Articles | Volume 12, issue 1
https://doi.org/10.5194/esd-12-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying meteorological drivers of extreme impacts: an application to simulated crop yields
Johannes Vogel
CORRESPONDING AUTHOR
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Institute of Ecology, Technical University of Berlin, Berlin, Germany
Pauline Rivoire
CORRESPONDING AUTHOR
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
Cristina Deidda
Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
Leila Rahimi
Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
Department of Water Engineering, University of Tabriz, Tabriz, Iran
Christoph A. Sauter
Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
Elisabeth Tschumi
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Climate and Environmental Physics, University of Bern, Bern, Switzerland
Karin van der Wiel
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Tianyi Zhang
CORRESPONDING AUTHOR
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Jakob Zscheischler
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Climate and Environmental Physics, University of Bern, Bern, Switzerland
Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
Data sets
Identify_crop_yield_drivers J. Vogel, P. Rivoire, C. Deidda, C. A. Sauter, and E. Tschumi https://github.com/jo-vogel/Identify_crop_yield_drivers
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
We present a statistical approach for automatically identifying multiple drivers of extreme...
Altmetrics
Final-revised paper
Preprint