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Abstract. This paper reviews evidence on how the fast growth in renewable energy technologies can trigger so-
cial tipping dynamics that potentially accelerate a system-wide energy transition. It does so by reviewing a variety
of literature across several disciplines addressing socio-technical dimensions of energy transitions. The tipping
dynamics in wind and solar power create potential for cascading effects to energy demand sectors, including
household energy demand. These most likely start with shift actions and adoption of household-scale batteries
and heat pumps. Key enablers are strong regulations incentivising reductions in demand and setting minimum
efficiency levels for buildings and appliances. While there is evidence of spillovers to more environmentally
friendly behaviour, the extent of these and the key leverage points to bring them about present a knowledge
gap. Moreover, these behavioural feedback loops require strong additional policy support to “make them stick”.
Understanding the economic and social tipping dynamics in a system can empower decision-makers, fostering
realistic energy transition policies. This paper highlights energy communities as a promising niche for leverag-
ing tipping dynamics. Ultimately, bridging the gap between these tipping dynamics and institutional reforms is

crucial for unlocking the full potential of sustainable energy systems.

1 Introduction

A transition from a fossil-fuel-based energy system to an en-
ergy system based on renewable energy sources is key to
meeting climate targets. This energy transition involves in-
terdependent changes to technologies and infrastructures, the
behaviour of firms and individuals, and institutions and gov-
ernance. That is, energy transitions are socio-technical tran-
sitions (Geels et al., 2017). Historical case studies, for exam-
ple, of the transition from wood to coal, argue that energy
transitions typically take decades and have severe disruptive
effects, affecting the livelihood of many people (Freeman and
Loucd, 2001). Both the fear of these negative consequences
and the lock-in of the current fossil-fuel-based system are
given as explanations for the slow pace of current-day sus-
tainability transitions (Hughes, 1993; Negro et al., 2012).
This view of energy transitions as inevitably slow pro-
cesses has recently been challenged. First, we now have some

examples of relatively fast energy transitions, e.g. to natu-
ral gas in The Netherlands or to combined heat and power
in Denmark (Sovacool, 2016). Second, the diffusion of re-
newable energy technologies like wind and solar has been
much faster than anticipated by energy transition scenarios
(Creutzig et al., 2017; de Coninck et al., 2018; Trutnevyte
etal., 2019; Wilson et al., 2013).

Social tipping dynamics, in analogy to the tipping dynam-
ics of ecological systems, have received increased attention
as a possible mechanism that potentially explains this accel-
eration of the transition to more sustainable socio-technical
systems (Otto et al., 2020). Social tipping dynamics for sus-
tainability occur in social-environmental systems with alter-
native stable states, where a change process unfolds rapidly
(or non-linearly) driven by feedback mechanisms and with
some degree of irreversibility or stickiness (Milkoreit, 2022;
Lenton et al., 2023). Several social factors can initiate so-
cial tipping dynamics, including tipping in costs and prices,
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norms, and behaviour and policy (Roberts et al., 2018; Otto
et al.,, 2020). When these dynamics drive the system in a
more desirable direction, such as a more sustainable state,
these dynamics are labelled “positive” social tipping dynam-
ics. Compared to, for instance, ecological tipping dynam-
ics, positive social tipping is thus frequently framed as nor-
matively desirable and intentionally activated or triggered
(Lenton et al., 2022; Milkoreit, 2022).

Systems dynamics modelling can capture the effects of
feedback and interactions on system behaviour. Here, feed-
backs are generally understood as circular causal processes
where the effect of change in one part of a system leads to
further change in that part. When an increase in x leads to
further increases in x (or when a decrease leads to further de-
crease) through this circular chain of causality, this is known
as positive or reinforcing feedback. Negative or balancing
feedbacks occur when an increase in x leads to a decrease
in x (or vice versa), and negative feedbacks are therefore as-
sociated with stability (Meadows, 2008). Furthermore, when
feedback-powered tipping dynamics spread from one system
to another or upwards to drive system change at a higher
scale, tipping cascades can occur (Sharpe and Lenton, 2021).
Therefore, while feedback loops are not as fundamental as
other leverage points for sustainability, which focus on sys-
tem goals and paradigms (Meadows, 2008), the relatively mi-
nor efforts triggering tipping dynamics nonetheless hold the
potential to trigger deeper system change through cascading
interactions.

In the energy system, the cost reduction in renewable en-
ergy technologies is a driver for social tipping dynamics. As
solar and wind energy sources become prevalent in the en-
ergy system, their costs decrease, enabling wider adoption
(Soderholm and Klaassen, 2007; Way et al., 2022). This,
in turn, leads to economies of scale, further reducing costs
and creating positive feedback loops that drive even more
installations (Isoard and Soria, 2001). In economic terms,
tipping occurs when the cost of renewable energy becomes
competitive with or even lower than that of conventional en-
ergy sources. The solar energy sector in Germany presents a
prominent example of positive social tipping: When strong
public, policy and industry support aligned simultaneously
with a strong decrease in support for nuclear energy, this
led to unexpected and fast price performance improvements
and demand increases in solar technology, boosting the sec-
tor globally. These reinforcing feedbacks are weakened by
balancing feedbacks that dampen the growth of renewables
and that prevent system change. These balancing feedbacks
can originate from vested interests in the fossil-fuel-based
system but also from social acceptance barriers encountered
by renewables.

Tipping dynamics are observed within various subsystems
of energy systems (Geels and Ayoub, 2023). These dynam-
ics can occur when radical and incremental technological
innovations move the system towards cleaner and more ef-
ficient energy production and consumption. Such dynamics
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can act as catalysts for rapid changes and start cascading ef-
fects within the energy landscape. However, tipping dynam-
ics can also occur within the realm of actors and institutions,
where changes in policies, regulations, market dynamics, or
the choices and behaviours of firms and individuals can have
large effects on the trajectory of the energy system (Otto
et al., 2020). The importance of such social and behavioural
factors, like policy support, societal acceptance or changing
norms, is extensively reported in descriptive case studies that
are the foundation of the field of sustainability transitions re-
search (Kohler et al., 2019). For the energy system, the chal-
lenge is to connect the current tipping dynamics in low-level
intervention points to higher-level intervention points in or-
der to realise tipping cascades that fundamentally change the
system.

This review paper, therefore, addresses the following ques-
tion: how can the fast growth in renewables start system-wide
tipping cascades that accelerate the energy transition? To this
end, the paper reviews the sustainability transition literature
for feedbacks and interactions in the socio-technical energy
system that may build on the tipping dynamics in the sup-
ply of renewable energy to create tipping cascades that in
turn lead to a transition of the energy system. We make use
of causal loop diagrams to visualise reinforcing (R) and bal-
ancing (B) feedback processes.

Section 2 first discusses how the fast growth in renewable
electricity supply may initiate further tipping processes in
technologies, household energy behaviours and throughout
the socio-technical system. Here, specific attention is given
to the electrification of households, avoid—shift-improve
(ASI) measures for demand reduction, how to create sustain-
able lifestyles, and how the social and political system can
generate tipping dynamics in the energy system. Section 3
then explores energy communities as an area where positive
tipping dynamics hold great potential. Finally, Sect. 4 con-
cludes the paper.

2 Fast growth in renewable electricity supply drives
social tipping in the energy system

Most evidence on tipping dynamics in energy systems con-
cerns the price performance of new technologies (Otto et al.,
2020). Renewables are now among the cheapest energy gen-
eration options. Cost reductions in renewable generation
technologies like wind energy and solar photovoltaics (PV)
have been massive and much faster than predicted. The price
of electricity from solar energy declined by 89 % from 2009
to 2019, and the price of wind energy declined by 70 % in
this period. In some contexts, cost parity in energy generation
for wind and solar has been reached or even exceeded, mak-
ing them cheaper than fossil generation (Haegel et al., 2019;
IRENA, 2022a, b). For wind and solar energy generation,
the main reinforcing feedback (denoted by R in the causal
loop diagrams in Fig. 1) that created these tipping dynam-
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Figure 1. Economies of scale and learning in solar PV. As more
solar PV is adopted, costs are reduced to due economies of scale
and learning effects, in turn driving up further solar PV adoption.

ics is cost reduction and performance improvement through
economies of learning and economies of scale, leading to
more deployment and, in turn, to more learning (Sharpe and
Lenton, 2021; Kavlak et al., 2018; Nemet and Greene, 2022).

The diffusion of solar PV is also analysed as a social
process where considerations of observability and trialabil-
ity and processes like word-of-mouth play a role next to
costs and performance (Rogers, 2003; Bollinger and Gilling-
ham, 2012; Palm, 2017; Rode and Weber, 2016). Adoption
of rooftop solar PV, for instance, is typically clustered in
space, where people are more likely to adopt when people
nearby also have adopted (Graziano and Gillingham, 2015;
van der Kam et al., 2018). Therefore, more adoption leads to
increased observability and trialability (i.e. learning), which
in turn leads to more adoption. Moreover, markets are still
expanding as performance improvements make the technol-
ogy attractive to a wider range of users. As a result of these
technological improvements and cost reductions, renewable
generation is increasingly possible in locations where wind
or sun conditions are less favourable or where installation is
more difficult and costly, as demonstrated by the increasing
attention for floating solar (Gonzalez-Sanchez et al., 2021;
Jin et al., 2023).

2.1 Household electrification

The function of energy systems is to provide energy services
to end users. The main energy uses are for heat and elec-
tricity in industry and buildings and for transport. The in-
dustrial, residential and transport sectors together accounted
for 70 % of the total global electricity consumption in 2019,
and these sectors are also responsible for approximately 60 %
of the worldwide carbon dioxide (CO;) emissions (IEA,
2021a, 2023b). The decarbonisation of the energy system is
thus a key driver of overall decarbonisation efforts.

In end-use sectors, the tipping dynamics in wind and so-
lar may initiate further decarbonisation of the energy sys-
tem through electrification of energy demand. These devel-
opments are typically supported by government subsidies
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and regulation of the energy performance of buildings, and
households that electrify their demand may do so for both
environmental and financial reasons. Moreover, the fast cost
reductions as observed in wind and solar are more likely to
occur in smaller and modular technologies (Wilson et al.,
2020). In the consumer end-use sector, there are several other
small and modular technologies that may reach cost-parity in
the short term, like electric vehicles, household batteries and
heat pumps (Meldrum et al., 2023).

The transportation sector is a relevant example of these ad-
vancements. The increasing prevalence of electric cars, along
with other electricity-powered alternatives such as e-bikes,
e-scooters and other mopeds, indicates the key role of bat-
teries in novel modular demand and the significant contribu-
tion to sector-wide decarbonisation. In addition to facilitating
emission-free mobility, the batteries in electric vehicles can
also support the grid infrastructure during periods of ample
electricity generation from renewable sources by functioning
as modular storage systems.

Stationary household batteries are specifically attractive in
places where feed-in tariffs for solar energy into the grid are
much lower than the retail price for energy from the grid.
The large-scale adoption of household batteries may influ-
ence the decarbonisation of the energy system in two ways.
First, it reduces curtailment of household solar PV genera-
tion, better matching renewable energy supply with demand.
Second, it reduces grid congestion during peaks in solar gen-
eration (reinforcing feedback on the left in Fig. 2). Increas-
ingly, grid congestion is a barrier to further grid integration
of renewables. However, few countries currently have strong
incentives in place to stimulate demand to synchronise with
the availability of renewable energy supply.

Another area of electrification of the residential sector is
heating and cooling systems (Fig. 2). Heat demand is often
met using natural gas boilers. Based on IEA (2022) analy-
sis, natural gas accounts for 42 % of global heating energy
demand, with a 40 % share of the heating mix in the Euro-
pean Union and over 60 % in the United States. When low-
carbon heat sources like waste heat are available, this can be
a preferred option. When this is not the case, electrification
of heating demand through heat pumps can lead to a large
reduction in energy demand. This shift to low-carbon heat
sources requires additional changes in technologies and in-
frastructure in houses and neighbourhoods. The availability
of low-cost and abundant renewable energy supply is a key
enabler here, and early adopters are often households that
generate excess electricity with their own rooftop PV sys-
tems. Another important enabler is increased insulation (also
to reduce overall heat demand). For instance, the adoption
of solar PV coupled with efficiency and sufficiency measures
may both yield increased adoption of heat pumps, as shown
at the top of Fig. 2. Barriers to the electrification of heating
are the lack of technologies for heat storage and the cum-
bersome installation process. A more radical and politically
challenging behavioural change would be to provide incen-
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tives to live in smaller homes or to have higher occupancy
per dwelling, for example in planning decisions.

2.2 Household energy demand reduction

While for many regions in the world renewable energy po-
tential exceeds demand, a fast energy transition faces con-
straints regarding the availability and sustainable sourcing of
materials and personnel (Wang et al., 2023). Most scenarios,
therefore, envision a reduction in demand where consump-
tion of energy should be brought in line with what can be
sustainably produced in the short term. Indeed, reducing en-
ergy demand is key in 1.5 °C pathways (Koide et al., 2021),
especially in wealthy countries. At the same time, energy ac-
cess and service provision will need to grow for many less-
developed countries and for poor people everywhere to en-
sure decent living standards and wellbeing (IPCC, 2022a).
Although we observe a decoupling of energy demand and
income in some places, in general, household energy de-
mand grows with income. Pro-environmental attitudes and
behaviour have also been correlated with income, further
complicating the challenge of how to reduce income inequal-
ity and material and energy consumption to sustainable suf-
ficiency levels (Du et al., 2022). Moreover, individuals with
high socio-economic status are responsible for a large share
of emissions (IPCC, 2022b; IEA, 2021b). These individu-
als could have a large positive impact if they reduce green-
house gas emissions, becoming role models of low-carbon
lifestyles, investing in low-carbon businesses and advocating
for stringent climate policies (Creutzig et al., 2022). Such ap-
proaches are also discussed in the context of energy justice
and equitable energy demand reduction (Biichs et al., 2023).
However, demand reduction options are often constrained
by the existing socio-technical system. It is, for exam-
ple, difficult for individuals to change their mobility prac-
tices if employer preferences regarding workplace presence
do not change. The Avoid-Shift-Improve (ASI) framework
(Creutzig et al., 2022) is often used to identify demand re-
duction options. Avoid options reduce unnecessary energy
consumption, possibly by redesigning service provisioning
systems. Shift refers to the switch to already existing com-
petitive, efficient and cleaner technologies and service provi-
sioning systems. Improve refers to efficiency improvements
in existing technologies. While improve options are not suf-
ficient to tip the energy system to a decarbonised state, they
are an important enabler for options that can. Figure 3 adds
ASI measures as an additional element to the previous figure
on feedback loop in electrification of heating and cooling.
The different ASI measures often co-occur. While avoid
options have the largest mitigation potential, they often need
to be flanked with shift and improve options to be attractive.
For example, when people switch from natural gas heating
to heat pumps, good insulation (improve) is a pre-condition.
Typically avoid and shift options require larger changes in so-
cial practices and in the broader socio-technical system com-
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pared to improve options. More specifically, options where
both behavioural and technological change is required, or
that require a substantial change in social and user practices,
are typically more difficult to realise and thus difficult as a
starting point for tipping dynamics (Geels et al., 2018).

Higher prices lead to reduced energy demand, provid-
ing evidence for measures like a carbon tax. Natural gas
consumption in the EU and in the period August 2022 to
January 2023 decreased by 19 % compared to the aver-
age gas consumption for the same months in the previous
5 years. However, this also came with increased levels of en-
ergy poverty, particularly affecting low-income households
in badly insulated homes (IEA, 2023a). Interestingly, the
high prices also triggered and opened the opportunity for
sufficiency-based energy price interventions. Because of the
relationship between income and energy use, a rebound ef-
fect may occur (see top right balancing feedback in Fig. 3)
when technologically or socially induced demand reductions
lead to a higher budget and more energy demand (Newell
et al., 2021; van den Bergh, 2011; Sorrell et al., 2020).

At the individual and household level, energy behaviour
changes, including turning down the thermostat and reduc-
ing the demand for hot tap water (e.g. taking shorter show-
ers), are effective strategies (Roy et al., 2012; Creutzig et al.,
2016; Ivanova et al., 2020). These strategies are most ef-
fective when combined with policy support and shift and
improve measures. In many countries, regulation regarding
the energy performance of buildings and subsidies for en-
ergy saving measures are enablers of such behaviour change.
More specifically, digital technologies are key to better
matching renewable supply with demand to avoid curtail-
ments and grid congestion (load shifting and balancing) but
have not yet reached widespread diffusion. Digitalisation in
general (at the top-left in Fig. 3) can also play a key role in
avoiding unnecessary energy demand (Wilson et al., 2020).

Empirical studies show that informing people about the
energy conservation behaviours of their neighbours, com-
bined with the public labelling of energy conservation be-
haviour as desirable, can lead to significant reductions in en-
ergy consuming behaviour (Gockeritz et al., 2010; Allcott,
2011; Horne and Kennedy, 2017; Bonan et al., 2020). These
studies show that a relatively weak form of sanctioning (i.e.
showing approval and disapproval of particular behaviour by
using thumbs up or down or positive or negative smileys) al-
ready has a modest positive effect on energy savings. Peer
effects in social network structures can provide inhibiting or
supporting conditions for the diffusion of energy conserva-
tion practices, depending on the structure of the network and
the type of activity (Wolske et al., 2020).

Changes in the energy behaviour and lifestyle of indi-
viduals can make a large contribution to sustainability but
are only feasible when supported by changes in the broader
socio-technical system (Nisa et al., 2019; Niamir et al.,
2020b). This means that social tipping of energy consump-
tion by individuals, households or organisations is condi-
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Figure 2. Feedback loop in electrification of heating and cooling. The reinforcing feedback between cost reduction and increased adoption of
solar PV may trigger another reinforcing feedback of adoption of household battery and reduction in grid congestion, resulting in further solar
PV adoption. Furthermore, solar PV adoption supports demand for heat pumps, boosted by adequate efficiency and sufficiency measures.

tioned by a range of factors such as social and cultural
norms, ownership and control of resources, technology ac-
cessibility, infrastructure design and services availability, so-
cial network structures, organisational resources, knowledge
and awareness, and sociodemographic characteristics (Ameli
and Brandt, 2015; Niamir et al., 2020a; Steg et al., 2018). So-
cial and behavioural change is thus constrained by the exist-
ing socio-technical system and people’s daily lives and be-
haviour, or social practices (Matthews and Wynes, 2022).
Social practices approaches shine a light on the culturally
embedded routines that reproduce (but also potentially trans-
form) socio-technical energy systems from the bottom up.
Crucially, they also point to the differentiation of these prac-
tices across social groups (e.g. women versus men, upper
class versus working class) (Husu, 2022).

Avoid options reduce unnecessary energy consumption.
However, when avoiding energy use is undesirable from a
wellbeing perspective, then shifting the way this activity is
done (or finding an alternative means to the same goal) is key.
When the demand reductions stem from changes in norms or
behaviours with a sustainability motive, the risks of rebound
effects are lower. However, different attitudes make some
demand-side alternatives difficult to scale up in the popula-
tion (Geels, 2023). Often lacking are enabling conditions for
just and smooth change. For instance, urban infrastructure or
the built environment may prevent people from avoiding us-
ing private cars through alternatives like walking, cycling or
taking public transport.

While some demand-side behaviour changes are quite
swift, a key policy challenge is how to make the new and de-
sired behaviour “stick”. An example is the substantial energy
demand reduction in Europe during the winter of 2022/2023,
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resulting from concerns about high energy prices and the war
in Ukraine (IEA, 2023a). Similarly, but at a global system
level, in 2020, the world witnessed a reduction in global fos-
sil fuel emissions as a result of COVID-19 lockdowns across
the globe. However, emissions rebounded in 2021, reaching
levels comparable to those observed in 2019 (LeQuéré et al.,
2021; Friedlingstein et al., 2022). These observations rein-
force the idea that social tipping is better understood as tip-
ping dynamics rather than tipping points (Milkoreit et al.,
2018; Geels and Ayoub, 2023). This is not just because they
take some time to evolve but also because different reinforc-
ing processes are needed to provide momentum (Hughes,
1987) and to ensure that the change sticks or becomes dif-
ficult to reverse on the relevant timescales.

2.3 Sustainable lifestyles and social and political tipping
dynamics

Interestingly, pro-environmental behaviours may induce
other pro-environmental behaviours, so changes in behaviour
in mobility or food may spill over to energy behaviours
(Steg and Vlek, 2009; Steg, 2023). The adoption of house-
hold PV for environmental reasons may thus induce other
pro-environmental behaviours. When the new sustainable
lifestyle and behaviour becomes common and the norm starts
to shift, this also increases the political feasibility of strict
regulation. There is, for example, public support for mea-
sures like incentives towards renewable technology and a
ban on the least energy-efficient household appliances (see
Fig. 4).

The positive feedback loop mechanism of opinion ex-
change can increase awareness and promote more sustain-
able lifestyles. However, it can also have a negative ef-
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fect when contrarians get the majority in a given social
group, leading to the amplification and reinforcement of anti-
environmental beliefs. For this reason, avoiding opinion po-
larisation is crucial in climate-related issues to foster co-
hesion for effective government action (Badullovich, 2023;
Mayer and Smith, 2023). Citizens’ environmental conscious-
ness and the formation of their opinions directly affects ac-
tions that impact the local and global environment (Chung
et al., 2019; van den Bergh et al., 2019).

The presence of a group with strong anti-environmental
beliefs can discourage pro-environmental engagement and
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support for climate change initiatives. Opinion polarisation
makes it challenging to reach consensus and decreases public
support for environmental initiatives, posing a challenge for
policymakers (Maertens et al., 2020). To mitigate negative
feedbacks and harness the positive cascade effect of opin-
ion dynamics, some governments have implemented policies
to incentivise pro-environmental behaviours, while aware-
ness campaigns and education aim to correct misinformation
and provide accurate information (Charlier and Kirakozian,
2020; Baiardi, 2022). When opinions drive clique formation,
they can lead to concrete pro-environment actions, such as
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social movements and public support for climate change ini-
tiatives (Winkelmann et al., 2022).

Social acceptance and changes in norms and behaviours
may have large influence on both direct consumer demand
and policy support (Edelenbosch et al., 2018; Nemet, 2006).
Civil society engages with energy transitions in many ways:
from adopting energy efficient technology to joining energy
cooperatives and from environmental activism to resistance
against wind parks (Chilvers et al., 2021). These interactions
are driven by (changes in) perceptions, attitudes, motivations,
emotions, beliefs, values and norms (Clayton et al., 2015),
sometimes triggered by external events like the oil crisis or
nuclear accidents. Some of these factors also may influence
the willingness to adopt a certain technology (as in Edelen-
bosch et al., 2018).

There is extensive literature on the social acceptance of re-
newable energy infrastructure (Batel, 2020; Ellis and Ferraro,
2017; Wolsink, 2018). One of the most prominent conceptu-
alisations of social acceptance is the social acceptance tri-
angle of Wiistenhagen et al. (2007), comprising community,
market and socio-political acceptance. This draws attention
to the fact that community acceptance or local opposition to
projects can influence general public or political acceptance
and societal demand for renewable energy. From this per-
spective, demand is not simply the economic behaviour of
individuals or households but is a product of societal rela-
tions. One potential balancing feedback for renewables de-
ployment is project delays caused by local opposition, which
leads to pressure to streamline planning and reduce partici-
pation options, which in turn creates more opposition. This
dynamic is seen in many EU countries today.

Finally, policy feedbacks are well recognised in politi-
cal science literature, whereby policy not only stimulates
deployment but also creates legitimacy and new interests,
leading to increased lobbying and support for policy to sup-
port the new industries and further deployment (Hess, 2016;
Meckling et al., 2017; Meckling, 2019; Roberts et al., 2018;
Rosenbloom et al., 2019; Sewerin et al., 2020; Fesenfeld
et al., 2022). For example, Kelsey (2021) identifies “green
spirals” which resemble tipping dynamics for the reduced
use of CFCs for ozone protection. Policies engendered new
industrial interests who in turn support new policies. Kelsey
also identified that these spirals can transcend domestic pol-
itics and scale up to the international level. This is similar to
the notion of tipping cascades.

Key considerations for policymakers hoping to create tip-
ping dynamics in this way is the sequencing of policies
(Meckling et al., 2017). For the energy transition, similar
dynamics can potentially be found with the renewables in-
dustry. For instance, the German feed-in tariff for renew-
ables is frequently mentioned as an enabling condition for
this feedback (Otto et al., 2020; Nijsse et al., 2023). Fur-
ther, strong pro-environment policies may incentivise firms
towards more and R&D and innovation, thereby expanding
industrial sectors for low-carbon technologies. In this way,
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public opinion may also increase support and acceptance for
new low-carbon technologies, increasing pressure on poli-
cymakers to set goals and strategies for a more sustainable
society (Geels and Ayoub, 2023).

The political sphere can not only trigger social tipping but
can also tip itself into a new state, generating a tipping cas-
cade (Stadelmann-Steffen et al., 2021; Eder and Stadelmann-
Steffen, 2023). Indeed, the same applies to any group, organ-
isation or institution that is part of the socio-technical system.
For example, civil society could also be a key element in en-
ergy system tipping dynamics. Increasing attention is being
paid to “prosumerism”, which can be understood as a broad
movement towards a decentralised democratic energy model
(Campos and Marin-Gonzélez, 2020). These and other civil
society movements interact with the state, which in turn cre-
ates opportunities or barriers to different lines of action for
citizens or households, engendering balancing or reinforcing
policy feedbacks.

While research on policy feedbacks frequently targets its
findings towards policymakers, this knowledge can also be
used by civil society or interest coalitions to try to initi-
ate such feedback processes. Indeed, some research from
social movements theory identifies movement—policy feed-
backs or “opportunity/threat” spirals in which “demands lead
to concessions that encourage further demands, and so on”
(McAdam et al., 2001, p. 228; Biggs, 2003). Winkelmann
et al. (2022) discuss the relationship between the Fridays for
Future movement and European states in ways that could
align with this idea. Focusing specifically on energy, such
feedbacks could help to explain the recent boom of the en-
ergy cooperative movement in countries like the Netherlands,
for example.

2.4 Balancing feedbacks

In general, the energy transition requires a system-level
transformation of the energy system, which depends on
both phasing out fossil fuels and accelerating renewable en-
ergy provision. In the previous sections, we highlighted the
promise of positive social tipping dynamics in renewables
development, while recognising that this is inevitably an
incomplete picture without fully considering fossil phase-
out. Below we address some of the feedbacks (Fig. 5) that
strengthen the existing fossil-based energy system (see Eker
and Wilson, 2022, for a systematic overview).

First, sources of balancing feedback, lock-in and path de-
pendence of fossil fuel-based energy systems are energy in-
frastructures, technologies and institutions (Hughes, 1987;
Dangerman and Schellnhuber, 2013; Kohler et al., 2019).
These can directly hinder the decarbonisation of the energy
system through existing standards and resistance from in-
cumbents and vested interests. Further, renewable energy
generation sometimes faces curtailment, and the mismatch
of renewable supply with energy demand slows down the re-
placement of fossil fuels. Indirectly, the availability of cheap
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Figure 5. Balancing feedbacks for renewable energy adoption.

energy has stimulated demand for energy-intensive goods
and services. Similarly, the high return on fossil fuel in-
vestments and the assessment of renewables as risky make
it difficult to move capital from fossil to renewables (Pauw
et al.,, 2022). As an example, in the early 2000s, the UK
government provided initial capital grants to boost offshore
wind demonstration projects. This has, in turn, built confi-
dence among financial investors, easing access to resources
for project developers (i.e. lower interest rates) (Kern et al.,
2014; Geels and Ayoub, 2023), stimulating the overall oft-
shore sector.

Second, examples of barriers encountered by renewables
are challenges related to intermittency and the need for a flex-
ible and well-managed grid infrastructure to ensure a reliable
and stable energy supply. The increasing need to electrify
various end-user sectors (IRENA, 2023) adds further com-
plexity to the grid management challenge. For instance, the
electrification of transportation is experiencing rapid growth,
boosted by policy initiatives for the adoption of e-mobility.
Similarly, there is a strong policy focus on electrifying heat-
ing and cooling systems in residential areas and districts.
Moreover, the electrification of demand is not always viable,
and the energy transition may negatively impact individuals
with restricted financial resources (Sovacool et al., 2019). In
addition, many processes that reinforce fossil-fuel-based en-
ergy systems, ranging from subsidies to vested interests and
existing infrastructures, are still in place. Energy infrastruc-
tures are typically built for a lifespan of around 40 years, and
changing these infrastructures takes place on the timescale of
months to years. Once built, they contribute to stabilising the
system state and are a source of path dependence and lock-in.

Social dynamics can also create balancing feedbacks when
they mobilise opposition and a lack of societal support for
larger-scale solar and wind parks (Devine-Wright, 2007;
Klok et al., 2023; Kluskens et al., 2024; Windemer, 2023).
Therefore, cost-competitiveness is not a sufficient indicator
to predict support for technologies for which the main pub-
lic concerns are about spatial impacts, health and safety, and
questions of fairness. This shows that economic tipping dy-
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namics alone are not sufficient to realise rapid decarbonisa-
tion.

3 Tipping dynamics in energy communities

While there is thus potential for tipping dynamics in tech-
nology adoption, the balancing feedbacks regarding system
integration and social practices hamper the scale-up to tip-
ping cascades. In system dynamics terms, the dynamics re-
main restricted to low-level leverage points or feedback loops
(Meadows, 2008). This section explores energy communi-
ties as a social innovation which targets higher level lever-
age points such as system rules and goals at both micro or
meso (e.g. community) and macro levels (e.g. policy sup-
port). They do so by changing the institutional environment
in which individuals or other actors operate, which can lead
to a strengthening or weakening of balancing and reinforcing
feedbacks described above. They can also lead to the creation
or removal of certain feedbacks under new system condi-
tions. Energy communities can thus strengthen, weaken, add
or remove the feedbacks discussed in previous sections.

Many energy communities take the form of renewable
energy cooperatives. A renewable energy cooperative is a
bottom-up, legally registered collective of citizens that aims
to create social, environmental and/or economic benefits for
its members through energy-related activities (Déci et al.,
2015; Hicks and Ison, 2018; van Summeren et al., 2020).
Many cooperatives are local enterprises with diversified ac-
tivity portfolios (Reis et al., 2021). They create value for their
members via energy-related projects, ranging from aware-
ness raising to cooperative energy production (Oteman et al.,
2014). In the EU, the Clean Energy Package, adopted in
2019, aims for a central role for these cooperatives in decar-
bonising the energy system. More specifically, it advocates
energy cooperatives as a way to enable citizens to partic-
ipate in and benefit from the energy transition. Renewable
energy cooperatives have increased in scale, scope and num-
ber throughout European member states (Blasch et al., 2021;
REScoop.eu, 2020).

Energy communities often have social and sustainability
goals as a main objective, for example to reduce dependence
on the centralised energy infrastructure, while also taking
advantage of the possibility to produce, consume and sell
the energy produced back to the grid (Yildiz et al., 2015;
Bauwens et al., 2016, 2022). Other objectives include to
reduce energy poverty and to accelerate decarbonisation of
the energy system via the spread of renewable energy solu-
tions (Shapira et al., 2021). Typical characteristics of energy
communities are voluntary and open membership (van den
Berghe and Wieczorek, 2022), the “one member — one vote”
principle (Wierling et al., 2023), a high degree of commu-
nity ownership and governance, and fair value distribution
(Mourik et al., 2019). Activities of renewable energy co-
operatives include collective energy generation and selling,
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collective purchasing of renewable energy, consulting and
awareness raising (Gui and MacGill, 2018), and development
and ownership of energy projects (Wierling et al., 2023). In
addition, some cooperatives also offer (peer-to-peer) trading
of energy balancing and flexibility services (van Summeren
et al., 2020; Verkade and Hoffken, 2019).

People join an energy community for a variety of reasons,
including self-interest, but they may also join due to the so-
cial cohesion and sense of community (Albinsson and Per-
era, 2012). In order to maintain long-term stability, strong
motivation is often required by key project leaders. Shared
social norms, values, trust and collaboration among members
also contribute to this attempt (van der Schoor and Scholtens,
2015). This often creates challenges when communities grow
in size (Barnes et al., 2022). By increasing in size, an energy
community becomes too large to be smoothly organised and
managed, also leading to business models that deviate from
the original idea of polycentricity and equity (Blasch et al.,
2021; Anfinson et al., 2023).

Energy communities’ cooperative and legal structures of-
ten require that any profits are re-invested in the community,
further stimulating investment in clean energy technologies.
The electrification of residential districts can then also cre-
ate a positive feedback loop into the adoption of home stor-
age systems and other sustainable choices. Especially com-
munities that strive for energy autonomy or independence
from the grid reduce grid congestion, even if they do not ac-
tively offer flexibility to the grid (see reinforcing feedback
loop on the right in Fig. 6). Secondly, energy communities
are found to be more accepted and supported by local cit-
izens (Hogan et al., 2022; Jobert et al., 2007; Musall and
Kuik, 2011; Rogers et al., 2008; Strachan et al., 2015; Warren
and McFadyen, 2010), which can in turn influence broader
socio-political acceptance. While energy communities might
face equal pushback from incumbent utilities, this increased
community and socio-political acceptance might also buffer
against this.

Embracing community values and norms can also func-
tion as an external incentive for behaviour change and can
increase the adoption rate of sustainable practices (Smith
et al., 2020; Manfredo et al., 2017). The rise of community
energy within western Europe is an example of embedding
sustainable behaviour within the existing motivation mech-
anisms of individuals. While the existing fossil-fuel-based
centralised energy systems were aimed at pursuing energy
security (i.e. achieving affordable, available, acceptable and
accessible energy for all members of society Cherp and Jew-
ell, 2014), the technological innovation of affordable small-
scale technologies could suddenly fulfil the existing desires
and demands for democracy, autarky, justice and social cohe-
sion (Brown et al., 2020; van de Poel and Taebi, 2022). Once
new behaviour is adopted, the engagement in such energy
community practices can lead to a positive feedback loop be-
tween sustainable behaviour (Sloot et al., 2018) and the pri-
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reinforcing feedbacks for RE adoption. Blue arrows indicate new
mechanisms arising from the institutional context of renewable en-

ergy.

oritisation of ecosystem system conservation-related values
(Radtke et al., 2022).

Together with socio-environmental motivations, the eco-
nomic component is among the main factors increasing the
willingness to participate in an energy community (Heun-
inckx et al., 2022). For instance, a home storage system may
not be affordable for some households, but sharing practices
in energy communities can enhance affordability and access
to essential goods and services (Watson, 2004). The demand
for privately owned goods leads to inefficient consumption
and excessive production (Baudrillard, 2016; Frenken and
Schor, 2017), contradicting the United Nations’ Sustain-
able Development Goal number 12, which emphasises do-
ing more with fewer resources. Instead, participation into
an energy community can help transitioning from individ-
ual to shared ownership and consumption of goods, thereby
enabling sustainable consumption while also increasing em-
powerment, reciprocity and energy democracy (Pasimeni,
2021; Dudka et al., 2023; Ivanova and Biichs, 2023). More-
over, studies have demonstrated that shared ownership de-
creases the demand for individually owned goods, creating
a positive feedback loop where changes in demand (but not
reduction) prompt corresponding adjustments in the supply
side (Pasimeni and Ciarli, 2023). For instance, when partic-
ipation in an energy community motivates people to share
vehicles this will result in using fewer cars, reducing pro-
duction and the overall environmental impact (Nematchoua
et al., 2021; Belmar et al., 2023).

To summarise, energy communities are in line with sus-
tainable goals and targets, while also addressing economic
considerations for households facing financial constraints.
Moreover, as energy communities have the potential to ex-
pand into providing other sustainable goods and services,
they align with the sufficiency logic (Thomas et al., 2019)
and polycentric systems of governance (Ostrom, 2010).
These communities, especially those aiming for complete
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autonomy from centralised energy systems, operate differ-
ently from traditional market-based organisations. Commu-
nities operate outside the dynamics driven solely by price
concerns and instead prioritise energy independence, social
cohesion and community wellbeing (Hasanov and Zuidema,
2018). This approach may lead to more sustainable lifestyles
and an overall reduction in fossil fuel consumption, although
it remains uncertain whether energy communities will also
result in a decrease in overall energy consumption.

4 Discussion and conclusions

The tipping dynamics observed in the wind and solar
power sectors have the potential to trigger cascading ef-
fects throughout energy demand sectors, including house-
hold energy consumption. This transformative process is
likely to start with shift actions, such as the adoption of
household scale batteries and heat pumps, thereby enhanc-
ing less energy-intensive lifestyles. These actions will mod-
ify energy demand and improve energy service efficiency,
which are instrumental in accelerating the decarbonisation of
our energy system. Nevertheless, a strong regulatory frame-
work is crucial to the speed of this transition as it can in-
centivise reductions in energy demand and set minimum ef-
ficiency standards for buildings and appliances. By doing so,
regulation becomes a key enabler of positive tipping points
in the adoption of novel technologies and behaviours, facili-
tating the shift to more sustainable practices.

Although spillover effects are observed, as adoption of en-
vironmentally friendly behaviours seems to increase, a sub-
stantial knowledge gap exists. Specifically, it is important to
understand the extent of these spillovers and the key leverage
points. Research efforts must be dedicated to shedding light
on the connections between individual actions and systemic
change. Moreover, behavioural feedback loops, once identi-
fied, require policy support to “make them stick”. Strength-
ening the connection between individual choices and institu-
tional reforms requires effort to effectively bridge these two
levels of influence.

In this complex landscape, energy communities emerge
as an attractive and rapidly growing niche. Communities
are likely to boost widespread adoption of renewable en-
ergy technologies and have fundamentally different goals
and operating principles compared to incumbent actors that
are locked into the centralised energy system. Energy com-
munities are therefore high-impact leverage points, capable
of catalysing significant changes in the energy landscape.

By looking deeper into the dynamics of renewable energy
adoption and behavioural shifts, it becomes clear that bridg-
ing the gap between tipping dynamics and institutional re-
forms is pivotal in unlocking the full potential of sustainable
energy systems. This can be addressed at several scales. For
example, the relationship between community energy and
behavioural tipping dynamics and spillovers is one potential
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area of future investigation. Furthermore, we can also ask
how community energy as a social innovation can cascade
upwards and tip higher-level or coupled systems.
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