Articles | Volume 15, issue 6
https://doi.org/10.5194/esd-15-1591-2024
https://doi.org/10.5194/esd-15-1591-2024
Research article
 | 
18 Dec 2024
Research article |  | 18 Dec 2024

AERA-MIP: emission pathways, remaining budgets, and carbon cycle dynamics compatible with 1.5 and 2 °C global warming stabilization

Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-488', Andrew MacDougall, 13 Mar 2024
  • RC2: 'Comment on egusphere-2024-488', Ric Williams, 27 Mar 2024
  • RC3: 'Comment on egusphere-2024-488', Charles Koven, 30 Mar 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (27 Jun 2024) by Roland Séférian
AR by Yona Silvy on behalf of the Authors (08 Oct 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (29 Oct 2024) by Roland Séférian
AR by Yona Silvy on behalf of the Authors (29 Oct 2024)
Download
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Altmetrics
Final-revised paper
Preprint