 2022. a
IEA: Electricity total final consumption by sector, 1971–2019, International Energy Agency, Paris, https://www.iea.org/data-and-statistics/charts/electricity-total-final-consumption-by-sector-1971-2019 (last access: 20 October 2022), 2021a. a
IEA: Year-on-year change in fossil fuel production in OECD countries, 2019–2020, International Energy Agency, Paris, https://www.iea.org/data-and-statistics/charts/year-on-year-change-in-fossil-fuel-production-in-oecd-countries-2019-2020 (last access: 20 October 2022), 2021b. a
IEA: Europe's energy crisis: What factors drove the record fall in natural gas demand in 2022?, International Energy Agency, Paris, https://www.iea.org/commentaries/europe-s-energy-crisis-what-factors-drove-the-record-fall-in-natural-gas-demand-in-2022 (last access: 5 December 2023), 2023a. a, b
IEA: Global CO2 emissions by sector, 2019–2022, International Energy Agency, Paris, https://www.iea.org/data-and-statistics/charts/global-co2-emissions-by-sector-2019-2022 (last access: 5 December 2023), 2023b. a
IPCC: Summary for Policymakers, in: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157926.001, 2022a. a
IPCC: Technical Summary, in: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157926.002, 2022b. a
IRENA: Renewable Technology Innovation Indicators: Mapping progress in costs, patents and standards, International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-424-0, 2022a. a
IRENA: Renewable Power Generation Costs in 2021, International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-452-3, 2022b. a
IRENA: Innovation landscape for smart electrification: Decarbonising end-use sectors with renewable power, International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-532-2, 2023. a
Isoard, S. and Soria, A.: Technical change dynamics: evidence from the emerging renewable energy technologies, Energy Economics, 23, 619–636, https://doi.org/10.1016/S0140-9883(01)00072-X, 2001. a
Ivanova, D. and Büchs, M.: Barriers and enablers around radical sharing, Lancet, 7, e784–e792, https://doi.org/10.1016/S2542-5196(23)00168-7, 2023. a
Ivanova, D., Barrett, J., Wiedenhofer, D., Macura, B., Callaghan, M., and Creutzig, F.: Quantifying the potential for climate change mitigation of consumption options, Environ. Res. Lett., 15, 093001, https://doi.org/10.1088/1748-9326/ab8589, 2020. a
Jin, Y., Hu, S., Ziegler, A. D., Gibson, L., Campbell, J. E., Xu, R., Chen, D., Zhu, K., Zheng, Y., Ye, B., Ye, F., and Zeng, Z.: Energy production and water savings from floating solar photovoltaics on global reservoirs, Nature Sustainability, 6, 865–874, https://doi.org/10.1038/s41893-023-01089-6, 2023. a
Jobert, A., Laborgne, P., and Mimler, S.: Local acceptance of wind energy: Factors of success identified in French and German case studies, Energ. Policy, 35, 2751–2760, https://doi.org/10.1016/j.enpol.2006.12.005, 2007. a
Kavlak, G., McNerney, J., and Trancik, J. E.: Evaluating the causes of cost reduction in photovoltaic modules, Energ. Policy, 123, 700–710, https://doi.org/10.1016/j.enpol.2018.08.015, 2018. a
Kelsey, N.: International Ozone Negotiations and the Green Spiral, Global Environ. Polit., 21, 64–87, https://doi.org/10.1162/glep_a_00631, 2021. a
Kern, F., Smith, A., Shaw, C., Raven, R., and Verhees, B.: From laggard to leader: Explaining offshore wind developments in the UK, Energ. Policy, 69, 635–646, https://doi.org/10.1016/j.enpol.2014.02.031, 2014. a
Klok, C. W., Kirkels, A. F., and Alkemade, F.: Impacts, procedural processes, and local context: Rethinking the social acceptance of wind energy projects in the Netherlands, Energy Research and Social Science, 99, 103044, https://doi.org/10.1016/j.erss.2023.103044, 2023. a
Kluskens, N., Hoffken, J., and Alkemade, F.: Beyond a checklist for acceptance: understanding the dynamic process of community acceptance, Sustainability Science, https://doi.org/10.1007/s11625-024-01468-8, 2024. a
Koide, R., Lettenmeier, M., Akenji, L., Toivio, V., Amellina, A., Khodke, A., Watabe, A., and Kojima, S.: Lifestyle carbon footprints and changes in lifestyles to limit global warming to 1.5 °C, and ways forward for related research, Sustain. Sci., 16, 2087–2099, https://doi.org/10.1007/s11625-021-01018-6, 2021. a
Köhler, J., Geels, F. W., Kern, F., Markard, J., Onsongo, E., Wieczorek, A., Alkemade, F., Avelino, F., Bergek, A., Boons, F., Fünfschilling, L., Hess, D., Holtz, G., Hyysalo, S., Jenkins, K., Kivimaa, P., Martiskainen, M., McMeekin, A., Mühlemeier, M. S., Nykvist, B., Pel, B., Raven, R., Rohracher, H., Sandén, B., Schot, J., Sovacool, B., Turnheim, B., Welch, D., and Wells, P.: An agenda for sustainability transitions research: State of the art and future directions, Environmental Innovation and Societal Transitions, 31, 1–32, https://doi.org/10.1016/j.eist.2019.01.004, 2019. a, b
Lenton, T., McKay, D. A., Loriani, S., Abrams, J., Lade, S., Donges, J., Milkoreit, M., Powell, T., Smith, S., Zimm, C., Buxton, J., Bailey, E., Laybourn, L., Ghadiali, A., and Dyke, J.: The Global Tipping Points Report 2023, https://global-tipping-points.org (last access: 15 December 2023), 2023. a
Lenton, T. M., Benson, S., Smith, T., Ewer, T., Lanel, V., Petykowski, E., Powell, T. W., Abrams, J. F., Blomsma, F., and Sharpe, S.: Operationalising positive tipping points towards global sustainability, Global Sustainability, 5, e1, https://doi.org/10.1017/sus.2021.30, 2022. a
LeQuéré, C., Peters, G. P., Friedlingstein, P., Andrew, R. M., Canadell, J. G., Davis, S. J., Jackson, R. B., and Jones, M. W.: Fossil CO2 emissions in the post-COVID-19 era, Nat. Clim. Change, 11, 197–199, https://doi.org/10.1038/s41558-021-01001-0, 2021. a
Maertens, R., Anseel, F., and van der Linden, S.: Combatting climate change misinformation: Evidence for longevity of inoculation and consensus messaging effects, J. Environ. Psychol., 70, 101455, https://doi.org/10.1016/j.jenvp.2020.101455, 2020. a
Manfredo, M. J., Bruskotter, J. T., Teel, T. L., Fulton, D., Schwartz, S. H., Arlinghaus, R., Oishi, S., Uskul, A. K., Redford, K., Kitayama, S., and Sullivan, L.: Why social values cannot be changed for the sake of conservation, Conserv. Biol., 31, 772–780, https://doi.org/10.1111/cobi.12855, 2017. a
Matthews, D. H. and Wynes, S.: Current global efforts are insufficient to limit warming to 1.5 °C, Science, 376, 1404–1409, https://doi.org/10.1126/science.abo3378, 2022. a
Mayer, A. P. and Smith, E. K.: Multidimensional partisanship shapes climate policy support and behaviours, Nat. Clim. Change, 13, 32–39, https://doi.org/10.1038/s41558-022-01548-6, 2023. a
McAdam, D., Tarrow, S., and Tilly, C.: Dynamics of Contention, Cambridge University Press, ISBN 9780521805889, https://doi.org/10.1017/CBO9780511805431, 2001. a
Meckling, J.: Governing renewables: Policy feedback in a global energy transition, Environ. Plann. C, 37, 317–338, https://doi.org/10.1177/2399654418777765, 2019. a
Meckling, J., Sterner, T., and Wagner, G.: Policy sequencing toward decarbonization, Nature Energy, 2, 918–922, https://doi.org/10.1038/s41560-017-0025-8, 2017. a, b
Meldrum, M., Pinnell, L., Brennan, K., Romani, M., Sharpe, S., and Lenton, T.: The Breakthrough Effect: How to trigger a cascade of tipping points to accelerate the net zero transition, SYSTEMIQ, https://www.systemiq.earth/wp-content/uploads/2023/01/The-Breakthrough-Effect.pdf (last access: 20 March 2023), 2023. a
Milkoreit, M.: Social tipping points everywhere? – Patterns and risks of overuse, WiRes Clim. Change, 14, e813, https://doi.org/10.1002/wcc.813, 2022. a, b
Milkoreit, M., Hodbod, J., Baggio, J., Benessaiah, K., Calderón-Contreras, R., Donges, J. F., Mathias, J. D., Rocha, J. C., Schoon, M., and Werners, S. E.: Defining tipping points for social-ecological systems scholarship – An interdisciplinary literature review, Environ. Res. Lett., 13, 1–13, https://doi.org/10.1088/1748-9326/aaaa75, 2018. a
Mourik, R. M., Breukers, S., van Summeren, L. F., and Wieczorek, A. J.: The impact of the institutional context on the potential contribution of new business models to democratising the energy system, in: Energy and Behaviour, edited by: Lopes, M., Henggeler Antunes, C., and Janda, K. B., 209–235, Elsevier, ISBN 9780128185674, https://doi.org/10.1016/B978-0-12-818567-4.00009-0, 2019. a
Musall, F. D. and Kuik, O.: Local acceptance of renewable energy-A case study from southeast Germany, Energ. Policy, 39, 3252–3260, https://doi.org/10.1016/j.enpol.2011.03.017, 2011. a
Negro, S. O., Alkemade, F., and Hekkert, M. P.: Why does renewable energy diffuse so slowly? A review of innovation system problems, Renew. Sust. Energ. Rev., 16, 3836–3846, https://doi.org/10.1016/j.rser.2012.03.043, 2012. a
Nematchoua, M. K., Nishimwe, A. M.-R., and Reiter, S.: Towards nearly zero-energy residential neighbourhoods in the European Union: A case study, Renew. Sust. Energ. Rev., 135, 110198, https://doi.org/10.1016/j.rser.2020.110198, 2021. a
Nemet, G. and Greene, J.: Innovation in low-energy demand and its implications for policy, Oxford Open Energy, 1, oiac003, https://doi.org/10.1093/ooenergy/oiac003, 2022. a
Nemet, G. F.: Beyond the learning curve: factors influencing cost reductions in photovoltaics, Energy Policy, 34, 3218–3232, https://doi.org/10.1016/j.enpol.2005.06.020, 2006. a
Newell, P., Twena, M., and Daley, F.: Scaling behaviour change for a 1.5-degree world: Challenges and opportunities, Global Sustainability, 4, 1–13, https://doi.org/10.1017/sus.2021.23, 2021. a
Niamir, L., Ivanova, O., Filatova, T., Voinov, A., and Bressers, H.: Demand-side solutions for climate mitigation: Bottom-up drivers of household energy behavior change in the Netherlands and Spain, Energy Research and Social Science, 62, 101356, https://doi.org/10.1016/j.erss.2019.101356, 2020a. a
Niamir, L., Kiesewetter, G., Wagner, F., Schöpp, W., Filatova, T., Voinov, A., and Bressers, H.: Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions, Climatic Change, 158, 141–160, https://doi.org/10.1007/s10584-019-02566-8, 2020b. a
Nijsse, F. J., Mercure, J. F., Ameli, N., Larosa, F., Kothari, S., Rickman, J., Vercoulen, P., and Pollitt, H.: The momentum of the solar energy transition, Nat. Commun., 14, 6542, https://doi.org/10.1038/s41467-023-41971-7, 2023. a
Nisa, C. F., Bélanger, J. J., Schumpe, B. M., and Faller, D. G.: Meta-analysis of randomised controlled trials testing behavioural interventions to promote household action on climate change, Nat. Commun., 10, 4545, https://doi.org/10.1038/s41467-019-12457-2, 2019. a
Ostrom, E.: Beyond Markets and States: Polycentric Governance of Complex Economic Systems, American Economic Association, 100, 641–672, https://doi.org/10.1109/APEC.2013.6520178, 2010. a
Oteman, M., Wiering, M., and Helderman, J. K.: The institutional space of community initiatives for renewable energy: a comparative case study of the Netherlands, Germany and Denmark, Energy, Sustainability and Society, 4, 1–17, https://doi.org/10.1186/2192-0567-4-11, 2014. a
Otto, I. M., Donges, J. F., Cremades, R., Bhowmik, A., Hewitt, R. J., Lucht, W., Rockström, J., Allerberger, F., McCaffrey, M., Doe, S. S., Lenferna, A., Morán, N., van Vuuren, D. P., and Schellnhuber, H. J.: Social tipping dynamics for stabilizing Earth's climate by 2050, P. Natl. Acad. Sci. USA, 117, 2354–2365, https://doi.org/10.1073/pnas.1900577117, 2020. a, b, c, d, e
Palm, A.: Peer effects in residential solar photovoltaics adoption – A mixed methods study of Swedish users, Energy Research and Social Science, 26, 1–10, https://doi.org/10.1016/j.erss.2017.01.008, 2017. a
Pasimeni, F.: The origin of the sharing economy meets the legacy of fractional ownership, J. Clean. Prod., 319, 128614, https://doi.org/10.1016/j.jclepro.2021.128614, 2021. a
Pasimeni, F. and Ciarli, T.: Reducing environmental impact through shared ownership: A model of consumer behaviour, UNU-Merit Working Paper Series, 2023-015, https://www.merit.unu.edu/publications/wppdf/2023/wp2023-015.pdf (last access: 8 March 2023), 2023. a
Pauw, W. P., Moslener, U., Zamarioli, L. H., Amerasinghe, N., Atela, J., Affana, J. P., Buchner, B., Klein, R. J., Mbeva, K. L., Puri, J., Roberts, J. T., Shawoo, Z., Watson, C., and Weikmans, R.: Post-2025 climate finance target: how much more and how much better?, Clim. Policy, 22, 1241–1251, https://doi.org/10.1080/14693062.2022.2114985, 2022. a
Radtke, J., Özgür Yildiz, and Roth, L.: Does Energy Community Membership Change Sustainable Attitudes and Behavioral Patterns? Empirical Evidence from Community Wind Energy in Germany, Energies, 15, 822, https://doi.org/10.3390/en15030822, 2022. a
Reis, I. F., Gonçalves, I., Lopes, M. A., and Antunes, C. H.: Business models for energy communities: A review of key issues and trends, Renew. Sust. Energ. Rev., 144, 111013, https://doi.org/10.1016/j.rser.2021.111013, 2021. a
REScoop.eu: Annual report 2020: European Federation of citizen energy cooperatives, REScoop.eu, https://www.rescoop.eu/uploads/rescoop/downloads/REScoop-Annual-Report-2020.pdf (last access: 13 March 2023), 2020. a
Roberts, C., Geels, F. W., Lockwood, M., Newell, P., Schmitz, H., Turnheim, B., and Jordan, A.: The politics of accelerating low-carbon transitions: Towards a new research agenda, Energy Research and Social Science, 44, 304–311, https://doi.org/10.1016/j.erss.2018.06.001, 2018. a, b
Rode, J. and Weber, A.: Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany, J. Environ. Econ. Manag., 78, 38–48, https://doi.org/10.1016/j.jeem.2016.02.001, 2016. a
Rogers, E. M. (Ed.): Diffusion of innovations, Simon & Schuster, 5th edn., ISBN 9780743222099, 2003. a
Rogers, J. C., Simmons, E. A., Convery, I., and Weatherall, A.: Public perceptions of opportunities for community-based renewable energy projects, Energ. Policy, 36, 4217–4226, https://doi.org/10.1016/j.enpol.2008.07.028, 2008. a
Rosenbloom, D., Meadowcroft, J., and Cashore, B.: Stability and climate policy? Harnessing insights on path dependence, policy feedback, and transition pathways, Energy Research and Social Science, 50, 168–178, https://doi.org/10.1016/j.erss.2018.12.009, 2019. a
Roy, J., Dowd, A.-M., Muller, A., Pal, S., and Prata, N.: Lifestyles, Well-Being and Energy, edited by: Johansson, T. B., Patwardhan, A. P., Nakićenović, N., and Gomez-Echeverri, L., 1527–1548, Cambridge University Press, https://doi.org/10.1017/CBO9780511793677.027, 2012. a
Sewerin, S., Béland, D., and Cashore, B.: Designing policy for the long term: agency, policy feedback and policy change, Policy Sci., 53, 243–252, https://doi.org/10.1007/s11077-020-09391-2, 2020. a
Shapira, S., Shibli, H., and Teschner, N.: Energy insecurity and community resilience: The experiences of Bedouins in Southern Israel, Environ. Sci. Policy, 124, 135–143, https://doi.org/10.1016/j.envsci.2021.06.006, 2021. a
Sharpe, S. and Lenton, T. M.: Upward-scaling tipping cascades to meet climate goals: plausible grounds for hope, Clim. Policy, 21, 421–433, https://doi.org/10.1080/14693062.2020.1870097, 2021. a, b
Sloot, D., Jans, L., and Steg, L.: Can community energy initiatives motivate sustainable energy behaviours? The role of initiative involvement and personal pro-environmental motivation, J. Environ. Psychol., 57, 99–106, https://doi.org/10.1016/j.jenvp.2018.06.007, 2018. a
Smith, S. R., Christie, I., and Willis, R.: Social tipping intervention strategies for rapid decarbonization need to consider how change happens, P. Natl. Acad. Sci. USA, 117, 10629–10630, https://doi.org/10.1073/pnas.2002331117, 2020. a
Sorrell, S., Gatersleben, B., and Druckman, A.: The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change, Energy Research and Social Science, 64, 101439, https://doi.org/10.1016/j.erss.2020.101439, 2020. a
Sovacool, B. K.: How long will it take? Conceptualizing the temporal dynamics of energy transitions, Energy Research and Social Science, 13, 202–215, https://doi.org/10.1016/j.erss.2015.12.020, 2016. a
Sovacool, B. K., Martiskainen, M., Hook, A., and Baker, L.: Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions, Climatic Change, 155, 581–619, https://doi.org/10.1007/s10584-019-02521-7, 2019. a
Stadelmann-Steffen, I., Eder, C., Harring, N., Spilker, G., and Katsanidou, A.: A framework for social tipping in climate change mitigation: What we can learn about social tipping dynamics from the chlorofluorocarbons phase-out, Energy Research and Social Science, 82, 102307, https://doi.org/10.1016/j.erss.2021.102307, 2021. a
Steg, L.: Psychology of Climate Change, Annu. Rev. Psychol., 74, 391–421, https://doi.org/10.1146/annurev-psych-032720-042905, 2023. a
Steg, L. and Vlek, C.: Encouraging pro-environmental behaviour: An integrative review and research agenda, J. Environ. Psychol., 29, 309–317, https://doi.org/10.1016/j.jenvp.2008.10.004, 2009. a
Steg, L., Shwom, R., and Dietz, T.: What drives energy consumers? Engaging people in a sustainable energy transition, IEEE Power and Energy Magazine, 16, 20–28, https://doi.org/10.1109/MPE.2017.2762379, 2018. a
Strachan, P. A., Cowell, R., Ellis, G., Sherry-brennan, F., and Toke, D.: Promoting Community Renewable Energy in a Corporate Energy World, Sustain. Dev., 23, 96–109, https://doi.org/10.1002/sd.1576, 2015. a
Söderholm, P. and Klaassen, G.: Wind power in Europe: A simultaneous innovation-diffusion model, Environmental and Resource Economics, 36, 163–190, https://doi.org/10.1007/s10640-006-9025-z, 2007. a
Thomas, S., Thema, J., Brischke, L. A., Leuser, L., Kopatz, M., and Spitzner, M.: Energy sufficiency policy for residential electricity use and per-capita dwelling size, Energ. Effic., 12, 1123–1149, https://doi.org/10.1007/s12053-018-9727-4, 2019. a
Trutnevyte, E., Hirt, L. F., Bauer, N., Cherp, A., Hawkes, A., Edelenbosch, O. Y., Pedde, S., and van Vuuren, D. P.: Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next Step, One Earth, 1, 423–433, https://doi.org/10.1016/j.oneear.2019.12.002, 2019. a
van de Poel, I. and Taebi, B.: Value Change in Energy Systems, Sci. Technol. Hum. Val., 47, 371–379, https://doi.org/10.1177/01622439211069526, 2022. a
van den Bergh, J. C.: Energy Conservation More Effective With Rebound Policy, Environmental and Resource Economics, 48, 43–58, https://doi.org/10.1007/s10640-010-9396-z, 2011. a
van den Bergh, J. C., Savin, I., and Drews, S.: Evolution of opinions in the growth-vs-environment debate: Extended replicator dynamics, Futures, 109, 84–100, https://doi.org/10.1016/j.futures.2019.02.024, 2019. a
van den Berghe, L. H. and Wieczorek, A. J.: Community participation in electricity markets: The impact of market organisation, Environmental Innovation and Societal Transitions, 45, 302–317, https://doi.org/10.1016/j.eist.2022.10.008, 2022. a
van der Kam, M. J., Meelen, A. A., van Sark, W. G., and Alkemade, F.: Diffusion of solar photovoltaic systems and electric vehicles among Dutch consumers: Implications for the energy transition, Energy Research and Social Science, 46, 68–85, https://doi.org/10.1016/j.erss.2018.06.003, 2018. a
van der Schoor, T. and Scholtens, B.: Power to the people: Local community initiatives and the transition to sustainable energy, Renew. Sust. Energ. Rev., 43, 666–675, https://doi.org/10.1016/j.rser.2014.10.089, 2015. a
van Summeren, L. F., Wieczorek, A. J., Bombaerts, G. J., and Verbong, G. P.: Community energy meets smart grids: Reviewing goals, structure, and roles in Virtual Power Plants in Ireland, Belgium and the Netherlands, Energy Research and Social Science, 63, 101415, https://doi.org/10.1016/j.erss.2019.101415, 2020. a, b
Verkade, N. and Höffken, J.: Collective energy practices: A practice-based approach to civic energy communities and the energy system, Sustainability (Switzerland), 11, 3230, https://doi.org/10.3390/su11113230, 2019. a
Wang, S., Hausfather, Z., Davis, S., Lloyd, J., Olson, E. B., Liebermann, L., Núñez-Mujica, G. D., and McBride, J.: Future demand for electricity generation materials under different climate mitigation scenarios, Joule, 7, 309–332, https://doi.org/10.1016/j.joule.2023.01.001, 2023. a
Warren, C. R. and McFadyen, M.: Does community ownership affect public attitudes to wind energy? A case study from south-west Scotland, Land Use Policy, 27, 204–213, https://doi.org/10.1016/j.landusepol.2008.12.010, 2010. a
Watson, J.: Co-provision in sustainable energy systems: the case of micro-generation, Energy Policy, 32, 1981–1990, https://doi.org/10.1016/j.enpol.2004.03.010, 2004. a
Way, R., Ives, M. C., Mealy, P., and Farmer, J. D.: Empirically grounded technology forecasts and the energy transition, Joule, 6, 2057–2082, https://doi.org/10.1016/j.joule.2022.08.009, 2022. a
Wierling, A., Schwanitz, V. J., Zeiss, J. P., von Beck, C., Paudler, H. A., Koren, I. K., Kraudzun, T., Marcroft, T., Müller, L., Andreadakis, Z., Candelise, C., Dufner, S., Getabecha, M., Glaase, G., Hubert, W., Lupi, V., Majidi, S., Mohammadi, S., Nosar, N. S., du Pont, Y. R., Roots, P., Rudek, T. J., Sciullo, A., Sehdev, G., Ziaabadi, M., and Zoubin, N.: A Europe-wide inventory of citizen-led energy action with data from 29 countries and over 10000 initiatives, Sci. Data, 10, 9, https://doi.org/10.1038/s41597-022-01902-5, 2023. a, b
Wilson, C., Grubler, A., Bauer, N., Krey, V., and Riahi, K.: Future capacity growth of energy technologies: Are scenarios consistent with historical evidence?, Climatic Change, 118, 381–395, https://doi.org/10.1007/s10584-012-0618-y, 2013. a
Wilson, C., Grubler, A., Bento, N., Healey, S., Stercke, S. D., and Zimm, C.: Granular technologies to accelerate decarbonization, Science, 368, 36–39, https://doi.org/10.1126/science.aaz8060, 2020. a, b
Windemer, R.: Acceptance should not be assumed. How the dynamics of social acceptance changes over time, impacting onshore wind repowering, Energ. Policy, 173, 113363, https://doi.org/10.1016/j.enpol.2022.113363, 2023. a
Winkelmann, R., Donges, J. F., Smith, E. K., Milkoreit, M., Eder, C., Heitzig, J., Katsanidou, A., Wiedermann, M., Wunderling, N., and Lenton, T. M.: Social tipping processes towards climate action: A conceptual framework, Ecol. Econ., 192, 107242, https://doi.org/10.1016/j.ecolecon.2021.107242, 2022. a, b
Wolsink, M.: Social acceptance revisited: gaps, questionable trends, and an auspicious perspective, Energy Research and Social Science, 46, 287–295, https://doi.org/10.1016/j.erss.2018.07.034, 2018. a
Wolske, K. S., Gillingham, K. T., and Schultz, P. W.: Peer influence on household energy behaviours, Nature Energy, 5, 202–212, https://doi.org/10.1038/s41560-019-0541-9, 2020. a
Wüstenhagen, R., Wolsink, M., and Bürer, M. J.: Social acceptance of renewable energy innovation: An introduction to the concept, Energ. Policy, 35, 2683–2691, https://doi.org/10.1016/j.enpol.2006.12.001, 2007. a
Yildiz, O., Rommel, J., Debor, S., Holstenkamp, L., Mey, F., Müller, J. R., Radtke, J., and Rognli, J.: Renewable energy cooperatives as gatekeepers or facilitators? Recent developments in Germany and a multidisciplinary research agenda, Energy Research and Social Science, 6, 59–73, https://doi.org/10.1016/j.erss.2014.12.001, 2015. a
Short summary
The fast growth in renewables has led to an economic tipping point for the adoption of renewables. This paper reviews how the cost tipping point in renewables can initiate other social tipping dynamics in the energy transition, and it presents energy communities as a promising and fast-growing niche environment that can exploit and foster such tipping dynamics.
The fast growth in renewables has led to an economic tipping point for the adoption of...
Special issue
Altmetrics
Final-revised paper
Preprint