Articles | Volume 14, issue 5
https://doi.org/10.5194/esd-14-915-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-915-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon fluxes in spring wheat agroecosystem in India
Kangari Narender Reddy
CORRESPONDING AUTHOR
Center for Atmospheric Sciences, Indian Institute of Technology
Delhi, New Delhi, 110016, India
Shilpa Gahlot
Center for Atmospheric Sciences, Indian Institute of Technology
Delhi, New Delhi, 110016, India
Somnath Baidya Roy
Center for Atmospheric Sciences, Indian Institute of Technology
Delhi, New Delhi, 110016, India
Gudimetla Venkateswara Varma
Center for Atmospheric Sciences, Indian Institute of Technology
Delhi, New Delhi, 110016, India
Vinay Kumar Sehgal
Division of Agricultural Physics, ICAR-Indian Agricultural Research
Institute, New Delhi, 380015, India
Gayatri Vangala
Center for Atmospheric Sciences, Indian Institute of Technology
Delhi, New Delhi, 110016, India
Related authors
K. Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
EGUsphere, https://doi.org/10.5194/egusphere-2024-1431, https://doi.org/10.5194/egusphere-2024-1431, 2024
Short summary
Short summary
The study aimed to improve the representation of spring wheat and rice in the CLM5. The modified CLM5 model performed significantly better than the default model in simulating crop phenology, yield, carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific parameters for accurately simulating vegetation processes and land surface processes.
K. Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
EGUsphere, https://doi.org/10.5194/egusphere-2024-1431, https://doi.org/10.5194/egusphere-2024-1431, 2024
Short summary
Short summary
The study aimed to improve the representation of spring wheat and rice in the CLM5. The modified CLM5 model performed significantly better than the default model in simulating crop phenology, yield, carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific parameters for accurately simulating vegetation processes and land surface processes.
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023, https://doi.org/10.5194/esd-14-241-2023, 2023
Tanvi Gupta and Somnath Baidya Roy
Adv. Geosci., 56, 129–139, https://doi.org/10.5194/adgeo-56-129-2021, https://doi.org/10.5194/adgeo-56-129-2021, 2021
Short summary
Short summary
In this paper we study how the momentum extracted by wind turbines get replenished so that the wind farm can continue to function. We use a numerical model to simulate the dynamics of a hypothetical coastal wind farm in the Arabian Sea under sea breeze conditions. Results show that vertical turbulent eddies can replenish more than half of the lost momentum, but horizontal advection also plays a role near the wind farm edges especially in sparsely packed wind farms.
Aheli Das and Somnath Baidya Roy
Adv. Geosci., 56, 89–96, https://doi.org/10.5194/adgeo-56-89-2021, https://doi.org/10.5194/adgeo-56-89-2021, 2021
Short summary
Short summary
In this study we evaluated subseasonal-seasonal scale forecasts of solar radiation, wind speed, temperature and relative humidity over India from 6 global models by comparing against observations. Results show that the overall quality of the forecasts are not good. However, they demonstrate enough skill suggesting that further improvement through calibration may make then useful for the renewable energy sector.
Tanvi Gupta and Somnath Baidya Roy
Wind Energ. Sci., 6, 1089–1106, https://doi.org/10.5194/wes-6-1089-2021, https://doi.org/10.5194/wes-6-1089-2021, 2021
Short summary
Short summary
Wind turbines extract momentum from atmospheric flow and convert that to electricity. This study explores recovery processes in wind farms that replenish the momentum so that wind farms can continue to function. Experiments with a numerical model show that momentum transport by turbulent eddies from above the wind turbines is the major contributor to recovery except for strong wind conditions and low wind turbine density, where horizontal advection can also play a major role.
Narender Kangari Reddy and Somnath Baidya Roy
Adv. Geosci., 54, 79–87, https://doi.org/10.5194/adgeo-54-79-2020, https://doi.org/10.5194/adgeo-54-79-2020, 2020
Short summary
Short summary
In this study, we apply the Genetic Algorithm technique that mimics the natural selection process observed in nature to design optimal layouts for massive wind farms off the southeastern coast of India using real wind data. Our results show that layout optimization leads to large improvements in power generation (up to 28 %), efficiency (up to 34 %), and cost (up to 25 %) due to the reduction in wake losses.
Shilpa Gahlot, Tzu-Shun Lin, Atul K. Jain, Somnath Baidya Roy, Vinay K. Sehgal, and Rajkumar Dhakar
Earth Syst. Dynam., 11, 641–652, https://doi.org/10.5194/esd-11-641-2020, https://doi.org/10.5194/esd-11-641-2020, 2020
Short summary
Short summary
Spring wheat, a staple for millions of people in India and the world, is vulnerable to changing environmental and management factors. Using a new spring wheat model, we find that over the 1980–2016 period elevated CO2 levels, irrigation, and nitrogen fertilizers led to an increase of 30 %, 12 %, and 15 % in countrywide production, respectively. In contrast, rising temperatures have reduced production by 18 %. These effects vary across the country, thereby affecting production at regional scales.
Cited articles
Amthor, J. S. and Baldocchi, D. D.: Terrestrial Higher Plant Respiration
and Net Primary Production, Terr. Glob. Product., 33–59,
https://doi.org/10.1016/B978-012505290-0/50004-1, 2001.
Baldocchi, D., Chu, H., and Reichstein, M.: Inter-annual variability of net
and gross ecosystem carbon fluxes: A review, Agr. Forest Meteorol., 249,
520–533, https://doi.org/10.1016/J.AGRFORMET.2017.05.015, 2018.
Banger, K., Tian, H., Tao, B., Ren, W., Pan, S., Dangal, S., and Yang, J.:
Terrestrial net primary productivity in India during 1901–2010:
Contributions from multiple environmental changes, Climatic Change, 132,
575–588, https://doi.org/10.1007/s10584-015-1448-5, 2015.
Chuine, I. and Régnière, J.: Process-Based Models of Phenology for
Plants and Animals, Annu. Rev. Ecol. Evol. S., 48, 159–182,
https://doi.org/10.1146/annurev-ecolsys-110316-022706, 2017.
Crameri, F.: Scientific color maps, Zenodo,
https://doi.org/10.5281/zenodo.1243862, 2018.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of color in
science communication, Nat. Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020.
Dentener, F. J.: Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993,
and 2050, ORNL DAAC [data set],
https://doi.org/10.3334/ORNLDAAC/830, 2006.
FAOSTAT: Food and Agriculture Organization of the United
Nations, FAOSTAT,
http://www.fao.org/faostat/en/#data/QC (last access: 1 August 2023), 2019.
Gahlot, S.: Terrestrial carbon fluxes in India with a focus on spring wheat
agroecosystems, Ph.D. thesis, Centre for Atmospheric Sciences, Indian
Institute of Technology Delhi, India, IIT Delhi, 169 pp., http://eprint.iitd.ac.in/handle/2074/8745?show=full (last access: 2 September 2023), 2020.
Gahlot, S., Shu, S., Jain, A. K., and Baidya Roy, S.: Estimating Trends and
Variation of Net Biome Productivity in India for 1980–2012 Using a Land
Surface Model, Geophys. Res. Lett., 44, 11573–11579,
https://doi.org/10.1002/2017GL075777, 2017.
Gahlot, S., Lin, T. S., Jain, A. K., Baidya Roy, S., Sehgal, V. K., and
Dhakar, R.: Impact of environmental changes and land management practices on
wheat production in India, Earth. Syst. Dynam., 11, 641–652,
https://doi.org/10.5194/esd-11-641-2020, 2020.
Golyandina, N. and Zhigljavsky, A.: Singular Spectrum Analysis for Time
Series, Springer Briefs in Statistics, Berlin, Heidelberg, Springer Berlin
Heidelberg, https://doi.org/10.1007/978-3-642-34913-3, 2013.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine P.: Large influence of soil moisture on
long-term
terrestrial carbon uptake, Nature, 565, 476–479,
https://doi.org/10.1038/s41586-018-0848-x, 2019.
Hatfield, J. L. and Prueger, J. H.: Temperature extremes: Effect on plant
growth and development, Weather Clim. Extrem., 10, 4–10,
https://doi.org/10.1016/j.wace.2015.08.001, 2015.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J.,
Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C.
D., Kindermann, G., Kinoshita, T., Goldewijk, K. K., Riahi, K., Shevliakova, E.,
Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P., and Wang,
Y. P.: Harmonization of land-use scenarios for the period 1500–2100: 600
years of global gridded annual land-use transitions, wood harvest, and
resulting secondary lands, Climatic Change, 109, 117–161,
2011.
Jain, A. K. and Yang, X.: Modeling the effects of two different land cover
change data sets on the carbon stocks of plants and soils in concert with CO
2 and climate change, Global Biogeochem. Cy., 19, 20,
https://doi.org/10.1029/2004GB002349, 2005.
Jain, A., Yang, X., Kheshgi, H., McGuire, A. D., Post, W., and Kicklighter,
D.: Nitrogen attenuation of terrestrial carbon cycle response to global
environmental factors, Global Biogeochem. Cy., 23, GB4028,
https://doi.org/10.1029/2009GB003519, 2009.
Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster,
I., Charles, J. G. H., Herrero, M., Richard, E. H., Sander, J., Brian, A.
K., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., and Wheeler, T. R.:
Brief history of agricultural systems modeling, Agr. Syst., 155, 240–254,
https://doi.org/10.1016/j.agsy.2016.05.014, 2017.
Koehler, A. K., Challinor, A. J., Hawkins, E., and Asseng, S.: Influences of
increasing temperature on Indian wheat: quantifying limits to
predictability, Environ. Res. Lett., 8, 034016,
https://doi.org/10.1088/1748-9326/8/3/034016, 2013.
Kumar, A., Bhatia, A., Sehgal, V. K., Tomer, R., Jain, N., and Pathak, H.:
Net Ecosystem Exchange of Carbon Dioxide in Rice-Spring Wheat System of
Northwestern Indo-Gangetic Plains, Land, 10, 701,
https://doi.org/10.3390/land10070701, 2021.
Lin, T., Song, Y., Lawrence, P., Kheshgi, H. S., and Jain, A. K.: Worldwide
Maize and Soybean Yield Response to Environmental and Management Factors
Over the 20th and 21st Centuries, J. Geophys. Res.-Biogeo.,
126, e2021JG006304,
https://doi.org/10.1029/2021JG006304, 2021.
Lokupitiya, E., Denning, A. S., Schaefer, K., Ricciuto, D., Anderson, R.,
Arain, M. A., Baker, I., Barr, A. G., Chen, G., Chen, J. M., Ciais, P.,
Cook, D. R., Dietze, M. C., El Maayar, M., Fischer, M., Grant, R.,
Hollinger, D., Izaurralde, C., Jain, A., Kucharik, C. J., Li, Z., Liu, S.,
Li, L., Matamala, R., Peylin, P., Price, D., Running, S. W., Sahoo, A.,
Sprintsin, M., Suyker, A.E., Tian, H., Tonitto, C., Torn, M. S., Verbeeck,
H., Verma, S. B., and Xue, Y.: Carbon and energy fluxes in cropland
ecosystems:
a model-data comparison, Biogeochemistry, 129, 53–76,
https://doi.org/10.1007/s10533-016-0219-3, 2016.
Luo, Y., Hui, D., and Zhang, D.: Elevated CO2 stimulates net accumulations
of carbon and nitrogen in land ecosystems: a meta-analysis, Ecology, 87,
53–63, https://doi.org/10.1890/04-1724, 2006.
MAFW: Directorate of Economics and Statistics, Ministry of Agriculture,
Govt. of India, Agricultural Statistics at a Glance 2016,
https://eands.dacnet.nic.in/PDF/Glance-2016.pdf (last access: 1 August 2023), 2017.
Mathur, R. and AchutaRao, K.: A modelling exploration of the sensitivity of
the India's climate to irrigation, Clim. Dynam., 54, 1851–1872,
https://doi.org/10.1007/S00382-019-05090-8, 2020.
MOA: Status paper on wheat, Directorate of Wheat Development Ministry of
Agriculture Govt. of India 180 pp.,
https://www.nfsm.gov.in/StatusPaper/Wheat2016.pdf (last access: 14 May
2021),
2016.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, 1022,
https://doi.org/10.1029/2007GB002947, 2008.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and
Foley, J. A.: Closing yield gaps through nutrient and water management,
Nature, 490, 254–257, https://doi.org/10.1038/nature11420, 2012.
Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T.,
Hodson, D., Dixon, J. M., Ortiz-Monasterio, J. I., and Reynolds, M.: Climate
change: Can wheat beat the heat?, Agr. Ecosyst. Environ., 126, 46–58,
https://doi.org/10.1016/j.agee.2008.01.019, 2008.
Patel, N. R., Dadhwal, V. K., and Saha, S. K.: Measurement and Scaling of
Carbon Dioxide (CO2) Exchanges in Wheat Using Flux-Tower and Remote
Sensing,
J. Indian. Soc. Remote., 39, 383–391, https://doi.org/10.1007/s12524-011-0107-1,
2011.
Patel, N. R, Pokhariyal, S., Chauhan, P., and Dadhwal, V. K.: Dynamics of
CO2
fluxes and controlling environmental factors in sugarcane (C4)–wheat
(C3)
ecosystem of dry sub-humid region in India, Int. J. Biometeorol., 65,
1069–1084, https://doi.org/10.1007/s00484-021-02088-y, 2021.
Ramadas, S., Kiran Kumar, T. M., and Pratap Singh, G.: Wheat Production in
India: Trends and Prospects, Recent Advances in Grain Crops Research, Intech
Open, London, United Kingdom, 156–172, https://doi.org/10.5772/intechopen.86341,
2020.
Reddy, K. N., Gahlot, S., Baidya Roy, S., and Sehgal, V. K.: Carbon fluxes
data over Indian spring wheat agro-ecosystem, Zenodo [data set],
https://doi.org/10.5281/zenodo.5833742, 2022.
Ren, X., Weitzel, M., O'Neill, B. C., Lawrence, P., Meiyappan, P., Levis,
S., Balistreri, E. J., and Dalton, M..: Avoided economic impacts of
climate change on agriculture: integrating a land surface model (CLM) with a
global economic model (iPETS), Climatic Change, 146, 517–531,
https://doi.org/10.1007/s10584-016-1791-1, 2018.
Revill, A., Emmel, C., D'Odorico, P., Buchmann, N., Hörtnagl, L., and
Eugster, W.: Estimating cropland carbon fluxes: A process-based model
evaluation at a Swiss crop-rotation site, Field Crops Res., 234,
95–106, https://doi.org/10.1016/j.fcr.2019.02.006, 2019.
Saha, S., Das, B., Chatterjee, D., Sehgal, V. K., Chakraborty, D., and Pal,
M.: Crop growth responses towards elevated atmospheric CO2, Plant
Ecophysiology and Adaptation under Climate Change: Mechanisms
and Perspectives I, edited by: Hasanuzzaman, M.,
Springer Nature, Singapore, 147–198,
https://doi.org/10.1007/978-981-15-2156-0_6, 2020.
Sándor, R., Ehrhardt, F., Grace, P., Recous, S., Smith, P., Snow, V.,
Soussana, J-F, Basso, B., Bhatia, A., Brilli L., Doltra, J., Dorich, C. D.,
Doro, L., Fitton, N., Grant B, Harrison, M. T., Kirschbaum, M. U. F.,
Klumpp, K., Laville, P., Léonard, J., Martin R., Massad, R., Moore, A.,
Myrgiotis V., Pattey, E., Rolinski, S., Sharp, J., Skiba, U., Smith, W., Wu,
L., Zhang, Q., and Bellocchi, G.: Ensemble modelling of carbon fluxes in
grasslands and croplands, Field Crops Res., 252, 107791,
https://doi.org/10.1016/j.fcr.2020.107791, 2020.
Schmid, H. P.: Source areas for scalars and scalar fluxes, Bound-Lay.
Meteorol., 67, 293–318, https://doi.org/10.1007/BF00713146, 1994.
Song, Y., Jain, A. K., and McIsaac, G. F.: Implementation of dynamic crop
growth processes into a land surface model: Evaluation of energy, water and
carbon fluxes under corn and soybean rotation, Biogeosciences, 10,
8039–8066, https://doi.org/10.5194/bg-10-8039-2013, 2013.
Sonkar, G., Mall, R. K., Banerjee, T., Singh, N., Kumar, T. V. L., and
Chand, R.: Vulnerability of Indian wheat against rising temperature and
aerosols, Environ. Pollut., 254, 112946,
https://doi.org/10.1016/j.envpol.2019.07.114, 2019.
Viovy, N.: CRUNCEP Version 7 – Atmospheric Forcing Data for the Community
Land Model, Research Data Archive at
the National Center for Atmospheric Research [data set],
https://doi.org/10.5065/PZ8F-F017, 2018.
Willmott, C. J., Robeson, S. M., and Matsuura, K.: A refined index of model
performance, Int. J. Climatol., 32, 2088–2094,
https://doi.org/10.1002/JOC.2419, 2012.
Yang, X., Wittig, V., Jain, A. K., and Post, W.: Integration of nitrogen
cycle dynamics into the Integrated Science Assessment Model for the study of
terrestrial ecosystem responses to global change, Global Biogeochem. Cy.,
23, 121–149,
https://doi.org/10.1029/2009GB003474, 2009.
Yoshimoto, M., Oue, H., and Kobayashi, K.: Energy balance and water use
efficiency of rice canopies under free-air CO2 enrichment, Agr. Forest
Meteorol., 133, 226–246,
https://doi.org/10.1016/j.agrformet.2005.09.010, 2005.
Short summary
Carbon fluxes from agroecosystems change the carbon cycle and the amount of CO2 in the air. Using the Integrated Science Assessment Model (ISAM), we looked at the carbon cycle in areas where spring wheat is grown. The results showed that fluxes vary a lot between regions, mostly because planting times are different. According to our investigation into which variables have the greatest impact on the carbon cycle, nitrogen fertilizers added to crops have the greatest impact on carbon uptake.
Carbon fluxes from agroecosystems change the carbon cycle and the amount of CO2 in the air....
Altmetrics
Final-revised paper
Preprint