Articles | Volume 15, issue 1
https://doi.org/10.5194/esd-15-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-15-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extremely warm European summers preceded by sub-decadal North Atlantic ocean heat accumulation
Lara Wallberg
CORRESPONDING AUTHOR
Max Planck Institute for Meteorology, Hamburg, Germany
International Max Planck Research School on Earth System Modelling (IMPRS-ESM), Hamburg, Germany
Laura Suarez-Gutierrez
Max Planck Institute for Meteorology, Hamburg, Germany
Institute of Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Institut Pierre-Simon Laplace, CNRS, Paris, France
Daniela Matei
Max Planck Institute for Meteorology, Hamburg, Germany
Wolfgang A. Müller
Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
No articles found.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
EGUsphere, https://doi.org/10.5194/egusphere-2024-2079, https://doi.org/10.5194/egusphere-2024-2079, 2024
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere, and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Guillaume Gastineau, Claude Frankignoul, Yongqi Gao, Yu-Chiao Liang, Young-Oh Kwon, Annalisa Cherchi, Rohit Ghosh, Elisa Manzini, Daniela Matei, Jennifer Mecking, Lingling Suo, Tian Tian, Shuting Yang, and Ying Zhang
The Cryosphere, 17, 2157–2184, https://doi.org/10.5194/tc-17-2157-2023, https://doi.org/10.5194/tc-17-2157-2023, 2023
Short summary
Short summary
Snow cover variability is important for many human activities. This study aims to understand the main drivers of snow cover in observations and models in order to better understand it and guide the improvement of climate models and forecasting systems. Analyses reveal a dominant role for sea surface temperature in the Pacific. Winter snow cover is also found to have important two-way interactions with the troposphere and stratosphere. No robust influence of the sea ice concentration is found.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich
Earth Syst. Dynam., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019, https://doi.org/10.5194/esd-10-901-2019, 2019
Short summary
Short summary
Decadal climate predictions are valuable to society as they allow us to estimate climate conditions several years in advance. We analyze the latest version of the German MiKlip prediction system (https://www.fona-miklip.de) and assess the effect of the model resolution on the skill of the system. The increase in the resolution of the system reduces the bias and significantly improves the forecast skill for North Atlantic extratropical winter dynamics for lead times of two to five winters.
Doug M. Smith, James A. Screen, Clara Deser, Judah Cohen, John C. Fyfe, Javier García-Serrano, Thomas Jung, Vladimir Kattsov, Daniela Matei, Rym Msadek, Yannick Peings, Michael Sigmond, Jinro Ukita, Jin-Ho Yoon, and Xiangdong Zhang
Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, https://doi.org/10.5194/gmd-12-1139-2019, 2019
Short summary
Short summary
The Polar Amplification Model Intercomparison Project (PAMIP) is an endorsed contribution to the sixth Coupled Model Intercomparison Project (CMIP6). It will investigate the causes and global consequences of polar amplification through coordinated multi-model numerical experiments. This paper documents the experimental protocol.
Mark Reyers, Hendrik Feldmann, Sebastian Mieruch, Joaquim G. Pinto, Marianne Uhlig, Bodo Ahrens, Barbara Früh, Kameswarrao Modali, Natalie Laube, Julia Moemken, Wolfgang Müller, Gerd Schädler, and Christoph Kottmeier
Earth Syst. Dynam., 10, 171–187, https://doi.org/10.5194/esd-10-171-2019, https://doi.org/10.5194/esd-10-171-2019, 2019
Short summary
Short summary
In this study, the regional MiKlip decadal prediction system is evaluated. This system has been established to deliver highly resolved forecasts for the timescale of 1 to 10 years for Europe. Evidence of the general potential for regional decadal predictability for the variables temperature, precipitation, and wind speed is provided, but the performance of the prediction system depends on region, variable, and system generation.
Alexander Pasternack, Jonas Bhend, Mark A. Liniger, Henning W. Rust, Wolfgang A. Müller, and Uwe Ulbrich
Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018, https://doi.org/10.5194/gmd-11-351-2018, 2018
Short summary
Short summary
We propose a decadal forecast recalibration strategy (DeFoReSt) which simultaneously adjusts unconditional and conditional bias, as well as the ensemble spread while considering the typical setting of decadal predictions, i.e., model drift and a climate trend. We apply DeFoReSt to decadal toy model data and surface temperature forecasts from the MiKlip system and find consistent improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.
Matthias Fischer, Daniela I. V. Domeisen, Wolfgang A. Müller, and Johanna Baehr
Earth Syst. Dynam., 8, 129–146, https://doi.org/10.5194/esd-8-129-2017, https://doi.org/10.5194/esd-8-129-2017, 2017
Short summary
Short summary
In a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM), we find that a decline in the Atlantic Ocean meridional heat transport (OHT) is accompanied by a change in the seasonal cycle of the total OHT and its components. We found a northward shift of 5° and latitude-dependent shifts between 1 and 6 months in the seasonal cycle that are mainly associated with changes in the meridional velocity field rather than the temperature field.
George J. Boer, Douglas M. Smith, Christophe Cassou, Francisco Doblas-Reyes, Gokhan Danabasoglu, Ben Kirtman, Yochanan Kushnir, Masahide Kimoto, Gerald A. Meehl, Rym Msadek, Wolfgang A. Mueller, Karl E. Taylor, Francis Zwiers, Michel Rixen, Yohan Ruprich-Robert, and Rosie Eade
Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, https://doi.org/10.5194/gmd-9-3751-2016, 2016
Short summary
Short summary
The Decadal Climate Prediction Project (DCPP) investigates our ability to skilfully predict climate variations from a year to a decade ahead by means of a series of retrospective forecasts. Quasi-real-time forecasts are also produced for potential users. In addition, the DCPP investigates how perturbations such as volcanoes affect forecasts and, more broadly, what new information can be learned about the mechanisms governing climate variations by means of case studies of past climate behaviour.
Jonathan J. Day, Steffen Tietsche, Mat Collins, Helge F. Goessling, Virginie Guemas, Anabelle Guillory, William J. Hurlin, Masayoshi Ishii, Sarah P. E. Keeley, Daniela Matei, Rym Msadek, Michael Sigmond, Hiroaki Tatebe, and Ed Hawkins
Geosci. Model Dev., 9, 2255–2270, https://doi.org/10.5194/gmd-9-2255-2016, https://doi.org/10.5194/gmd-9-2255-2016, 2016
Short summary
Short summary
Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, J. Ba, Y. Gao, O. H. Otterå, W. Park, and S. Lorenz
Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, https://doi.org/10.5194/os-10-227-2014, 2014
Related subject area
Topics: Oceans | Interactions: Ocean/atmosphere interactions | Methods: Earth system and climate modeling
Generalized stability landscape of the Atlantic meridional overturning circulation
Dakar Niño under global warming investigated by a high-resolution regionally coupled model
Multi-centennial evolution of the climate response and deep-ocean heat uptake in a set of abrupt stabilization scenarios with EC-Earth3
Diagnosing the causes of AMOC slowdown in a coupled model: a cautionary tale
Matteo Willeit and Andrey Ganopolski
Earth Syst. Dynam., 15, 1417–1434, https://doi.org/10.5194/esd-15-1417-2024, https://doi.org/10.5194/esd-15-1417-2024, 2024
Short summary
Short summary
Using a fast Earth system model we trace the stability landscape of the Atlantic meridional overturning circulation in the combined freshwater forcing–atmospheric CO2 space. We find four different Atlantic meridional overturning circulation states that are stable under different conditions and a generally increasing equilibrium Atlantic meridional overturning circulation strength with increasing CO2 concentrations.
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Federico Fabiano, Paolo Davini, Virna L. Meccia, Giuseppe Zappa, Alessio Bellucci, Valerio Lembo, Katinka Bellomo, and Susanna Corti
Earth Syst. Dynam., 15, 527–546, https://doi.org/10.5194/esd-15-527-2024, https://doi.org/10.5194/esd-15-527-2024, 2024
Short summary
Short summary
Even after the concentration of greenhouse gases is stabilized, the climate will continue to adapt, seeking a new equilibrium. We study this long-term stabilization through a set of 1000-year simulations, obtained by suddenly "freezing" the atmospheric composition at different levels. If frozen at the current state, global warming surpasses 3° in the long term with our model. We then study how climate impacts will change after various centuries and how the deep ocean will warm.
Justin Gérard and Michel Crucifix
Earth Syst. Dynam., 15, 293–306, https://doi.org/10.5194/esd-15-293-2024, https://doi.org/10.5194/esd-15-293-2024, 2024
Short summary
Short summary
We used cGENIE, a climate model, to investigate the Atlantic Meridional Overturning Circulation (AMOC) slowdown under a warming scenario. We apply a diagnostic that was used in a previous study (Levang and Schmitt, 2020) to separate the temperature from salinity contribution to this slowdown. We find that, in our model, the initial slowdown of the AMOC was driven by temperature and that salinity takes the lead for the termination of the circulation.
Cited articles
Årthun, M., Kolstad, E. W., Eldevik, T., and Keenlyside, N. S.: Time Scales and Sources of European Temperature Variability, Geophys. Res. Lett., 45, 3597–3604, https://doi.org/10.1002/2018gl077401, 2018. a, b
Beobide-Arsuaga, G., Düsterhus, A., Müller, W. A., Barnes, E. A., and Baehr, J.: Spring Regional Sea Surface Temperatures as a Precursor of European Summer Heatwaves, Geophys. Res. Lett., 50, e2022GL100727, https://doi.org/10.1029/2022gl100727, 2023. a
Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez-Gutierrez, L., and Müller, W. A.: Decadal Predictions of the Probability of Occurrence for Warm Summer Temperature Extremes, Geophys. Res. Lett., 46, 14042–14051, https://doi.org/10.1029/2019gl085385, 2019. a, b
Callahan, C. W. and Mankin, J. S.: Globally unequal effect of extreme heat on economic growth, Sci. Adv., 8, eadd3726, https://doi.org/10.1126/sciadv.add3726, 2022. a
Cane, M. A., Clement, A. C., Murphy, L. N., and Bellomo, K.: Low-Pass Filtering, Heat Flux, and Atlantic Multidecadal Variability, J. Clim., 30, 7529–7553, https://doi.org/10.1175/jcli-d-16-0810.1, 2017. a
Ceglar, A., Zampieri, M., Toreti, A., and Dentener, F.: Observed Northward Migration of Agro-Climate Zones in Europe Will Further Accelerate Under Climate Change, Earths Future, 7, 1088–1101, https://doi.org/10.1029/2019ef001178, 2019. a
Costa, E. D. D. and Verdiere, A. C. D.: The 7.7-year North Atlantic Oscillation, Q. J. Roy. Meteorol. Soc., 128, 797–817, https://doi.org/10.1256/0035900021643692, 2002. a, b
Eden, C. and Greatbatch, R. J.: A Damped Decadal Oscillation in the North Atlantic Climate System, J. Clim., 16, 4043–4060, https://doi.org/10.1175/1520-0442(2003)016<4043:addoit>2.0.co;2, 2003. a
Fischer, E. M. and Schär, C.: Future changes in daily summer temperature variability: driving processes and role for temperature extremes, Clim. Dynam., 33, 917–935, https://doi.org/10.1007/s00382-008-0473-8, 2008. a
Fischer, E. M., Rajczak, J., and Schär, C.: Changes in European summer temperature variability revisited, Geophys. Res. Lett., 39, L19702, https://doi.org/10.1029/2012gl052730, 2012. a
Gao, M., Yang, J., Gong, D., Shi, P., Han, Z., and Kim, S.-J.: Footprints of Atlantic Multidecadal Oscillation in the Low-Frequency Variation of Extreme High Temperature in the Northern Hemisphere, J. Clim., 32, 791–802, https://doi.org/10.1175/jcli-d-18-0446.1, 2019. a
Gasparrini, A., Guo, Y., Hashizume, M., Kinney, P. L., Petkova, E. P., Lavigne, E., Zanobetti, A., Schwartz, J. D., Tobias, A., Leone, M., Tong, S., Honda, Y., Kim, H., and Armstrong, B. G.: Temporal Variation in Heat–Mortality Associations: A Multicountry Study, Environ. Health Perspect., 123, 1200–1207, https://doi.org/10.1289/ehp.1409070, 2015. a
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P.: Advanced spectral methods for climatic time series, Rev. Geophys., 40, 3.1–3.41, https://doi.org/10.1029/2000rg000092, 2002. a
Ghosh, R., Müller, W. A., Baehr, J., and Bader, J.: Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating, Clim. Dynam., 48, 3547–3563, https://doi.org/10.1007/s00382-016-3283-4, 2016. a
Ghosh, R., Putrasahan, D., Manzini, E., Lohmann, K., Keil, P., Hand, R., Bader, J., Matei, D., and Jungclaus, J. H.: Two Distinct Phases of North Atlantic Eastern Subpolar Gyre and Warming Hole Evolution under Global Warming, J. Clim., 36, 1881–1894, https://doi.org/10.1175/jcli-d-22-0222.1, 2023. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service, Climate Data Store [data set], https://doi.org/10.24381/cds.bd0915c6, 2019. a, b
Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., and Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation patterns to extreme temperature trends, Nature, 522, 465–469, https://doi.org/10.1038/nature14550, 2015. a
Kautz, L.-A., Martius, O., Pfahl, S., Pinto, J. G., Ramos, A. M., Sousa, P. M., and Woollings, T.: Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review, Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022, 2022. a
Li, M., Yao, Y., Simmonds, I., Luo, D., Zhong, L., and Chen, X.: Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018, Environ. Res. Lett., 15, 114003, https://doi.org/10.1088/1748-9326/aba6ad, 2020. a
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability, J. Adv. Model. Earth Sy., 11, 2050–2069, https://doi.org/10.1029/2019ms001639, 2019. a, b, c
Marsland, S., Haak, H., Jungclaus, J., Latif, M., and Röske, F.: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates, Ocean Model., 5, 91–127, https://doi.org/10.1016/s1463-5003(02)00015-x, 2003. a
Martija-Díez, M., Rodríguez-Fonseca, B., and López-Parages, J.: ENSO Influence on Western European summer and fall Temperatures, J. Clim., 34, 8013–8031, https://doi.org/10.1175/jcli-d-20-0808.1, 2021. a, b
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D., Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global model, J. Adv. Model. Earth Sy., 4, M00A01, https://doi.org/10.1029/2012ms000154, 2012. a
McCarthy, G. D., Joyce, T. M., and Josey, S. A.: Gulf Stream Variability in the Context of Quasi-Decadal and Multidecadal Atlantic Climate Variability, Geophys. Res. Lett., 45, 11257–11264, https://doi.org/10.1029/2018gl079336, 2018. a, b, c
Meehl, G. A. and Tebaldi, C.: More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century, Science, 305, 994–997, https://doi.org/10.1126/science.1098704, 2004. a
Müller, W. A., Frankignoul, C., and Chouaib, N.: Observed decadal tropical Pacific–North Atlantic teleconnections, Geophys. Res. Lett., 35, L24810, https://doi.org/10.1029/2008gl035901, 2008. a
Müller, W. A., Borchert, L., and Ghosh, R.: Observed Subdecadal Variations of European Summer Temperatures, Geophys. Res. Lett., 47, e2019GL08604, https://doi.org/10.1029/2019gl086043, 2020. a, b
Nigam, S., Ruiz-Barradas, A., and Chafik, L.: Gulf Stream Excursions and Sectional Detachments Generate the Decadal Pulses in the Atlantic Multidecadal Oscillation, J. Clim., 31, 2853–2870, https://doi.org/10.1175/jcli-d-17-0010.1, 2018. a
Qasmi, S., Sanchez-Gomez, E., Ruprich-Robert, Y., Boé, J., and Cassou, C.: Modulation of the Occurrence of Heatwaves over the Euro-Mediterranean Region by the Intensity of the Atlantic Multidecadal Variability, J. Clim., 34, 1099–1114, https://doi.org/10.1175/jcli-d-19-0982.1, 2021. a, b
Reintges, A., Latif, M., and Park, W.: Sub-decadal North Atlantic Oscillation variability in observations and the Kiel Climate Model, Clim. Dynam., 48, 3475–3487, https://doi.org/10.1007/s00382-016-3279-0, 2016. a
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., and Zscheischler, J.: Risk of crop failure due to compound dry and hot extremes estimated with nested copulas, Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, 2020. a
Röthlisberger, M. and Papritz, L.: Quantifying the physical processes leading to atmospheric hot extremes at a global scale, Nat. Geosci., 16, 210–216, https://doi.org/10.1038/s41561-023-01126-1, 2023. a
Ruiter, M. C., Couasnon, A., Homberg, M. J. C., Daniell, J. E., Gill, J. C., and Ward, P. J.: Why We Can No Longer Ignore Consecutive Disasters, Earths Future, 8, e2019EF001425, https://doi.org/10.1029/2019ef001425, 2020. a
Ruprich-Robert, Y., Moreno-Chamarro, E., Levine, X., Bellucci, A., Cassou, C., Castruccio, F., Davini, P., Eade, R., Gastineau, G., Hermanson, L., Hodson, D., Lohmann, K., Lopez-Parages, J., Monerie, P.-A., Nicolì, D., Qasmi, S., Roberts, C. D., Sanchez-Gomez, E., Danabasoglu, G., Dunstone, N., Martin-Rey, M., Msadek, R., Robson, J., Smith, D., and Tourigny, E.: Impacts of Atlantic multidecadal variability on the tropical Pacific: a multi-model study, npj Clim. Atmos. Sci., 4, 33, https://doi.org/10.1038/s41612-021-00188-5, 2021. a
Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A., and Knight, J. R.: European Climate Extremes and the North Atlantic Oscillation, J. Clim., 21, 72–83, https://doi.org/10.1175/2007jcli1631.1, 2008. a
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004. a
Seneviratne, Koster, R. D., Guo, Z., Dirmeyer, P. A., Kowalczyk, E., Lawrence, D., Liu, P., Mocko, D., Lu, C.-H., Oleson, K. W., and Verseghy, D.: Soil Moisture Memory in AGCM Simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) Data, J. Hydrometeorol., 7, 1090–1112, https://doi.org/10.1175/jhm533.1, 2006. a
Seneviratne, Zhang, X., Adnan, M., Badi, W., Dereczynski, C., A. Di Luca, S. Ghosh, I. I. J. K. S. L. F. O. I. P. M. S. S. V.-S. M. W., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Seneviratne, S. I., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.013, 2021. a
Simpson, I. R., Deser, C., McKinnon, K. A., and Barnes, E. A.: Modeled and Observed Multidecadal Variability in the North Atlantic Jet Stream and Its Connection to Sea Surface Temperatures, J. Clim., 31, 8313–8338, https://doi.org/10.1175/jcli-d-18-0168.1, 2018. a
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P.-A., Müller, W. A., Nicolí, D., Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw, D., Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic climate far more predictable than models imply, Nature, 583, 796–800, https://doi.org/10.1038/s41586-020-2525-0, 2020. a
Spensberger, C., Madonna, E., Boettcher, M., Grams, C. M., Papritz, L., Quinting, J. F., Röthlisberger, M., Sprenger, M., and Zschenderlein, P.: Dynamics of concurrent and sequential Central European and Scandinavian heatwaves, Q. J. Roy. Meteorol. Soc., 146, 2998–3013, https://doi.org/10.1002/qj.3822, 2020. a
Suarez-Gutierrez, L., Li, C., Müller, W. A., and Marotzke, J.: Internal variability in European summer temperatures at 1.5 ∘C and 2 ∘C of global warming, Environ. Res. Lett., 13, 064026, https://doi.org/10.1088/1748-9326/aaba58, 2018. a
Suarez-Gutierrez, L., Müller, W. A., Li, C., and Marotzke, J.: Dynamical and thermodynamical drivers of variability in European summer heat extremes, Clim. Dynam., 54, 4351–4366, https://doi.org/10.1007/s00382-020-05233-2, 2020a. a, b, c, d
Suarez-Gutierrez, L., Müller, W. A., Li, C., and Marotzke, J.: Hotspots of extreme heat under global warming, Clim. Dynam., 55, 429–447, https://doi.org/10.1007/s00382-020-05263-w, 2020b. a
Suarez-Gutierrez, L., Milinski, S., and Maher, N.: Exploiting large ensembles for a better yet simpler climate model evaluation, Clim. Dynam., 57, 2557–2580, https://doi.org/10.1007/s00382-021-05821-w, 2021. a
Sutton, R. T. and Hodson, D. L. R.: Atlantic Ocean Forcing of North American and European Summer Climate, Science, 309, 115–118, https://doi.org/10.1126/science.1109496, 2005. a
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R., Tong, S., de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A., Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A., Michelozzi, P., de'Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H., Valencia, C. D. L. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S., Ruscio, F. D., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J., Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C., Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong, B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V., Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The burden of heat-related mortality attributable to recent human-induced climate change, Nat. Clim. Change, 11, 492–500, https://doi.org/10.1038/s41558-021-01058-x, 2021. a
Vogel, M. M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., Hurk, B. J. J. M., and Seneviratne, S. I.: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks, Geophys. Res. Lett., 44, 1511–1519, https://doi.org/10.1002/2016gl071235, 2017. a
Wilks, D. S.: The Stippling Shows Statistically Significant Grid Points: How Research Results are Routinely Overstated and Overinterpreted, and What to Do about It, Bull. Am. Meteorol. Soc., 97, 2263–2273, https://doi.org/10.1175/bams-d-15-00267.1, 2016. a
Woollings, T., Barnes, E., Hoskins, B., Kwon, Y.-O., Lee, R. W., Li, C., Madonna, E., McGraw, M., Parker, T., Rodrigues, R., Spensberger, C., and Williams, K.: Daily to Decadal Modulation of Jet Variability, J. Clim., 31, 1297–1314, https://doi.org/10.1175/jcli-d-17-0286.1, 2018. a
Wu, B., Zhou, T., Li, C., Müller, W. A., and Lin, J.: Improved decadal prediction of Northern-Hemisphere summer land temperature, Clim. Dynam., 53, 1357–1369, https://doi.org/10.1007/s00382-019-04658-8, 2019. a
Short summary
European summer temperatures are influenced by mechanisms on different timescales. We find that timescales of 5 to 10 years dominate the changes in summer temperature over large parts of the continent. Further, we find that specific processes within the North Atlantic, affecting the storage and transport of heat, cause changes in the atmosphere and extremely warm European summers. Our findings could be used for better forecasts of extremely warm European summers several years ahead.
European summer temperatures are influenced by mechanisms on different timescales. We find that...
Altmetrics
Final-revised paper
Preprint