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Abstract. Compound weather events may lead to extreme impacts that can affect many aspects of society
including agriculture. Identifying the underlying mechanisms that cause extreme impacts, such as crop failure,
is of crucial importance to improve their understanding and forecasting. In this study, we investigate whether
key meteorological drivers of extreme impacts can be identified using the least absolute shrinkage and selection
operator (LASSO) in a model environment, a method that allows for automated variable selection and is able
to handle collinearity between variables. As an example of an extreme impact, we investigate crop failure using
annual wheat yield as simulated by the Agricultural Production Systems sIMulator (APSIM) crop model driven
by 1600 years of daily weather data from a global climate model (EC-Earth) under present-day conditions for the
Northern Hemisphere. We then apply LASSO logistic regression to determine which weather conditions during
the growing season lead to crop failure. We obtain good model performance in central Europe and the eastern half
of the United States, while crop failure years in regions in Asia and the western half of the United States are less
accurately predicted. Model performance correlates strongly with annual mean and variability of crop yields; that
is, model performance is highest in regions with relatively large annual crop yield mean and variability. Overall,
for nearly all grid points, the inclusion of temperature, precipitation and vapour pressure deficit is key to predict
crop failure. In addition, meteorological predictors during all seasons are required for a good prediction. These
results illustrate the omnipresence of compounding effects of both meteorological drivers and different periods
of the growing season for creating crop failure events. Especially vapour pressure deficit and climate extreme
indicators such as diurnal temperature range and the number of frost days are selected by the statistical model
as relevant predictors for crop failure at most grid points, underlining their overarching relevance. We conclude
that the LASSO regression model is a useful tool to automatically detect compound drivers of extreme impacts
and could be applied to other weather impacts such as wildfires or floods. As the detected relationships are of
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purely correlative nature, more detailed analyses are required to establish the causal structure between drivers
and impacts.

1 Introduction

Climate extremes such as droughts, heatwaves, floods and
frost events can have substantial impacts on crop health
(Shah and Paulsen, 2003; Singh et al., 2011; Lesk et al.,
2016; Ben-Ari et al., 2018). However, not all climate ex-
tremes lead to an extreme impact, and large impacts can be
related to moderate drivers (Zscheischler et al., 2016; Van der
Wiel et al., 2019a, 2020; Pan et al., 2020). Whether a large
impact occurs does not only depend on a climate hazard but
also on the vulnerability of the underlying system (Oppen-
heimer et al., 2015), which varies strongly for crops during
the course of the growing season (Iizumi and Ramankutty,
2015; Ben-Ari et al., 2018). The mechanisms that translate a
climate hazard into crop failure are often very complex and
associated with lagged effects that are difficult to disentangle
(Frank et al., 2015).

While climate extremes may lead to large impacts, ex-
treme climate-related impacts are often the result of multi-
ple contributing factors (Tschumi and Zscheischler, 2020).
The concept of compound events has recently been promoted
to address climate impacts from an impact-centred perspec-
tive. For instance, compound events have been defined as ex-
treme impacts that depend on multiple statistically dependent
drivers (Leonard et al., 2014) or, more recently, simply as
the combination of multiple drivers that contributes to envi-
ronmental or societal risk (Zscheischler et al., 2018). Drivers
in this context refer to climate and weather processes and
phenomena. With respect to yields at the local scale, mul-
tiple drivers can compound an impact through a sequence
of weather events (temporally compounding); one weather
event may also change the vulnerability of the crop to a sub-
sequent weather event (preconditioning), or multiple drivers
may interact and impact crops at the same time (multivariate
events) (Zscheischler et al., 2020).

Understanding the drivers that lead to extreme impacts
helps to better predict and mitigate the potential impacts of
such events. One way of identifying the relevant drivers of an
impact is to perform a bottom-up analysis, that is, start from
an impact and identify key drivers through statistical analysis
(Zscheischler et al., 2013; Ben-Ari et al., 2018). In this con-
text, linear regression analysis can identify the most relevant
drivers of an impact variable and reveal potential interactions
between drivers (Forkel et al., 2012; Ben-Ari et al., 2018).
More sophisticated approaches such as random forests might
yield higher predictive power at the cost of losing explain-
ability (Vogel et al., 2019). When the set of possible predic-
tors is very large, suitable variable selection approaches need
to be applied to reduce the number of predictors. In order

to be applicable to a large number of locations and a variety
of impacts, an automatic approach is desired that only re-
quires a limited amount of expert knowledge and parameter
tuning. An example of such an approach is the least abso-
lute shrinkage and selection operator (Tibshirani, 1996), or
short LASSO regression, which obtains a reduced number of
predictors by penalizing the number of variables in the loss
function.

The aim of this study is to present a method that can iden-
tify drivers of extreme impacts in an automatic manner and
that is suitable for many applications. We use crop failure
as an example of an extreme impact in a model environ-
ment; that is, we use simulated data from a climate and a
crop model. End-of-season crop yield is related to climate
drivers via highly complex interactions at different temporal
scales. Temperature and precipitation are the two basic cli-
mate variables that regulate crop health (Lobell and Asner,
2003; Lobell et al., 2011; Leng et al., 2016). Furthermore,
vapour pressure deficit (VPD), the difference of water vapour
pressure at saturated condition and its actual value at a given
temperature, determines crop photosynthesis and water de-
mand (Rawson et al., 1977; Zhang et al., 2017; Yuan et al.,
2019).

Here, we use 1600 years of wheat yield data from a global
gridded crop model driven by simulated meteorological data
under present-day conditions. Based on this large database
of yield data, we showcase approaches to identify multiple
drivers of crop failure in different regions of the world and
highlight results for the LASSO regression. Using a model
environment to explore new analytical approaches to iden-
tify drivers of extreme impacts, we circumvent common lim-
itations associated with observational data, such as a small
sample size, measurement uncertainties and data coverage.
Among the large amount of information provided by the crop
model simulations, the statistical model summarizes the link
between crop failure and climate conditions.

This paper is structured as follows. The data and meth-
ods used in this study are introduced in Sect. 2. In this sec-
tion, the reader can first find a description of the data, includ-
ing an introduction to the global climate model and the crop
model used in this study. We further describe which meteo-
rological variables are considered in the statistical analysis;
Sect. 2 also introduces the LASSO logistic regression to pre-
dict years of low yield based on meteorological drivers and
the metrics employed to assess the performance of the statis-
tical model. The results of the LASSO regression are shown
in Sect. 3, where the performance and the summary statis-
tics for the variables that have been selected as being critical
to predict crop failure events are presented. Finally, we sum-
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marize and discuss the LASSO regression’s results in Sect. 4
and give some perspective to this study in Sect. 5.

2 Data and methods

2.1 Climate and crop model simulations

To investigate the influence of natural variability and cli-
matic extreme events, a large ensemble simulation experi-
ment was set up with the EC-Earth global climate model
(v2.3; Hazeleger et al., 2012). We use this climate model
data set, consisting of 2000 years of present-day simulated
weather, to investigate if we can identify the drivers of ex-
treme low crop yield seasons. Large ensemble modelling is
at the forefront of climate science (Deser et al., 2020); due
to the computational expenses involved, a balance between
ensemble size, horizontal resolution and number of climate
models has to be found. We have found the climate data
used here to be suitable for the present study. A detailed de-
scription of these climate simulations is provided in Van der
Wiel et al. (2019b); here, we provide a short overview of the
experimental setup. The present day was defined as the 5-
year model period in which the simulated global mean sur-
face temperature matched that observed in 2011–2015 (Had-
CRUT4 data; Morice et al., 2012). Because of a cold bias in
EC-Earth, in the model this period is 2035–2039. To create
the large ensemble, 25 ensemble members were branched off
from 16 long transient climate runs (forced by Representative
Concentration Pathway (RCP) 8.5). Each ensemble member
was integrated for 5 years. Differences between ensemble
members were forced by choosing different seeds in the at-
mospheric stochastic perturbations (Buizza et al., 1999). This
resulted in a total of 16×25×5= 2000 years of meteorolog-
ical data at T159 horizontal resolution (approximately 1◦).

Biases in the EC-Earth simulations result in unrealis-
tic growing conditions for crops. Therefore, minimum and
maximum temperatures and precipitation fields were bias
corrected. The Agricultural Model Intercomparison and
Improvement Project (AgMIP) Modern-Era Retrospective
Analysis for Research and Applications (AgMERRA) re-
analysis (Ruane et al., 2015) was used as “truth”. From
AgMERRA, the years 1981–2010 were used as a training
set, while EC-Earth uses the long transient runs (16 times
for 2005–2034). Daily minimum and maximum temperatures
were corrected on a grid point basis; a model bias field was
defined as the difference between the model climatology and
the AgMERRA climatology. The climatology was defined to
be the mean plus the first three annual harmonics. Daily pre-
cipitation was corrected towards having the correct number
of rainy days and total amount of precipitation. Firstly, for
each month, the number of rainy days in AgMERRA was
computed (threshold of 0.1 mm d−1); then the same thresh-
old was determined for EC-Earth data, which resulted in the
same number of rainy days. All days with simulated precipi-
tation lower than this threshold were set to 0 mm d−1. Lastly,

the total amount of precipitation was corrected by means of a
multiplicative factor, also on a month-by-month basis. Other
meteorological variables were not bias corrected.

Northern Hemisphere winter wheat yields were simu-
lated using the Agricultural Production Systems sIMulator
(APSIM)-Wheat model (Zheng et al., 2014), which is a
process-based model incorporating wheat physiology, water
and nitrogen processes under a wide range of growing con-
ditions. It was previously used for field (Li et al., 2014), re-
gional (Asseng et al., 2013) and global-scale (Rosenzweig
et al., 2014) wheat studies. A grid-point-specific sowing date
was used based on Sacks et al. (2010). The application of
nitrogen was exacted from Mueller et al. (2012). Soil param-
eters (including pH, soil total nitrogen, organic carbon con-
tent, bulk density and soil moisture characteristics curves for
each of five 20 cm deep soil layers) were derived from the
International Soil Profile Data Set (Batjes, 2012). In addi-
tion, we also input the grid-specific thermal time accumula-
tion parameters, which were derived from phenology (Sacks
et al., 2010) and AgMERRA data. The atmospheric CO2 con-
centration was set to 394 ppm. The growing season of win-
ter wheat spans 2 calendar years (e.g. sowing in Novem-
ber and harvest in June). As such, each climate model in-
tegration of 5 years covers four winter-wheat-growing sea-
sons; the 2000 years of EC-Earth climate data thus result
in 1600 simulated wheat-growing seasons. Further details on
the settings of the APSIM-Wheat model can be found in Ap-
pendix A. For model validation, the grid-based wheat yield
simulations were aggregated to country level and then val-
idated against the yield statistics during 2011–2015 (FAO-
STAT, 2020). Most simulated yields are closely related to ob-
served yields (Fig. B1), indicating good model performance.

2.2 Data processing

The APSIM model provided crop data for 995 grid points in
the Northern Hemisphere. For our analysis, we chose to dis-
card all grid points for which the annual mean yield is below
the 10th percentile of annual mean yield across all grid points
because many of these grid points were also associated with
unrealistically long (> 365 d) or short (< 90 d) growing sea-
sons, or had an overall average crop yield of 0 kg ha−1 yr−1.
Overall, 895 grid points remained for the analysis.

At each grid point, a year with yield lower than the 5th per-
centile for this grid point is considered as a year with crop
failure and called “bad year” in the remainder, whereas all
other years are referred to as “normal years”. Grid points for
which the 5th percentile yield was equal to 0 were excluded
to avoid the co-occurrence of years without yield in the bad
and normal years. This excluded six more grid points so that
889 remained for further analysis. Figure 1a shows the sim-
ulated mean annual yield, and Fig. 1b displays the relative
difference between the 5th percentile and the mean annual
yield. These two figures also indicate grid points that were
discarded for further analysis. Finally, we discarded individ-
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ual years with a growing season longer than 365 d, leading to
a slightly lower number of years than 1600 for 82 grid points,
i.e. for about 5 % of the grid points.

The data were split into training and testing data sets by
randomly assigning 70 % of the data to the former and 30 %
to the latter. For the logistic regression (Sect. 2.4), explana-
tory variables and yield were normalized by rescaling them
to a range of [−1, 1] for each grid point individually.

2.3 Explanatory data analysis

The APSIM model uses six meteorological variables on a
daily basis as input – dew-point temperature (Td), precipita-
tion (Pr), 10 m wind speed (Wind), incoming shortwave ra-
diation (Rad), maximum temperature (Tmax) and minimum
temperature (Tmin). From these variables, we additionally
calculated VPD as an important variable for plant growth
(Rawson et al., 1977; Zhang et al., 2017; Yuan et al., 2019).
For a given grid point, the sowing date is the same for the
1600 simulated years, but the harvest dates differ. We there-
fore define the growing season for a given grid point as
starting on the month containing the sowing date and fin-
ishing with the month containing the latest harvest date. Fig-
ure 2 illustrates the temporal evolution of composites of these
seven variables over the course of a growing season for nor-
mal (blue) and bad years (red) for one grid point in France
(47.7◦ N, 1.1◦ E; Fig. 2a). The composites provide some indi-
cation about which of the meteorological variables may con-
tribute to crop failure. In addition, the temporal evolution of
the two composites reveals during which part of the growing
season the different variables are relevant. The various com-
posites suggests that, for this grid point, 30 d Pr, VPD and
Tmax during the summer (June–August) have a high impact
on crop yield (Fig. 2c, f and h). The other variables appear
to be less relevant (Fig. 2b, d, e and g). Similar composites
for grid points in the US (44.3◦ N, 90.0◦W) and in China
(30.8◦ N, 118.1◦ E) are shown in Figs. B2 and B3, respec-
tively.

In addition to the seven meteorological variables, we con-
sidered seven climate extreme indicators as potential pre-
dictors of crop failure (mean diurnal temperature range, dtr;
number of frost days, frs; maximum temperature, TXx; min-
imum temperature, TNn; maximum five day precipitation
sum, Rx5day; number of warm days, TX90p; number of cold
days, TN10p; following Vogel et al., 2019) (Table 1). For
both the monthly means of the meteorological variables and
the growing season means/totals of the indicators of climate
extremes, we calculated the Pearson correlation coefficient
between the variables and annual yield (Fig. 3a and b for
the same grid point as in Figs. 2 and 3c and d as average
correlation over all grid points). These correlations are com-
putationally and conceptually very simple, and together with
Fig. 2, they serve as a first estimation of the importance of
the available variables. Some variables, such as wind speed,
do not have a discernible influence on yield and thus can be

neglected for this study. We use monthly means of Tmax, Pr
and VPD during the growing season, as well as the seven
extreme indicators for further analysis.

2.4 LASSO regression

The aim of this study is to provide an interpretable statisti-
cal model that is able to predict years with extremely low
yields (bad years) with meteorological variables. We use the
LASSO (Tibshirani, 1996) logistic regression for an auto-
matic selection of meteorological variables that are statisti-
cally linked to low yields. The approach is explained below.

For a given grid point, let Y ∈ {0,1}n be the binary yield
vector, with n the number of years. If the year i ∈ {1, . . . , n} is
a bad year, then Yi = 1; otherwise, Yi = 0. Let X1, . . . ,Xp ∈
Rn be the explanatory variables vectors (monthly meteoro-
logical variables and climate extreme indicators, rescaled as
explained in Sect. 2.2). Using a generalized linear model and,
more specifically, a logistic regression, we can identify how
much of the occurrence of bad yields is explained by which
explanatory variable:

P[Y = 1] =
1

1+ exp
(
β0+β1X1+ . . .+βpXp

) , (1)

where β0, β1, . . . ,βp are the regression coefficients.
However, a simple logistic regression presents two chal-

lenges here. Firstly, some variables might be highly cor-
related (e.g. correlation between temperature in May and
temperature in June, or the correlation of extreme indices
with meteorological variables). This correlation implies a
high variability of the coefficients. For instance, if the vari-
ables Xj and Xk are highly correlated, the information
brought by a high absolute value of βj and a low absolute
value of βk might be the same as the information brought by a
low absolute value of βj and a high absolute value of βk . An-
other issue is the large number of potential explanatory vari-
ables (up to 43 for some grid points). The relatively straight-
forward relationship of a generalized linear model (simpler
than the crop model equations themselves) allows us to re-
veal which meteorological variables explain bad yields best.
However, if the number of a priori explanatory variables is
very large, the regression becomes rather complex and many
coefficients will be close to zero, rendering an interpretation
difficult.

LASSO regression tackles both challenges with an auto-
matic variable selection using a regularization by penalizing
the number of coefficients different from 0 using the `1 norm
on the vector of coefficients (Tibshirani, 1996). Thus, the re-
gression coefficients are obtained by minimizing an objec-
tive function consisting of the sum of the usual loss function
for logistic regression and a penalty term on the coefficient
norm:
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Figure 1. (a) Mean annual yield over the 1600 years (t ha−1). (b) Relative difference between the 5th percentile and the mean annual yield.
Grid points discarded for our study are crossed out (specified in Sect. 2.2).

Table 1. Meteorological drivers used in the analysis.

Variable name Description Type

Tmax Maximum temperature Monthly mean

VPD Vapour pressure deficit Monthly mean

Pr Precipitation Monthly mean

dtr Mean diurnal temperature range in the growing season Climate extreme indicator

frs Number of frost days in the growing season Climate extreme indicator

TXx Maximum temperature in the growing season Climate extreme indicator

TNn Minimum temperature in the growing season Climate extreme indicator

Rx5day Maximum 5 d precipitation sum in the growing season Climate extreme indicator

TX90p Number of warm days in the growing season with daily Climate extreme indicator
maximum temperature above the 90th percentile∗

TN10p Number of cold days in the growing season with daily Climate extreme indicator
minimum temperature below the 10th percentile∗a

∗ Note: percentiles are grid point based; i.e. they are representative of the local climate.

min(β0,β)∈Rp+1 −

[
1
n

n∑
i=1

yi

(
β0+ x

T
i β
)

− log
(

1+ eβ0+x
T
i β
)]
+ λ‖β‖1, (2)

for a fixed λ > 0. The penalty term on the coefficient norms
prevents a high variability of these coefficients. Furthermore,
the `1 norm implies a variable selection. Coefficients associ-
ated with non-relevant explanatory variables are set to 0.

We use the R package glmnet (Friedman et al., 2010) to
perform the LASSO regression with R version 3.6 (R Core
Team, 2019). Through 10-fold cross-validation in the train-
ing data set, we obtain the optimal λmin and λ1SE = λmin+SE
with “SE” the standard error of the lambda that achieves the
minimum loss, and the coefficients β = (β1, . . . ,βp), which
is the solution to the optimization in Eq. (2) for λ= λ1SE.
Our preference for λ= λ1SE is motivated by the balance be-
tween number of selected variables and accuracy of the loss
function minimization (Friedman et al., 2010; Krstajic et al.,
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Figure 2. Daily evolution of meteorological variables used as input for the APSIM model over the course of the year for an exemplary grid
point in France (47.7◦ N, 1.1◦ E; shown as a red dot in panel a). Red lines indicate the composite mean of the bad years (80 seasons); blue
lines indicate the composite mean of the normal years (1520 seasons). Shading shows the range between the 10th and 90th percentiles of the
respective years. Variables shown are (b) dew-point temperature, (c) 30 d running sum of precipitation, (d) incoming shortwave radiation,
(e) wind speed, (f) maximum temperature, (g) minimum temperature and (h) vapour pressure deficit.

2014). Indeed, less variables are selected with λ1SE than
with λmin, because λ1SE > λmin and thus the penalty term on
the norm of coefficient is stronger, but the minimization of
the Eq. (2) is still sensible, because λ1SE lies within the un-
certainty range of the optimal λ.

2.5 Other models

To compare the performance of the LASSO regression with
other regression methods we also perform the analysis with a
generalized linear model (GLM) and a random forest binary
classification.

For the application of the GLM, a pre-selection of the ini-
tial variables is required, since the number of predictors is
limited. Only the variables with the highest Pearson correla-
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Figure 3. Linear correlations between potential meteorological predictors and annual yield. (a) Correlation between the monthly, seasonal
and growing season (GS) averages of the meteorological variables and annual yield for a grid point in France (47.7◦ N, 1.1◦ E). (b) Correlation
of the climate extreme indicators (Table 1) and annual yield for the same grid point. (c, d) Average of the same correlations across all Northern
Hemisphere grid points. Note that panel (a) shows the correlation for all months included in the growing season of the grid point in France,
while panel (c) shows the average correlation for a given month computed over all grid points containing this month in their growing season.

tion coefficients (ρ > 0.30) were selected as initial predictors
from an initial data set composed of all months of the grow-
ing season for each of the three variables (Tmax, Pr and VPD)
and the seven extreme indicators. Next, the subset of best
predictor variables is identified with the leaps algorithm (Fur-
nival and Wilson, 1974). We use the implementation of the
R package bestGLM (McLeod et al., 2020), using a bino-
mial family with a logit link function. Overall, GLM achieves
lower performance (Sect. 2.7) compared to the LASSO logis-
tic regression (not shown). The weaknesses of this approach
include its sensitivity to outliers and multicollinearity, and
overfitting.

Finally, a random forest approach – a common machine
learning technique – was also performed using the R package
randomForest (Breiman, 2001; Liaw and Wiener, 2002)
serving as a benchmark for the model performance of the
LASSO logistic regression. The random forest binary classi-
fication achieves comparable performance (Sect. 2.7) but is
not superior to the LASSO approach.

2.6 Segregation threshold adjustment

The segregation threshold for assigning a continuous predic-
tion to either a bad or normal year was adjusted in a grid-
point-wise manner to account for the unbalanced data set
with 19-fold higher occurrences of normal years than bad
years. Let s be the local segregation threshold between a bad
year predicted and a good year predicted. In other words, if
the probability p = P[Y = 1] predicted for a given grid point
by the LASSO logistic regression model is greater or equal
to s (lower than s), then the year is predicted as a bad year
(normal year). We want to choose s as a good compromise
in prediction of normal years and bad years, given that bad

years are rare. In other words, we want to find an optimal
trade-off between specificity and sensitivity. To this purpose,
a cost function C = C(s) is calculated based on the false pos-
itive rate RFP = RFP(s), the associated cost for a false pos-
itive instance CFP, the sum of observed normal years ONY,
the false negative rate RFN = RFN(s), the associated cost for
a false negative instance CFN and the sum of observed bad
yearsOBY of the training data set (Hand, 2009). A false pos-
itive means that a normal year was observed while a bad year
was predicted, and a false negative refers to the observation
of a bad year, whereas a normal year was predicted. For a
given grid point, FP, FN, TP and TN denote the total num-
ber of false positives, false negatives, true positives and true
negatives, respectively (Fig. 4). The value of C(s) is given by

C(s)= RFP(s)CFPONY+RFN(s)CFNOBY, (3)

where RFP =
FP

FP+TN , RFN =
FN

FN+TP and CFP = CFN = 100.
In this study, the costs associated with false positive CFP and
false negatives CFN are given equal weight.

The optimal segregation threshold s∗ for a given grid point
is s∗ = argmins∈(0,1)C(s). The segregation threshold selected
in this study is the mean value of s∗ over all grid points.

2.7 Model performance assessment and sensitivity
analysis

Model performance is assessed using the critical success in-
dex (CSI). The CSI is frequently used for evaluating the pre-
diction of rare events, as it neglects the number of correct
predictions of non-extremes, which dominate the confusion
matrix (Mason, 1989). General performance measures such
as the misclassification error are biased by the high number
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Figure 4. Confusion matrix for classification of observed and pre-
dicted normal and bad years.

of normal years and are therefore not meaningful for the as-
sessment of model performance in unbalanced data sets with
under-represented extreme events. The CSI is defined as

CSI=
TP

TP+FP+FN
. (4)

To evaluate the robustness of our model, in addition to
the 5th percentile threshold, we repeated the analysis with
thresholds of 2.5 % and 10 %, reaching qualitatively simi-
lar performance. In addition to the normalization by rescal-
ing the data to the interval [−1, 1], we also performed a
z-score transformation, which yielded comparable results.
Therefore, our choice of normalization is arbitrary to a de-
gree and a z-score transformation can potentially also be ap-
plied in the LASSO logistic regression model. Moreover, we
applied two more combinations of splitting training and test-
ing data sets: a 60/40 and an 80/20 split. With increasing
size of the training data set, the CSI increased slightly, how-
ever, at the expense of stochastic under-representation of bad
yield years in the smaller testing data sets. As a trade-off, we
decided for the 70/30 split.

The adjustment of the segregation threshold was carried
out with equal weight to false positive and false negative pre-
dictions. It can be argued that the latter case – where a normal
year is predicted, but crop failure is observed – is more detri-
mental and should therefore be given a higher weight. Due to
the subjectivity in the determination of this weight, an adjust-
ment of the weight term was not applied. However, it should
be noted that the attribution of a higher weight of false neg-
ative predictions would yield a lower segregation threshold
and hence improve the overall CSI.

3 Results

3.1 Overall performance

The LASSO logistic regression model can predict bad years
with an average CSI= 0.43 across all grid points. Best per-

formance is obtained in the eastern half of the United States
with a maximum of CSI= 0.82 (Fig. 5), which decreases
westwards in the Great Plains and is lowest in the wheat-
growing regions located close to the Rocky Mountains. Fur-
thermore, especially the most northern and southwestern grid
points in North America show a lower performance in gen-
eral. Also central Europe shows high performance up to
CSI= 0.80. A notable regional exception with low perfor-
mance can be found in the Alps. Many Asian and African
growing regions show medium prediction accuracy such as
northern China, Myanmar, Turkey and the Maghreb, with ex-
ceptions of some regions including Pakistan, southern China
and Japan, which show a low performance in general. For
30 grid points, it is not possible to obtain reasonable pre-
dictions of bad years with our approach, indicated by a CSI
equal to 0. Overall, regions with high prediction accuracy of
bad years are often those that also have high mean yields
(Fig. 1). CSI is positively correlated with mean yield with a
Pearson correlation coefficient of ρ = 0.46 (Fig. 6a); an even
stronger correlation is found with yield variability (ρ = 0.57)
(Fig. 6b).

3.2 Explanatory variables

Here, we summarize properties of the variables selected by
the LASSO logistic regression as relevant explanatory vari-
ables, i.e. those which are statistically linked to bad years. A
median of 11 variables per grid point has been selected as
explanatory variables, and for 50 % of grid points the num-
ber of selected variables lies between 7 and 14 (Fig. 7a).
The inclusion of extreme indicators provides a useful addi-
tion to the monthly predictors, shown by a median number
of two selected extreme indicators per grid point (Fig. 7b).
Grid points without extreme indicators are found only in few
areas such as eastern Europe, the Alps and southern China.
In total, 72 % of all grid points include monthly predictors of
VPD, Pr and Tmax, and almost all grid points (97 %) incorpo-
rate VPD (Fig. 7c). Interestingly, in the Great Plains (USA),
in many cases temperature is not included, whereas in most
other regions of the US all meteorological variables are se-
lected to achieve a good prediction. In southern China, tem-
perature is not needed by the models, whereas in the north-
ern areas, usually all meteorological variables are part of the
model. In most wheat-growing regions, particularly in the
northeastern US, southeastern Europe and Turkey, all four
seasons contain relevant predictors for predicting bad years
(Fig. 7d). Generally, the number of seasons included de-
creases towards the southeastern regions in the US, whereas
in western Europe no clear pattern emerges. In lower lati-
tudes such as in southern Asia, growing seasons are gener-
ally shorter (Fig. B4), and consequently often only predic-
tors from one or two seasons are included in the respective
models.

At the global scale, VPD in May and June, as well as Pr
in April, are the predictors which are most often included in
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Figure 5. Critical success index (CSI; Eq. 4) of the LASSO logistic regression model (see Sect. 2.7 for definition).

Figure 6. Correlation between CSI and annual crop yield mean and variability for the 889 grid points included in the LASSO logistic
regression model. (a) Scatterplot between CSI and mean annual yield. (b) Scatterplot between CSI and annual yield standard deviation.

the LASSO regression, followed by the climate extreme in-
dicators diurnal temperature range (dtr) and number of frost
days (frs) (Fig. 8a). In nearly all cases, the sign of the co-
efficient is positive for VPD in May and June, and negative
for Pr in April. This implicates that higher VPD increases
the risk of crop failure and is similar for the other vari-
ables. In North America and Europe, in addition to dtr and
frs, VPD and Pr in spring to early summer are the most fre-
quent monthly predictors (Fig. 8b and c). The growing season
for wheat varies with latitude. Consequently, in more north-
ern regions, mostly in Europe and North America, monthly
predictors from the months between March and July are in-
cluded in the LASSO regression, whereas in southern regions
such as in Asia and Africa, November to May are usually the
most frequent months (Fig. 8d).

This clear latitudinal shift can be visually identified in
North America from February to July, especially for VPD
(see maps in the Supplement). In central Europe, the growing
season ends latest; thus, VPD in August is usually included in
the model. In addition to the most common climate extreme
indicators, dtr and frs, Rx5day and TXx are among the most
frequent predictors in Asia and North America, respectively.
Overall, frs is mostly included in northern grid points, with
notable exceptions in western Europe (Fig. B5a) and mainly
with a positive coefficient (higher frs leads to more crop fail-

ure events), which can likely be attributed to the influence of
mild maritime climate in those regions. In contrast, dtr is im-
portant in most Asian grid points and especially in western
Europe and the Maghreb, whereas in the Pannonian Basin
and Turkey it is a less common predictor (Fig. B5b). The
coefficient associated with dtr in the LASSO regression is
mainly positive, except in parts of India and Myanmar. Some
variability in the mean diurnal temperature range might be
beneficial for regions close to the Equator where the vari-
ability in diurnal temperature is usually low. Generally, both
low and high dtr values can influence wheat yield beneficially
depending on the growing region; e.g. a low dtr can be ad-
vantageous because of a reduced occurrence of frost days,
whereas a higher dtr might also indicate a favourable effect
because of increased solar radiation (Lobell, 2007). Rx5day
is predominant in the western US, the western Mediterranean
and central Asia (Fig. B5c), which are all growing regions
with comparably low average annual precipitation. TX90p
is a common variable in low latitudes with a positive coeffi-
cient, especially in the southern US and Myanmar (Fig. B5d).
This indicates that in these regions physiological temperature
thresholds are occasionally exceeded, making TX90p a cru-
cial variable in these areas.
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Figure 7. Maps illustrating the selected predictors by the LASSO logistical regression. (a) Total number of selected variables. (b) Number of
selected climate extreme indicators. (c) Combination of selected meteorological variables. “None” means that only climate extreme indicators
were selected; “All” means that at least 1 month from each of the three meteorological variables (VPD, Pr, Tmax) is selected. (d) Number of
selected seasons (out of the four seasons – DJF, MAM, JJA, SON).

4 Discussion

4.1 Predicting bad yield years

In this study, we presented a method for identifying drivers
of extreme impacts using crop failure as an example. Such
approaches are highly sought after to identify compound
drivers of large impacts (Zscheischler et al., 2020; Van der
Wiel et al., 2020). Our method allows us to investigate poten-
tial drivers at a global scale using a highly automated scheme
based on LASSO regression. The benefits of LASSO regres-
sion include its usage for automatic variable selection, its
consideration of correlation between explanatory variables
and its performance. Moreover, the statistical model obtained
provides a logistic linear relationship between crop failure
and selected variables, which is much simpler to interpret
than the crop model equations themselves or results obtained
with more complex machine learning approaches.

We defined bad years as years where the annual crop yield
is below the 5th percentile and were able to predict those

years by using the LASSO regression with an average CSI
of 0.43. This means that on average, the sum of the num-
bers of false positives and false negatives is slightly higher
than the number of true positives (or accurate predictions of
bad years). Our model performance is somewhat compara-
ble to results from Vogel et al. (2019), who were able to ex-
plain 46 % of variation in spring wheat anomalies using a
similar set of predictors based on a random forest algorithm.
In our case, more sophisticated machine learning regression
models such as random forests did not yield better prediction
skill, indicating that performance in the current setup using
monthly predictors for a binary classification of bad years
likely cannot be much improved. This is probably also re-
lated to the fact that predicting extremes of a continuous vari-
able is challenging because no natural separation between
extremes and non-extremes exists. Another challenge arises
from the highly asymmetric distribution of observed bad and
normal years. Even though in our case the total amount of
samples per grid point is relatively large (1600, because we
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Figure 8. For each possible predictor, we show the percentage of grid points for which this predictor has a non-zero coefficient in the
LASSO logistic regression. (a) All continents (889 grid points in total), (b) North America (419 grid points), (c) Europe (233 grid points)
and (d) Asia (210 grid points). The extension “Y1” means that the respective month belongs to the first calendar year of the growing season,
while “Y2” means it belongs to the second calendar year of the growing season.

used simulated crop yield data) the number of observed bad
years is only 80 and thus can still be considered fairly small.

We analysed the robustness of our results using (a) the
10th percentile as a threshold to discriminate between bad
and normal years and (b) a smaller data subset with only
400 entries per grid point (i.e. a quarter of the available data).
The spatial patterns of the selected predictors and the CSI us-
ing the 10th percentile threshold are very similar compared
to those of the 5th percentile, and the average CSI increases
slightly from 0.43 to 0.52. Using a sample size of 400 we still
obtain an average CSI of 0.33, indicating that performance
decreases only slightly with decreasing data size, while the
spatial patterns remain consistent (results not shown). Fur-
thermore, the spatial coherence of our results (Fig. 7) addi-
tionally suggests robustness of our analysis. An application
of the approach on real data might still be challenging, as
observational sample sizes generally are much smaller than
even 400 years. In addition, observational data are often not
available at such spatial resolution and extent as is the case
for the crop model data used in this study. This will make it

difficult to use spatial coherence of the identified drivers as
an indicator of model robustness when using observational
data. Furthermore, modelling winter wheat yield is particu-
larly challenging due to its long growing season (Vogel et al.,
2019).

A limitation to our study design is the pre-selection of po-
tential predictor variables. Here, we used monthly mean val-
ues and a number of climate extreme indicators. More flexi-
ble averaging time periods for the predictors might result in
higher prediction accuracy due to better overlap with sensi-
tive periods of the impact variable. For instance, in our crop
yield example, meteorological predictors need to coincide
with the respective phenological development stage because
their impact can vary depending on the phenophase. Wheat,
for example, is known to require wet conditions in the vege-
tative phase; however, it prefers dry conditions during ripen-
ing (Seyfert, 1960). Therefore, the application of monthly
meteorological predictors might be insufficient for accurate
matching of meteorological drivers to the respective pheno-
logical phases. We explored the option of automatically gen-
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erating optimal time periods for the meteorological predic-
tors by maximizing the difference between the composites
between normal and bad years. For instance, 30 d cumulative
precipitation differs between normal and bad years starting
in February and ending in August for a grid point in France
(Fig. 2c), whereas VPD only differs from May to Septem-
ber (Fig. 2h). Composite plots for a grid point in the US and
in China are shown in Figs. B2 and B3, respectively. How-
ever, deciding when the separation between normal and bad
years is large enough to start and end the optimal time peri-
ods is challenging and difficult to generalize and thus auto-
mate, which was the aim of our method design. Nevertheless,
such a well-tuned selection of predictors has the potential to
improve the prediction of bad years significantly and should
thus be explored in future research.

We find a strong correlation of the yearly mean and stan-
dard deviation of annual yield with the LASSO regression
performance indicator CSI (Fig. 6). Low model performance
at grid points with low yield variability suggests that the dis-
tinction between normal and bad years is challenging at these
locations, e.g. in southern China and Japan (Figs. 1b and 5).
Regions with high annual yield are found primarily in cen-
tral Europe and the eastern half of the United States, which
also represent the regions with highest model performance.
In contrast, many regions in Asia generally have lower aver-
age yields and lower prediction skill of bad years. This could
be related to a calibration bias in the crop model, leading to a
better representation of wheat-growing processes in regions
where wheat reaches higher yields in the real world. A fur-
ther explanation for this phenomenon could be that the crop
model is primarily designed for crop growth at typical envi-
ronmental conditions, whereas growing regions with condi-
tions at the edge of the ecological niche of wheat might be
less well represented.

Our analysis was based on fitting a local model at each lo-
cation, which is one of the three principal statistical methods
used to link crop yield with weather conditions, along with
cross-section models and panel models, which are global
models that adjust for spatial variability using fixed or ran-
dom effects (Lobell and Burke, 2010; Shi et al., 2013).
Collinearity between explanatory variables is a recurrent is-
sue when using these methods (Shi et al., 2013) that we ad-
dressed with the LASSO regression. One example is VPD
and Tmax, which might be highly correlated but still might in-
dividually contribute relevant information because they have
a different impact on the plant process, as explained in Kern
et al. (2018). LASSO regression did not completely discard
one of these two variables, despite their high correlation.

4.2 Important predictors

For most grid points, VPD is the most important monthly
predictor of bad years, followed by Pr and Tmax, in that
order. While their importance in time differs between grid
points, depending on the timing of the respective growing

season (Sippel et al., 2016), their order changes little across
space. In addition, the order of importance of extreme indi-
cators is quite similar in North America, Europe and Asia.
One notable distinction is the higher importance of Rx5day
in Asian grid points compared to North America and Eu-
rope. The consistent selection of similar predictors across
large spatial scales may suggest that the LASSO regression
is fairly robust. However, this may also be related to the
inevitable simplifications of crop-growing processes in the
employed crop model. In particular, the same model is ap-
plied at all locations, likely creating certain homogeneity by
default. Kern et al. (2018) conducted a comparable analy-
sis on observed winter wheat crop yield in Hungary. With
a linear regression using a step-wise selection of monthly
meteorological variables, they found that a positive anomaly
in VPD and Tmin during May decreases yield. Additionally,
April, May and June appear to be the most relevant months in
our global analysis, which is consistent with regional studies
(Kern et al., 2018; Kogan et al., 2013; Ribeiro et al., 2020).

Climate extreme indicators are important predictors as the
occurrence of an extreme weather event may induce crop
failure in a given year. However, in years without such ex-
treme events, crop yields are still governed by the weather
during the growing season (Iizumi and Ramankutty, 2015).
We found that both climate extreme indicators as well as
monthly means of common climate variables have proven
to be valuable predictors of years resulting in crop failure.
Droughts and heatwaves are well known to affect crop yield
(Lesk et al., 2016; Jagadish et al., 2014), and temperature
and precipitation explain a large fraction of interannual crop
yield variability (Lobell and Burke, 2008). In contrast, VPD
is often overlooked in statistical analyses of crop yield vari-
ability (Zhang et al., 2017). We show that VPD is a key pre-
dictor for crop failure. It is known to play a crucial role in
plant functioning and is projected to increase as main limit-
ing driver in the face of climate change (Novick et al., 2016;
Grossiord et al., 2020). High VPD values can lead to plant
mortality via carbon starvation and hydraulic failure (Mc-
Dowell et al., 2011; Grossiord et al., 2020). However, its co-
variation with temperature and solar radiation makes it dif-
ficult to disentangle their respective effects (Stocker et al.,
2019; Grossiord et al., 2020). There are well-defined temper-
ature thresholds for wheat; e.g. a temperature of 31 ◦C before
flowering is considered to evoke sterile grains and thus re-
duces yield (Porter and Gawith, 1999; Daryanto et al., 2016).
Tmax is a secondary predictor in our statistical model, which
is in line with results based on observed and simulated yields
(Schauberger et al., 2017), and can be attributed to the rare
exceedance of critical temperature thresholds in the grow-
ing season. Crops are particularly vulnerable during key de-
velopment stages, so extreme events during that time span
can lead to large yield reductions, even in the event of other-
wise favourable weather conditions during the growing sea-
son (Porter and Gawith, 1999; Moriondo and Bindi, 2007).
The vulnerability of wheat to climatic events depends largely
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on phenophases, and generally wheat possesses a higher sen-
sitivity to temperature and precipitation during its reproduc-
tive phase than during its vegetative phase (Porter and Gaw-
ith, 1999; Luo, 2011; Daryanto et al., 2016). Future research
could investigate the importance of time of occurrence of ex-
treme indicators (Vogel et al., 2019). For instance, due to cli-
mate change, false spring events may become more likely
in some regions (Moriondo and Bindi, 2007; Allstadt et al.,
2015), and thus the timing of frost days could provide a valu-
able addition to the model.

The frequent inclusion of the extreme indicators such as
dtr and frs in our regression model highlights that short-term
extreme events can potentially have larger impacts than grad-
ual changes over time (Jentsch et al., 2007). The variable dtr
was also identified as an important predictor by Vogel et al.
(2019), whereas frs was of minor importance for explaining
variation in spring wheat yield. By contrast, frs is one of the
most predominant predictors in our study, which might be
explained by the differing growing season of winter wheat,
which is encompassing primarily the cold seasons.

We explored the relevance of interactions between pre-
dictors; however, this did not significantly improve model
performance. This might hint at the inability of the APSIM
crop model to account adequately for such compound effects,
which is consistent with Ben-Ari et al. (2018), who linked the
crop failure 2016 in France to an extraordinary combination
of warm winter temperatures followed by wet spring condi-
tions. The commonly used crop models employed for crop
yield forecasts were not able to predict the 2016 yield failure
in France (Ben-Ari et al., 2018).

Overall, our results illustrate the omnipresence of com-
pounding meteorological events for crop failure. In nearly all
grid points, most seasons and meteorological variables were
relevant to predict years with crop failure (Fig. 7). This sug-
gests that the co-occurrence of certain weather conditions
as well as the combination of weather conditions in differ-
ent seasons are associated with crop failure. With our ap-
proach we have identified meteorological conditions that are
statistically linked to crop failure. Our results confirm prior
findings by Van der Wiel et al. (2020) that such conditions
are not necessarily extreme but can also be moderate. How-
ever, for interpretation of the selected variable set, one should
be aware that the variables in our model are selected based
on correlation, and thus attributing them as potential phys-
ical drivers needs further careful investigation. To identify
such causal relationships, more advanced methods from the
emerging field of causal inference could be employed (Runge
et al., 2019).

5 Conclusions

In this paper, we presented a robust statistical approach –
namely LASSO logistic regression – for predicting crop fail-
ure and automatically selecting relevant predictors among
a large number of meteorological variables and climate ex-
treme indicators. We illustrated our approach on 1600 years
of simulated winter wheat yield for the Northern Hemisphere
under present-day climate conditions. LASSO regression can
serve as a tool for identifying important variables with au-
tomated variable selection while accounting for collinearity
and achieving overall good predictive power. Consistent with
earlier knowledge, we find that predicting crop failure re-
quires accounting for a number of different meteorological
drivers at different times of the growing season, which is il-
lustrated by the large number of variables at all seasons in-
cluded in our statistical model (Fig. 7). This indicates that
compounding effects are ubiquitous across time and meteo-
rological drivers, and highlights the usefulness of approaches
such as LASSO regression to reveal multiple meteorological
drivers of crop failure. We identified vapour pressure deficit
as one key variable to predict crop failure, which underlines
the importance of its consideration in statistical crop yield
models, in particular because it is often overlooked in statis-
tical analyses of crop yield variability. Furthermore, climate
extreme indicators such as diurnal temperature range and the
number of frost days have proven to be valuable additions
to the predictive models, highlighting the necessity to ad-
dress not only monthly mean conditions but especially also
climatic extremes in such models. Overall, this study helps
to enhance the knowledge required to improve seasonal fore-
casts and undertake adaptation measures against crop fail-
ure. The flexibility of our approach allows an application to
other climate impacts that are influenced by a large range of
variables varying with seasonality, for instance, wildfires or
flooding.
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Appendix A: APSIM-Wheat model settings

A total of 11 phenological phases are included in the APSIM-
Wheat model, and the length of each phase is simulated
based on thermal time accumulation, which is adjusted for
other factors such as vernalization, photoperiod and nitro-
gen. To calculate thermal time, crown minimum (Tcmin) and
maximum (Tcmax) temperatures are first simulated for non-
freezing temperatures (Tmin and Tmax; Eqs. A1 and A2)
and then used to compute the crown mean temperature (Tc;
Eq. A3). Finally, daily thermal time (1TT) is calculated
based on three cardinal temperatures (Tbase, Topt and Tceiling;
Eq. A4) (Zheng et al., 2014):

Tcmax ={
2+ Tmax

(
0.4+ 0.0018(Hsnow− 15)2) Tmax < 0

Tmax Tmax ≥ 0 (A1)

Tcmin ={
2+ Tmin

(
0.4+ 0.0018(Hsnow− 15)2) Tmin < 0

Tmin Tmin ≥ 0
(A2)

Tc =
(Tcmin+ Tcmax)

2
(A3)

1TT=
Tc Tbase < Tc ≤ Topt
Topt
Tbase

(
Tceiling− Tc

)
Topt < Tc ≤ Tceiling

0 Tc ≤ Tbase or Tc ≥ Tceiling,

(A4)

whereHsnow is set to 0, and Tbase, Topt and Tceiling are set to 0,
26 and 34 ◦C, respectively.

The dry-matter above-ground biomass (1Q; Eq. A8)
is calculated as a potential biomass accumulation result-
ing from radiation interception (1Qr) and soil water defi-
ciency (1Qw) (Zheng et al., 2014). The radiation-limited
dry-biomass accumulation (1Qr; Eq. A6) is calculated by
the intercepted radiation (I ), radiation use efficiency (RUE),
stress factor (fs) and carbon dioxide factor (fc). The
stress factor (fs) comprises stresses that crops may en-
counter during growth and is the minimum value of a tem-
perature factor (fT ,photo) and a nitrogen factor (fN,photo)
(Eq. A5). The water-limited dry above-ground biomass
(1Qw; Eq. A7) is a function of radiation-limited dry above-
ground biomass (1Qr), the ratio between the daily water up-
take (Wu) and demand (Wd):

fs =min
(
fT ,photo,fN,photo

)
(A5)

1Qr = I ·RUE · fs · fc (A6)

1Qw =1Qr
Wu

Wd
(A7)

1Q=

{
1Qr Wu =Wd
1Qw Wu <Wd.

(A8)
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Appendix B: Additional figures

Figure B1. Comparison between the country-specific simulated yields and yield statistics (FAOSTAT, 2020). The dashed line is the 1 : 1 line.
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Figure B2. As Fig. 2 but for a grid point in the United States (44.3◦ N, 90.0◦W).
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Figure B3. As Fig. 2 but for a grid point in China (30.8◦ N, 118.1◦ E).
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Figure B4. Number of months in the growing season (number of months between the earliest sowing date and the latest harvest date).
The growing season starts at the month containing the sowing date and ends with the month containing the latest harvest date among the
1600 model years. We discarded years with harvest date later than 365 days after the sowing date. Some growing seasons are 13 months long
because we include both the entire first month and the entire last month.

Figure B5. Selected climate extreme indicators (Table 1) in the LASSO logistic regression model for each location: dtr (a), frs (b), Rx5day (c)
and TX90p (d).
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Code availability. The code to reproduce the figures is available
from GitHub (https://github.com/jo-vogel/Identify_crop_yield_
drivers, last access: February 2021) (Vogel et al., 2021).

Data availability. The climate and crop simulations are avail-
able from Karin van der Wiel (wiel@knmi.nl) and Tianyi Zhang
(zhangty@post.iap.ac.cn) upon request, respectively.

Supplement. The Supplement contains monthly binary maps
showing whether a specific predictor was included to predict crop
failure by the LASSO logistic regression. Maps are provided for
(a) VPD, (b) Tmax and (c) Pr. The extension “Y1” means that the re-
spective month belongs to the first calendar year of the growing sea-
son, while “Y2” means it belongs to the second calendar year of the
growing season. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-12-151-2021-supplement.
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