Articles | Volume 15, issue 1
https://doi.org/10.5194/esd-15-155-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-15-155-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric teleconnections between the Arctic and the Baltic Sea region as simulated by CESM1-LE
Erko Jakobson
CORRESPONDING AUTHOR
Tartu Observatory, University of Tartu, Tartu, Estonia
Liisi Jakobson
Tartu Observatory, University of Tartu, Tartu, Estonia
Related authors
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
Short summary
In 2017, new measurements of UV radiation started in Marambio, Antarctica, by the Finnish Meteorological Institute in collaboration with the Argentinian Servicio Meteorológico Nacional. The paper presents the results of UV irradiance measurements from March 2017 to March 2019, and it
compares them with those from 2000–2008 and also with UV measurements at other Antarctic stations. In 2017/2018, below average UV radiation levels were recorded due to favourable ozone and cloud conditions.
Liisi Jakobson, Erko Jakobson, Piia Post, and Jaak Jaagus
Earth Syst. Dynam., 8, 1019–1030, https://doi.org/10.5194/esd-8-1019-2017, https://doi.org/10.5194/esd-8-1019-2017, 2017
Short summary
Short summary
Relationships between meteorological parameters between Arctic and the Baltic Sea regions were investigated using NCEP-CFSR reanalysis for 1979–2015. The Greenland and Baffin Bay regions climate have the most significant teleconnections with the Baltic Sea region temperature, specific humidity and wind speed. These relationships can be explained by the AO/NAO index variability only in winter. The results are valuable for selecting Arctic regions with the largest effect on the Baltic Sea region.
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
Short summary
In 2017, new measurements of UV radiation started in Marambio, Antarctica, by the Finnish Meteorological Institute in collaboration with the Argentinian Servicio Meteorológico Nacional. The paper presents the results of UV irradiance measurements from March 2017 to March 2019, and it
compares them with those from 2000–2008 and also with UV measurements at other Antarctic stations. In 2017/2018, below average UV radiation levels were recorded due to favourable ozone and cloud conditions.
Liisi Jakobson, Erko Jakobson, Piia Post, and Jaak Jaagus
Earth Syst. Dynam., 8, 1019–1030, https://doi.org/10.5194/esd-8-1019-2017, https://doi.org/10.5194/esd-8-1019-2017, 2017
Short summary
Short summary
Relationships between meteorological parameters between Arctic and the Baltic Sea regions were investigated using NCEP-CFSR reanalysis for 1979–2015. The Greenland and Baffin Bay regions climate have the most significant teleconnections with the Baltic Sea region temperature, specific humidity and wind speed. These relationships can be explained by the AO/NAO index variability only in winter. The results are valuable for selecting Arctic regions with the largest effect on the Baltic Sea region.
L. Jakobson, T. Vihma, E. Jakobson, T. Palo, A. Männik, and J. Jaagus
Atmos. Chem. Phys., 13, 11089–11099, https://doi.org/10.5194/acp-13-11089-2013, https://doi.org/10.5194/acp-13-11089-2013, 2013
Cited articles
Agnew, T.: Simultaneous winter sea-ice and atmospheric circulation anomaly patterns, Atmos.-Ocean, 31, 259–280, https://doi.org/10.1080/07055900.1993.9649471, 1993.
Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., Miller, J. S., and Scott, J. D.: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter, J. Climate, 17, 890–905, https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2, 2004.
BACC II Author Team: Second Assessment of Climate Change for the Baltic Sea Basin, Springer Open, 501 pp., https://doi.org/10.1007/978-3-319-16006-1, 2015.
Barnes, E. A. and Screen, J.: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev. Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015.
Barnhart, K. R., Miller, C. R., Overeem, I., and Kay, J. E.: Mapping the future expansion of Arctic open water, Nat. Clim. Change, 6, 280–285, https://doi.org/10.1038/nclimate2848, 2016.
Bintanja, R. and Krikken, F.: Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing, Sci. Rep., 6, 38287, https://doi.org/10.1038/srep38287, 2016.
Bintanja, R. and van der Linden, E. C.: The changing seasonal climate in the Arctic, Sci. Rep., 3, srep01556, https://doi.org/10.1038/srep01556, 2013.
Boeke, R. C. and Taylor, P. C.: Seasonal Energy Exchange in Sea Ice Retreat Regions Contributes to Differences in Projected Arctic Warming, Nat. Commun, 9, 5017, https://doi.org/10.1038/s41467-018-07061-9, 2018.
Cassano, E. N., Cassano, J. J., Higgins, M. E., and Serreze, M. C.: Atmospheric impacts of an Arctic sea ice minimum as seen in the Community Atmosphere Model, Int. J. Climatol., 34, 766–779, https://doi.org/10.1002/joc.3723, 2013.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010.
Chen, H. W., Zhang, Q., Körnich, H., and Chen, D.: A robust mode of climate variability in the Arctic: The Barents Oscillation, Geophys. Res. Lett., 40, 2856–2861, https://doi.org/10.1002/grl.50551, 2013.
Christensen, O. B., Kjellström, E., Dieterich, C., Gröger, M., and Meier, H. E. M.: Atmospheric regional climate projections for the Baltic Sea region until 2100, Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, 2022.
Clark, J., Shenoy, V., Feldstein, S., Lee, S., and Goss, M.: The Role of Horizontal Temperature Advection in Arctic Amplification, J. Climate, 34, 8, 2957–2976, https://doi.org/10.1175/JCLI-D-19-0937.1, 2021.
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T., Blackport, R., Bhatt, U. S., Chen, H., Coumou, D., Feldstein, S., Handorf, D., Hell, M., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H., Maslowski, W., Rigor, I., Routson, C., Screen, J., Semmler, T., Singh, D., Smith, D., Stroeve, J., Taylor, PC., Vihma, T., Wang, M., Wang, S., Wu, Y., Wendisch, M., and Yoon J.: Arctic change and possible influence on mid-latitude climate and weather: A US CLIVAR White Paper, US CLIVAR Rep., https://doi.org/10.5065/D6TH8KGW, 2018.
Coumou, D., Di Capua, G., Vavrus, S., Wang, L., and Wang, S.: The influence of Arctic amplification on mid-latitude summer circulation, Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8, 2018.
Dai, A. and Song, M.: Little influence of Arctic amplification on mid-latitude climate, Nat. Clim. Change, 10, 231–237, https://doi.org/10.1038/s41558-020-0694-3, 2020.
Dai, A. and Jenkins, M.: Relationships among Arctic warming, sea-ice loss, stability, lapse rate feedback, and Arctic amplification, Clim. Dynam., 61, 5217–5232, https://doi.org/10.1007/s00382-023-06848-x, 2023.
Dai, A., Luo, D., Song, M., and Liu, J.: Arctic amplification is caused by sea-ice loss under increasing CO2, Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9, 2019.
Deng, K., Yang, S., Ting, M., Lin, A., and Wang, Z.: An intensified mode of variability modulating the summer heatwaves in eastern Europe and Northern China, Geophys. Res. Lett., 45, 11, 361–369, https://doi.org/10.1029/2018GL079836, 2018.
Deser, C., Walsh, J.E., and Timlin, M.S.: Arctic Sea Ice Variability in the Context of Recent Atmospheric Circulation Trends, J. Climate, 13, 3, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2, 2000.
Deser, C., Hurrell, J. W., and Phillips, A. S.: The role of the North Atlantic Oscillation in European climate projections, Clim. Dynam., 49, 3141–3157, https://doi.org/10.1007/s00382-016-3502-z, 2017.
Duan, L., Cao, L., and Caldeira, K.: Estimating Contributions of Sea Ice and Land Snow to Climate Feedback, J. Geophys. Res.-Atmos., 124, 199–208, https://doi.org/10.1029/2018JD029093, 2019.
Francis, J. A. and Hunter, E.: New insight into the disappearing Arctic sea ice. EOS, 87, 509–511, https://doi.org/10.1029/2006EO460001, 2006.
Francis, J. A. and Vavrus, S. J.: Evidence for a wavier jet stream in response to rapid Arctic warming, Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005, 2015.
Halkka, A.: Changing climate and the Baltic region biota, Doctoral dissertation, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland, 52 pp., http://urn.fi/URN:ISBN:978-951-51-6021-8 (last access: 16 February 2022), 2020.
Hildebrandsson, H. H.: Quelques recherches sur les centres d'action de l'atmosphere, Kungl, Svenska vetenskapsakademiens handlingar, 51, 3–16, 1914.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A Framework for Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
IPCC 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in Press, https://doi.org/10.1017/9781009157896, 2021.
Jahn, A.: Reduced probability of ice-free summers for 1.5 ∘C compared to 2 ∘C warming, Nat. Clim. Change, 8, 409–413, https://doi.org/10.1038/s41558-018-0127-8, 2018.
Jahn, A., Kay, J. E., Holland, M. M., and Hall, D. M.: How predictable is the timing of a summer ice-free Arctic?, Geophys. Res. Lett., 43, 9113–9120, https://doi.org/10.1002/2016GL070067, 2016.
Jakobson, L., Jakobson, E., Post, P., and Jaagus, J.: Atmospheric teleconnections between the Arctic and the eastern Baltic Sea regions, Earth Syst. Dynam., 8, 1019–1030, https://doi.org/10.5194/esd-8-1019-2017, 2017.
Jakobson, L., Vihma, T., and Jakobson, E.: Relationships between Sea Ice Concentration and Wind Speed over the Arctic Ocean during 1979–2015, J. Climate, 32, 22, https://doi.org/10.1175/JCLI-D-19-0271.1, 2019.
Jenkins, M. and Dai, A.: The Impact of Sea-Ice Loss on Arctic Climate Feedbacks and Their Role for Arctic Amplification, Geophys. Res. Lett., 48, 15, https://doi.org/10.1029/2021GL094599, 2021.
Jung, T., Doblas-Reyes, F., Goessling, H., Guemas, V., Bitz, C., Buontempo, C., Caballero, R., Jakobson, E., Jungclaus, J., Karcher, M., Koenigk, T., Matei, D., Overland, J., Spengler, T., and Yang, S.: Polar lower-latitude linkages and their role in weather and climate prediction, B. Am. Meteorol. Soc., 96, 197–200, https://doi.org/10.1175/BAMS-D-15-00121.1, 2015.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. B. Amer. Meteor. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Kug, J. S., Jeong, J. H., Jang, Y. S., Kim, B. M., Folland, C. K., Min, S. K., and Son, S. W.: Two distinct influences of Arctic warming on cold winters over North America and East Asia, Nat. Geosci., 8, 759–762, https://doi.org/10.1038/ngeo2517, 2015.
Labe, Z., Magnusdottir, G., and Stern, H.: Variability of Arctic sea ice thickness using PIOMAS and the CESM Large Ensemble, J. Climate, 31, 3233–3247, https://doi.org/10.1175/JCLI-D-17-0436.1, 2018.
Laîné, A., Yoshimori, M., and Abe-Ouchi, A.: Surface Arctic amplification factors in CMIP5 models: land and oceanic surfaces and seasonality, J. Climate, 29, 3297–3316, https://doi.org/10.1175/JCLI-D-15-0497.1, 2016.
Lee J. and Cai, M.: Seasonality of polar surface warming amplification in climate simulations, Geophys. Res. Lett., 36, L16704, https://doi.org/10.1029/2009GL040133, 2009.
Lee, S., Gong, T., Feldstein, S. B., Screen, J. A., and Simmonds, I.: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes, Geophys. Res. Lett., 44, 654–661, https://doi.org/10.1002/2017GL075375, 2017.
Lee, S. H., Charlton-Perez, A. J., Furtado, J. C., and Woolnough, S. J.: Abrupt stratospheric vortex weakening associated with North Atlantic anticyclonic wave breaking, J. Geophys. Res.-Atmos., 124, 8563–8575, https://doi.org/10.1029/2019JD030940, 2019.
Luo, D., Y. Xiao, Y., Diao, Y., Dai, A., Franzke, C., and Simmonds, I.: Impact of Ural Blocking on winter Warm Arctic–Cold Eurasian anomalies, Part II: The link to the North Atlantic Oscillation, J. Climate, 29, 3949–3971, https://doi.org/10.1175/JCLI-D-15-0612.1, 2016.
Luo, D., Yao, Y., Dai, A., Simmonds, I., and Zhong, L.: Increased quasi-stationarity and persistence of winter Ural Blocking and Eurasian extreme cold events in response to Arctic warming, Part II: A theoretical explanation, J. Climate, 30, 3569–3587, https://doi.org/10.1175/JCLI-D-16-0262.1, 2017.
Luo, D., Chen, X., Overland, J., Simmonds, I., Wu, Y., and Zhang, P.: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes, J. Climate, 32, 4235–4261, https://doi.org/10.1175/JCLI-D-18-0449.1, 2019.
Martius, O., Polvani, L. M., and Davies, H. C.: Blocking precursors to stratospheric sudden warming events, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL038776, 2009.
Massonnet, F., Vancoppenolle, M., Goosse, H., Docquier, D., Fifechet, T., and Blanchard-Wrigglesworth, E.: Arctic sea-ice change tied to its mean state through thermodynamic processes, Nat. Clim. Change, 8, 599–603, https://doi.org/10.1038/s41558-018-0204-z, 2018.
Meleshko, V. P., Pavlova, T., Bobylev, L. P., and Golubkin, P.: Current and Projected Sea Ice in the Arctic in the Twenty-First Century, in: Sea Ice in the Arctic: Past, Present and Future, Springer Polar Sciences, edited by: Johannessen, O. M., Bobylev, L. P., Shalina, E. V., Sandven, S., Springer International Publishing, Cham, 399–463, https://doi.org/10.1007/978-3-030-21301-5_10, 2020.
Nakamura, T. and Sato, T.: A possible linkage of Eurasian heat wave and East Asian heavy rainfall in Relation to the Rapid Arctic warming, Environ. Res., 209, 112881, https://doi.org/10.1016/j.envres.2022.112881, 2022.
Olonscheck, D., Mauritsen, T., and Notz, D.: Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations, Nat. Geosci., 12, 430–434, https://doi.org/10.1038/s41561-019-0363-1, 2019.
Outten, S. and Esau, I.: A link between Arctic sea ice and recent cooling trends over Eurasia, Clim. Change, 110, 1069–1075, https://doi.org/10.1007/s10584-011-0334-z, 2012.
Overland, J. E., Francis, J., Hall, R., Hanna, E., Kim, S. J., and Vihma, T.: The melting Arctic and mid-latitude weather patterns: Are they connected?, J. Climate, 28, 7917–7932, https://doi.org/10.1175/JCLI-D-14-00822.1, 2015.
Overland, J. E., Hanna, E., Hanssen-Bauer, I., Kim, S.-J., Walsh, J. E., Wang, M., Bhatt, U. S., and Thoman, R. L.: Surface air temperature, (in Arctic Report Card 2018), https://www.arctic.noaa.gov/Report-Card (last access: 21 July 2023), 2018.
Overland, J. E., Ballinger, T. J., Cohen, J., Francis, J. A., Hanna, E., Jaiser, R., Kim, B.-M., Kim, S.-J., Ukita, J., Vihma, T., Wang, M., and Zhang, X.: How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events?, Environ Res. Lett., 16, 043002, https://doi.org/10.1088/1748-9326/abdb5d, 2021.
Peings, Y.: Ural Blocking as a Driver of Early-Winter Stratospheric Warming, Geophys. Res. Lett., 46, 5460–5468, https://doi.org/10.1029/2019GL082097, 2019.
Peings, Y., Davini, P., and Magnusdottir, G.: Impact of Ural Blocking on Early Winter Climate Variability Under Different Barents-Kara Sea Ice Conditions, J. Geophys. Res.-Atmos., 128, e2022JD036994, https://doi.org/10.1029/2022JD036994, 2023.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184, https://doi.org/10.1038/ngeo2071, 2014.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Rondeau-Genesse, G. and Braun, M.: Impact of internal variability on climate change for the upcoming decades: analysis of the CanESM2-LE and CESM-LE large ensembles, Clim. Change, 156, 299–314, https://doi.org/10.1007/s10584-019-02550-2, 2019.
Rudeva, I. and Simmonds, I.: Midlatitude winter extreme temperature events and connections with anomalies in the Arctic and tropics, J. Climate, 34, 3733–3749, https://doi.org/10.1175/JCLI-D-20-0371.1, 2021.
Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., and Wasmund, N.: Natural hazards and extreme events in the Baltic Sea region, Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, 2022.
Schell, I. I.: Interrelations of Arctic ice with the atmosphere and the ocean in the North Atlantic-Arctic and adjacent areas, J. Atmos. Sci., 13, 1, https://doi.org/10.1175/1520-0469(1956)013< 0046:IOAIWT>2.0.CO;2, 1956.
Saleh, A. K., Arashi, M., and Kibria Golam, B. M.: Theory of Ridge Regression Estimation with Applications, New York: John Wiley & Sons, ISBN 978-1-118-64461-4, 2019.
Sang, X., Yang, X. Q., Tao, L., Fang, J., and Sun, X.: Decadal changes of wintertime poleward heat and moisture transport associated with the amplified Arctic warming, Clim. Dynam., 58, 137–159, https://doi.org/10.1007/s00382-021-05894-7, 2022.
Screen, J. A. and Simmonds, I.: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification, Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136, 2010.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Simmonds, I. and Li, M.: Trends and variability in polar sea ice, global atmospheric circulations and baroclinicity, Ann. NY Acad. Sci., 1504, 167–186, https://doi.org/10.1111/nyas.14673, 2021.
Smith, A. and Jahn, A.: Definition differences and internal variability affect the simulated Arctic sea ice melt season, The Cryosphere, 13, 1–20, https://doi.org/10.5194/tc-13-1-2019, 2019.
Spielhagen, R. F., Werner, K., Sørensen, S. A., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T. M., and Hald, M.: Enhanced modern heat transfer to the Arctic by warm Atlantic water, Science, 331, 450–453, https://doi.org/10.1126/science.1197397, 2011.
Statnaia, I. A., Karpechko, A. Y., and Järvinen, H. J.: Mechanisms and predictability of sudden stratospheric warming in winter 2018, Weather Clim. Dynam., 1, 657–674, https://doi.org/10.5194/wcd-1-657-2020, 2020.
Sun, L., Perlwitz, J., and Hoerling, M.: What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures?, Geophys. Res. Lett., 43, 5345–5352, https://doi.org/10.1002/2016gl069024, 2016.
Sun, L., Alexander, M. A., and Deser, C.: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change, J. Climate, 31, 7823–7843, https://doi.org/10.1175/JCLI-D-18-0134.1, 2018.
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., and Jahn, A.: Influence of internal variability on Arctic sea-ice trends, Nat. Climate Change, 5, 86–89, https://doi.org/10.1038/nclimate2483, 2015.
Taylor, P., Boeke, R., Boisvert, L., Feldl, N., Henry, M., Huang, Y., Langen, P., Liu, W., Pithan, F., Sejas, S., and Tan, I.: Process Drivers, Inter-Model Spread, and the Path Forward: A Review of Amplified Arctic Warming, Front. Earth Sci., 9, 1–29, https://doi.org/10.3389/feart.2021.758361, 2022.
Taylor, P. C., Kato, S., Xu, K.-M., and Cai, M.: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res.-Atmos., 120, 12656–12678, https://doi.org/10.1002/2015JD023520, 2015.
Taylor, P. C., Cai, M., Hu, A., Meehl, J., Washington, W., and Zhang, G. J.: A Decomposition of Feedback Contributions to Polar Warming Amplification, J. Climate, 26, 7023–7043, https://doi.org/10.1175/JCLI-D-12-00696.1, 2013.
Vavrus, S.: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17, 603–615, https://doi.org/10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2, 2004.
Vavrus, S. J. and Alkama, R.: Future trends of arctic surface wind speeds and their relationship with sea ice in CMIP5 climate model simulations, Clim. Dynam., 59, 1833–1848, https://doi.org/10.1007/s00382-021-06071-6, 2022.
Vihma, T.: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review, Surv. Geophys., 35, 1175–1214, https://doi.org/10.1007/s10712-014-9284-0, 2014.
Vihma, T., Graversen, R., Chen, L., Handorf, D., Skific, N., Francis, JA., Tyrrell, N., Hall, R., Hanna, E., uotila, P., Dethloff, K., Karpechko, AY., Björnsson, H., and Overland, JE.: Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming, J. Climatol., 40, 509–529, https://doi.org/10.1002/joc.6225, 2019.
Viru, B. and Jaagus, J.: Spatio-temporal variability and seasonal dynamics of snow cover regime in Estonia, Theor. Appl. Climatol., 139, 759–771, https://doi.org/10.1007/s00704-019-03013-5, 2020.
Wiese, W.: Polareis und atmosphärische Schwankungen, Geograf. Ann., 6, 273–299, 1924.
Yang, S., Wen, X., and Gao, M.: Relation of Mid-High-Latitude Eurasian ISO to Ural Blocking Frequency and Their Co-Effect on Extreme Hot Events during Boreal Summer, Atmosphere, 13, 1–15, https://doi.org/10.3390/atmos13122041, 2022.
Yao, Y., Luo, D., Dai, A., and Simmonds, I.: Increased quasi stationarity and persistence of Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses, J. Climate, 30, 3549–3568, https://doi.org/10.1175/JCLI-D-16-0261.1, 2017.
Yoshimori, M., Watanabe, M., Abe-Ouchi, A., Shiogama, H., and Ogura, T.: Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM, Clim. Dynam., 42, 1613–1630, https://doi.org/10.1007/s00382-013-1875-9, 2014.
Zhuo, W., Yao, Y., Luo, D., Simmonds, I., and Huang, F.: The key atmospheric drivers linking regional Arctic amplification with East Asian cold extremes, Atmos. Res., 283, 106557, https://doi.org/10.1016/j.atmosres.2022.106557, 2023.
Short summary
The Baltic Sea region climate has strong teleconnections with the Arctic climate; the strongest connections are with Svalbard and Greenland. The majority of teleconnections can be explained by the North Atlantic Oscillation and Arctic Oscillation. During ongoing climate change, the teleconnection patterns did not show remarkable developments by the end of the 21st century. The whole Arctic's previous month's climate data determine less than 9 % of the Baltic Sea region's seasonal mean.
The Baltic Sea region climate has strong teleconnections with the Arctic climate; the strongest...
Altmetrics
Final-revised paper
Preprint