Articles | Volume 10, issue 4
https://doi.org/10.5194/esd-10-631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-10-631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tipping the ENSO into a permanent El Niño can trigger state transitions in global terrestrial ecosystems
Mateo Duque-Villegas
GIGA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
Juan Fernando Salazar
CORRESPONDING AUTHOR
GIGA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
Angela Maria Rendón
GIGA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
Related authors
Mateo Duque-Villegas, Martin Claussen, Thomas Kleinen, Jürgen Bader, and Christian H. Reick
Clim. Past, 21, 773–794, https://doi.org/10.5194/cp-21-773-2025, https://doi.org/10.5194/cp-21-773-2025, 2025
Short summary
Short summary
We simulate the last glacial cycle with a comprehensive model of the Earth system and investigate vegetation cover change in northern Africa during the last four African Humid Periods (AHPs). We find a common pattern of vegetation change and relate it with climatic factors in order to discuss how vegetation might have evolved during even older AHPs. This scaling relationship we find according to past AHPs fails to account for projected changes in northern Africa under strong greenhouse gas warming.
Mateo Duque-Villegas, Martin Claussen, Victor Brovkin, and Thomas Kleinen
Clim. Past, 18, 1897–1914, https://doi.org/10.5194/cp-18-1897-2022, https://doi.org/10.5194/cp-18-1897-2022, 2022
Short summary
Short summary
Using an Earth system model of intermediate complexity, we quantify contributions of the Earth's orbit, greenhouse gases (GHGs) and ice sheets to the strength of Saharan greening during late Quaternary African humid periods (AHPs). Orbital forcing is found as the dominant factor, having a critical threshold and accounting for most of the changes in the vegetation response. However, results suggest that GHGs may influence the orbital threshold and thus may play a pivotal role for future AHPs.
Mateo Duque-Villegas, Martin Claussen, Thomas Kleinen, Jürgen Bader, and Christian H. Reick
Clim. Past, 21, 773–794, https://doi.org/10.5194/cp-21-773-2025, https://doi.org/10.5194/cp-21-773-2025, 2025
Short summary
Short summary
We simulate the last glacial cycle with a comprehensive model of the Earth system and investigate vegetation cover change in northern Africa during the last four African Humid Periods (AHPs). We find a common pattern of vegetation change and relate it with climatic factors in order to discuss how vegetation might have evolved during even older AHPs. This scaling relationship we find according to past AHPs fails to account for projected changes in northern Africa under strong greenhouse gas warming.
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Juan F. Salazar, Ruben D. Molina, Jorge I. Zuluaga, and Jesus D. Gomez-Velez
Hydrol. Earth Syst. Sci., 28, 2919–2947, https://doi.org/10.5194/hess-28-2919-2024, https://doi.org/10.5194/hess-28-2919-2024, 2024
Short summary
Short summary
Global change is altering river basins and their discharge worldwide. We introduce the land–atmosphere reservoir (LAR) concept to investigate these changes in six of the world's largest basins. We found that low-latitude basins (Amazon, Paraná, and Congo) are getting wetter, whereas high-latitude basins (Mississippi, Ob, and Yenisei) are drying. If this continues, these long-term trends will disrupt the discharge regime and compromise the sustainability of these basins with widespread impacts.
Silvana Bolaños Chavarría, Micha Werner, Juan Fernando Salazar, and Teresita Betancur Vargas
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022, https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Short summary
Using total water storage (TWS) from GRACE satellites, we assess the reliability of global hydrological and land surface models over a medium-sized tropical basin with a well-developed gauging network. We find the models poorly represent TWS for the monthly series, but they improve in representing seasonality and long-term trends. We conclude that GRACE provides a valuable dataset to benchmark global simulations of TWS change, offering a useful tool to improve global models in tropical basins.
Mateo Duque-Villegas, Martin Claussen, Victor Brovkin, and Thomas Kleinen
Clim. Past, 18, 1897–1914, https://doi.org/10.5194/cp-18-1897-2022, https://doi.org/10.5194/cp-18-1897-2022, 2022
Short summary
Short summary
Using an Earth system model of intermediate complexity, we quantify contributions of the Earth's orbit, greenhouse gases (GHGs) and ice sheets to the strength of Saharan greening during late Quaternary African humid periods (AHPs). Orbital forcing is found as the dominant factor, having a critical threshold and accounting for most of the changes in the vegetation response. However, results suggest that GHGs may influence the orbital threshold and thus may play a pivotal role for future AHPs.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167,
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. a
Alencar, A., Nepstad, D., and Diaz, M. C. V.: Forest understory fire in the
Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions, Earth Interact., 10, 1–17, https://doi.org/10.1175/EI150.1, 2006. a
Allan, R. and Ansell, T.: A New Globally Complete Monthly Historical Gridded
Mean Sea Level Pressure Dataset (HadSLP2): 1850–2004, J. Climate, 19, 5816–5842, https://doi.org/10.1175/JCLI3937.1, 2006. a
Andersen, T., Carstensen, J., Hernandez-Garcia, E., and Duarte, C. M.:
Ecological Thresholds And Regime Shifts: Approaches To Identification, Trends
Ecol. Evol., 24, 49–57, https://doi.org/10.1016/j.tree.2008.07.014, 2009. a
Aragao, L. E. O., Malhi, Y., Roman-Cuesta, R. M., Saatchi, S., Anderson, L. O., and Shimabukuro, Y. E.: Spatial Patterns And Fire Response Of Recent
Amazonian Droughts, Geophys. Res. Lett., 34, L07701, https://doi.org/10.1029/2006GL028946, 2007. a
Arakawa, A.: The cumulus parameterization problem: past, present, and future,
J. Climate, 17, 2493–2525, 2004. a
Ardö, J.: Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa, Carbon Balance Manage., 10, 1–15, 2015. a
Ashcroft, L., Gergis, J., and Karoly, D. J.: Long-term Stationarity Of El Niño–Southern Oscillation Teleconnections In Southeastern Australia, Clim. Dynam., 46, 2991–3006, https://doi.org/10.1007/s00382-015-2746-3, 2016. a
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño
Modoki and its possible teleconnection, J. Geophys. Res.-Oceans, 112, 1–27, 2007. a
Barlow, J. and Peres, C. A.: Ecological Responses To El Niño-Induced
Surface Fires In Central Brazilian Amazonia: Management Implications For
Flammable Tropical Forests, Philos. T. Roy. Soc. B, 359, 367–380,
https://doi.org/10.1098/rstb.2003.1423, 2004. a
Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H.,
Fortelius, M., Getz, W. M., Harte, J., Hastings, A., Marquet, P. A., Martinez, N. D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J. W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D. P., Revilla, E., and Smith, A. B.: Approaching A State Shift In Earth's Biosphere, Nature, 486, 52–58, https://doi.org/10.1038/nature11018, 2012. a, b
Bathiany, S., Claussen, M., and Fraedrich, K.: Implications Of Climate
Variability For The Detection Of Multiple Equilibria And For Rapid Transitions In The Atmosphere-Vegetation System, Clim. Dynam., 38, 1775–1790, https://doi.org/10.1007/s00382-011-1037-x, 2012. a, b
Betts, R. A., Malhi, Y., and Roberts, J. T.: The Future Of The Amazon: New
Perspectives From Climate, Ecosystem And Social Sciences, Philos. T. Roy. Soc. B, 363, 1729–1735, https://doi.org/10.1098/rstb.2008.0011, 2008. a
Boschi, R., Lucarini, V., and Pascale, S.: Bistability Of The Climate Around
The Habitable Zone: A Thermodynamic Investigation, Icarus, 226, 1724–1742,
https://doi.org/10.1016/j.icarus.2013.03.017, 2013. a, b
Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe,
M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C.,
Alencar, A., and Soares-Filho, B. S.: Abrupt Increases In Amazonian Tree Mortality Due To Drought-Fire Interactions, P. Natl. Acad. Sci. USA, 111, 6347–6352, https://doi.org/10.1073/pnas.1305499111, 2014. a, b
Brovkin, V., Claussen, M., Petoukhov, V., and Ganopolski, A.: On The Stability Of The Atmosphere-Vegetation System In The Sahara/Sahel Region, J.
Geophys. Res.-Atmos., 103, 31613–31624, https://doi.org/10.1029/1998JD200006, 1998. a
Buermann, W., Anderson, B., Tucker, C. J., Dickinson, R. E., Lucht, W., Potter, C. S., and Myneni, R. B.: Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El Niño–Southern Oscillation and the Arctic Oscillation, J. Geophys. Res.-Atmos., 108, 4396, https://doi.org/10.1029/2002JD002630, 2003. a
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G.,
Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing Frequency Of Extreme El Niño Events Due To Greenhouse Warming, Nat. Clim. Change, 4, 111–116, https://doi.org/10.1038/nclimate2100, 2014. a, b, c
Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins,
M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M. J., Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., and Wu, L.: ENSO And Greenhouse Warming, Nat. Clim. Change, 5, 849–859, https://doi.org/10.1038/nclimate2743, 2015. a, b, c
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R.,
Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., Pratt, R. B., Sperry, J. S., Westoby, M., Wright, I. J., and Zanne, A. E.: Global Convergence In The Vulnerability Of Forests To Drought, Nature, 491, 752–755, https://doi.org/10.1038/nature11688, 2012. a
Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M.-F., Weber, S., Alcamo, J., Alexeev, V., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I., Petoukhov, V., Stone, P., and Wang, Z.: Earth System Models Of Intermediate Complexity: Closing The Gap In The Spectrum Of Climate System
Models, Clim. Dynam., 18, 579–586, https://doi.org/10.1007/s00382-001-0200-1, 2002. a
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F.,
Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A.: The impact of global warming on the tropical Pacific Ocean and El Niño, Nat. Geosci., 3, 391–397, https://doi.org/10.1038/ngeo868, 2010. a
Costa, M. H. and Pires, G. F.: Effects Of Amazon And Central Brazil
Deforestation Scenarios On The Duration Of The Dry Season In The Arc Of
Deforestation, Int. J. Climatol., 30, 1970–1979, https://doi.org/10.1002/joc.2048, 2010. a
Cox, P. M., Betts, R., Collins, M., Harris, P. P., Huntingford, C., and Jones, C.: Amazonian Forest Dieback Under Climate-Carbon Cycle Projections For The 21st Century, Theor. Appl. Climatol., 78, 137–156,
https://doi.org/10.1007/s00704-004-0049-4, 2004. a, b
Davidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F., Bustamante, M. M., Coe, M. T., DeFries, R. S., Keller, M., Longo, M., Munger, J. W., Schroeder, W., Soares-Filho, B. S., Souza, C. M., and Wofsy, S. C.: The Amazon Basin In Transition, Nature, 481, 321–328, https://doi.org/10.1038/nature10717, 2012. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim Reanalysis: Configuration And Performance Of The Data Assimilation System, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dekker, S., De Boer, H., Brovkin, V., Fraedrich, K., Wassen, M., and Rietkerk, M.: Biogeophysical Feedbacks Trigger Shifts In The Modelled
Vegetation–Atmosphere System At Multiple Scales, Biogeosciences, 7, 1237–1245, https://doi.org/10.5194/bg-7-1237-2010, 2010. a, b
Dlugokencky, E. and Tans, P.: Globally averaged marine surface monthly mean
data, available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/, last access: 8 August 2019. a
Dowsett, H., Robinson, M., and Foley, K.: Pliocene three-dimensional global
ocean temperature reconstruction, Clim. Past, 5, 769–783,
https://doi.org/10.5194/cp-5-769-2009, 2009. a
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso,
D., Gutierrez, V., Van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Bargués Tobella, A., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world, Global Environ. Change, 43, 51–61, https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017. a
Fedorov, A., Brierley, C., Lawrence, K. T., Liu, Z., Dekens, P., and Ravelo,
A.: Patterns and mechanisms of early Pliocene warmth, Nature, 496, 43–49, https://doi.org/10.1038/nature12003, 2013. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W. J., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukaine, M.: Evaluation Of Climate Models, in: Climate Change 2013: the Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, 741–866, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Foley, J. A., Botta, A., Coe, M. T., and Costa, M. H.: El Niño–Southern
Oscillation and the climate, ecosystems and rivers of Amazonia, Global Biogeochem. Cy., 16, 1132, https://doi.org/10.1029/2002GB001872, 2002. a
Foley, J. A., Coe, M. T., Scheffer, M., and Wang, G.: Regime Shifts In The
Sahara And Sahel: Interactions Between Ecological And Climatic Systems In
Northern Africa, Ecosystems, 6, 524–532, https://doi.org/10.1007/s10021-002-0227-0, 2003. a
Fraedrich, K.: A Suite Of User-Friendly Global Climate Models: Hysteresis
Experiments, Eur. Phys. J. Plus, 127, 1–9, https://doi.org/10.1140/epjp/i2012-12053-7, 2012. a
Fraedrich, K., Jansen, H., Kirk, E., Luksch, U., and Lunkeit, F.: The Planet
Simulator: Towards A User Friendly Model, Meteorol. Z., 14, 299–304, https://doi.org/10.1127/0941-2948/2005/0043, 2005a. a, b
Fraedrich, K., Jansen, H., Kirk, E., and Lunkeit, F.: The Planet Simulator:
Green Planet And Desert World, Meteorol. Z., 14, 305–314,
https://doi.org/10.1127/0941-2948/2005/0044, 2005b. a, b, c
Fraedrich, K., Kirk, E., Luksch, U., and Lunkeit, F.: The Portable University
Model Of The Atmosphere (PUMA): Storm Track Dynamics And Low-Frequency
Variability, Meteorol. Z., 14, 735–745, https://doi.org/10.1127/0941-2948/2005/0074, 2005c. a
Garreaud, R. D., Molina, A., and Farias, M.: Andean Uplift, Ocean Cooling And
Atacama Hyperaridity: A Climate Modeling Perspective, Earth Planet. Sc. Lett., 292, 39–50, https://doi.org/10.1016/j.epsl.2010.01.017, 2010. a, b
Giannini, A., Biasutti, M., Held, I. M., and Sobel, A. H.: A Global Perspective On African Climate, Climatic Change, 90, 359–383,
https://doi.org/10.1007/s10584-008-9396-y, 2008. a
Gizaw, M. S. and Gan, T. Y.: Impact Of Climate Change And El Niño
Episodes On Droughts In Sub-Saharan Africa, Clim. Dynam., 49, 665–682, https://doi.org/10.1007/s00382-016-3366-2, 2017. a
Guilyardi, E.: El Niño-mean state-seasonal cycle interactions in a
multi-model ensemble, Clim. Dynam., 26, 329–348, 2006. a
Haywood, A. M. and Valdes, P. J.: Modelling Pliocene warmth: contribution of
atmosphere, oceans and cryosphere, Earth Planet. Sc. Lett., 218, 363–377, https://doi.org/10.1016/S0012-821X(03)00685-X, 2004. a, b
Haywood, A. M., Dowsett, H. J., and Dolan, A. M.: Integrating geological
archives and climate models for the mid-Pliocene warm period, Nat. Commun., 7, 10646, https://doi.org/10.1038/ncomms10646, 2016. a
Henrot, A.-J., François, L., Brewer, S., and Munhoven, G.: Impacts Of
Land Surface Properties And Atmospheric CO2 On The Last Glacial
Maximum Climate: A Factor Separation Analysis, Clim. Past, 5, 183–202, https://doi.org/10.5194/cp-5-183-2009, 2009. a
Hirota, M., Holmgren, M., Van Nes, E. H., and Scheffer, M.: Global resilience
of tropical forest and savanna to critical transitions, Science, 334,
232–235, https://doi.org/10.1126/science.1210657, 2011. a
Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R., and Mohren, G. M.: El Niño Effects On The Dynamics Of Terrestrial Ecosystems, Trends
Ecol. Evol., 16, 89–94, https://doi.org/10.1016/S0169-5347(00)02052-8, 2001. a, b
Holmgren, M., Stapp, P., Dickman, C. R., Gracia, C., Graham, S., Gutiérrez, J. R., Hice, C., Jaksic, F., Kelt, D. A., Letnic, M., Lima, M., López, B., Meserve, P. L., Milstead, W. B., Polis, G. A., Previtali, M. A., Richter, M., Sabaté, S., and Squeo, F. A.: A synthesis of ENSO effects on drylands in Australia, North America and South America, Adv. Geosci., 6, 69–72, https://doi.org/10.5194/adgeo-6-69-2006, 2006. a
Hoskins, B. and Simmons, A.: A multi-layer spectral model and the semi-implicit method, Q. J. Roy. Meteorol. Soc., 101, 637–655,
https://doi.org/10.1002/qj.49710142918, 1975. a
Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak,
A. M., Dlugokencky, E., Tans, P. P., Shiga, Y. P., Mountain, M., Nehrkorn, T., Montzka, S. A., McKain, K., Kofler, J., Trudeau, M., Michel, S. E., Biraud, S. C., Fischer, M. L., Worthy, D. E. J., Vaughn, B. H., White, J. W. C., Yadav, V., Basu, S., and van der Velde, I. R.: Enhanced North American carbon uptake associated with El Niño, Sci. Adv., 5, eaaw0076, https://doi.org/10.1126/sciadv.aaw0076, 2019. a
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A New
Sea Surface Temperature And Sea Ice Boundary Dataset For The Community
Atmosphere Model, J. Climate, 21, 5145–5153, https://doi.org/10.1175/2008JCLI2292.1, 2008. a
Huxman, T. E. and Smith, S. D.: Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert, Oecologia, 128, 193–201, https://doi.org/10.1007/s004420100658, 2001. a
Indeje, M., Semazzi, F. H., and Ogallo, L. J.: ENSO signals in East African rainfall seasons, Int. J. Climatol., 20, 19–46,
https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0, 2000. a
Ineson, S. and Scaife, A.: The role of the stratosphere in the European climate response to El Niño, Nat. Geoscience, 2, 32–36, https://doi.org/10.1038/ngeo381, 2009. a
Jiang, L., Jiapaer, G., Bao, A., Guo, H., and Ndayisaba, F.: Vegetation dynamics and responses to climate change and human activities in Central Asia, Sci. Total Environ., 599, 967–980, https://doi.org/10.1016/j.scitotenv.2017.05.012, 2017. a
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J.,
Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and
van der Schrier, G.: Record-Breaking Warming And Extreme Drought In The
Amazon Rainforest During The Course Of El Niño 2015–2016, Scient. Rep., 6, 33130, https://doi.org/10.1038/srep33130, 2016. a
Joly, M. and Voldoire, A.: Influence Of ENSO On The West African Monsoon:
Temporal Aspects And Atmospheric Processes, J. Climate, 22, 3193–3210, https://doi.org/10.1175/2008JCLI2450.1, 2009. a
Karmalkar, A. V., Bradley, R. S., and Diaz, H. F.: Climate change in Central
America and Mexico: regional climate model validation and climate change
projections, Clim. Dynam., 37, 605–629, https://doi.org/10.1007/s00382-011-1099-9, 2011. a
Kleidon, A.: The Climate Sensitivity To Human Appropriation Of Vegetation
Productivity And Its Thermodynamic Characterization, Global Planet. Change, 54, 109–127, https://doi.org/10.1016/j.gloplacha.2006.01.016, 2006. a
Kleidon, A.: Non-Equilibrium Thermodynamics, Maximum Entropy Production And
Earth-System Evolution, Philos. T. Roy. Soc. Lond. A, 368, 181–196,
https://doi.org/10.1098/rsta.2009.0188, 2010. a
Kunz, T., Fraedrich, K., and Lunkeit, F.: Response Of Idealized Baroclinic Wave Life Cycles To Stratospheric Flow Conditions, J. Atmos. Sci., 66, 2288–2302, https://doi.org/10.1175/2009JAS2827.1, 2009. a
Latif, M., Semenov, V. A., and Park, W.: Super El Niños In Response To
Global Warming In A Climate Model, Climatic Change, 132, 489–500,
https://doi.org/10.1007/s10584-015-1439-6, 2015. a, b
Laurance, W. F., Dell, B., Turton, S. M., Lawes, M. J., Hutley, L. B.,
McCallum, H., Dale, P., Bird, M., Hardy, G., Prideaux, G., Gawne, B., McMahon, C. R., Yu, R., Hero, J.-M., Schwarzkopf, L., Krockenberger, A., Douglas, M., Silvester, E., Mahony, M., Vella, K., Saikia, U., Wahren, C.-H., Xu, Z., Smith, B., and Cocklin, C.: The 10 Australian Ecosystems Most Vulnerable To Tipping Points, Biol. Conserv., 144, 1472–1480, https://doi.org/10.1016/j.biocon.2011.01.016, 2011. a
Laycock, W. A.: Stable states and thresholds of range condition on North
American rangelands: a viewpoint, Rangeland Ecol. Manage./J. Range Manage. Arch., 44, 427–433, 1991. a
Leitold, V., Morton, D. C., Longo, M., dos Santos, M. N., Keller, M., and
Scaranello, M.: El Niño Drought Increased Canopy Turnover In Amazon Forests, New Phytol., 219, 959–971, https://doi.org/10.1111/nph.15110, 2018. a
Lenton, T. M.: Early Warning Of Climate Tipping Points, Nat. Clim. Change,
1, 201–209, https://doi.org/10.1038/nclimate1143, 2011. a
Lenton, T. M. and Ciscar, J. C.: Integrating Tipping Points Into Climate Impact Assessments, Climatic Change, 117, 585–597, https://doi.org/10.1007/s10584-012-0572-8, 2013. a
Lenton, T. M. and Williams, H. T.: On The Origin Of Planetary-Scale Tipping
Points, Trends Ecol. Evol., 28, 380–382, https://doi.org/10.1016/j.tree.2013.06.001, 2013. a
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping Elements In The Earth's Climate System, P.
Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a, b, c, d
Lin, J.-L.: The double-ITCZ problem in IPCC AR4 coupled GCMs:
Ocean-atmosphere feedback analysis, J. Climate, 20, 4497–4525, 2007. a
Lin, P., Paynter, D., Ming, Y., and Ramaswamy, V.: Changes of the tropical
tropopause layer under global warming, J. Climate, 30, 1245–1258, 2017. a
Linsenmeier, M., Pascale, S., and Lucarini, V.: Climate Of Earth-Like Planets With High Obliquity And Eccentric Orbits: Implications For Habitability
Conditions, Planet. Space Sci., 105, 43–59, https://doi.org/10.1016/j.pss.2014.11.003, 2015. a, b, c
Lucarini, V., Fraedrich, K., and Lunkeit, F.: Thermodynamic Analysis Of
Snowball Earth Hysteresis Experiment: Efficiency, Entropy Production And
Irreversibility, Q. J. Roy. Meteorol. Soc., 136, 2–11, https://doi.org/10.1002/qj.543, 2010. a
Lucarini, V., Pascale, S., Boschi, R., Kirk, E., and Iro, N.: Habitability And Multistability In Earth-Like Planets, Astron. Nachr., 334, 576–588, https://doi.org/10.1002/asna.201311903, 2013. a, b
Lucarini, V., Ragone, F., and Lunkeit, F.: Predicting Climate Change Using
Response Theory: Global Averages And Spatial Patterns, J. Stat. Phys., 166, 1036–1064, https://doi.org/10.1007/s10955-016-1506-z, 2017. a, b
Lyon, B.: Seasonal Drought In The Greater Horn Of Africa And Its Recent
Increase During The March–May Long Rains, J. Climate, 27, 7953–7975,
https://doi.org/10.1175/JCLI-D-13-00459.1, 2014. a
Malhi, Y., Baldocchi, D., and Jarvis, P.: The Carbon Balance Of Tropical,
Temperate And Boreal Forests, Plant Cell Environ., 22, 715–740,
https://doi.org/10.1046/j.1365-3040.1999.00453.x, 1999. a
Malhi, Y., Aragão, L. E., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., and Meir, P.: Exploring The Likelihood And Mechanism Of A Climate-Change-Induced Dieback Of The Amazon Rainforest, P. Natl. Acad. Sci. USA, 106, 20610–20615, https://doi.org/10.1073/pnas.0804619106, 2009. a, b, c, d, e, f, g
McAlpine, C., Syktus, J., Ryan, J., Deo, R., McKeon, G., McGowan, H., and
Phinn, S.: A Continent Under Stress: Interactions, Feedbacks And Risks
Associated With Impact Of Modified Land Cover On Australia's Climate, Global Change Biol., 15, 2206–2223, https://doi.org/10.1111/j.1365-2486.2009.01939.x, 2009. a
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO As An Integrating
Concept In Earth Science, Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588, 2006. a, b
Mercado-Bettin, D., Salazar, J., and Villegas, J.: Long-term water balance
partitioning explained by physical and ecological characteristics in world
river basins, Ecohydrology, 12, e2072, https://doi.org/10.1002/eco.2072, 2019. a
Molina, R. D., Salazar, J. F., Martínez, J. A., Villegas, J. C., and
Arias, P. A.: Forest-induced exponential growth of precipitation along
climatological wind streamlines over the Amazon, J. Geophys. Res.-Atmos., 124, 2589–2599, https://doi.org/10.1029/2018JD029534, 2019. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
Uncertainties In Global And Regional Temperature Change Using An Ensemble Of
Observational Estimates: The HadCRUT4 Data Set, J. Geophys. Res.-Atmos., 117, 1–22, https://doi.org/10.1029/2011jd017187, 2012. a
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403, 853–858, https://doi.org/10.1038/35002501, 2000. a
Nicholson, S. E.: The West African Sahel: A Review Of Recent Studies On The Rainfall Regime And Its Interannual Variability, ISRN Meteorol., 2013, 453521, https://doi.org/10.1155/2013/453521, 2013. a
Nicholson, S. E. and Kim, J.: The Relationship Of The El Niño–Southern
Oscillation To African Rainfall, Int. J. Climatol., 17, 117–135,
https://doi.org/10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O, 1997. a
Nicholson, S. E., Funk, C., and Fink, A. H.: Rainfall Over The African Continent From The 19th Through The 21st Century, Global Planet. Change, 165, 114–127, https://doi.org/10.1016/j.gloplacha.2017.12.014, 2017. a
Oort, A. H. and Yienger, J. J.: Observed Interannual Variability In The Hadley Circulation And Its Connection To ENSO, J. Climate, 9, 2751–2767, https://doi.org/10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2, 1996. a
Orszag, S. A.: Transform Method For The Calculation Of Vector-Coupled Sums:
Application To The Spectral Form Of The Vorticity Equation, J. Atmos. Sci., 27, 890–895, https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2, 1970. a
Oyama, M. D. and Nobre, C. A.: A New Climate-Vegetation Equilibrium State for
Tropical South America, Geophys. Res. Lett., 30, 2199, https://doi.org/10.1029/2003gl018600, 2003. a
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large And Persistent Carbon Sink In The World's Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011. a, b
Phillips, O. L., Aragão, L. E., Lewis, S. L., Fisher, J. B., Lloyd, J.,
López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada,
C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., Alves de Oliveira, Á. C., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., ter Steege, H., Stropp, J., Vásquez, R., Zelazowski, P., Alvarez Dávila, E., Andelman, S., Andrade, A., Chao, K.-J., Erwin, T., Di Fiore, A., Honorio, E. C., Keeling, H., Killeen, T. J., Laurance, W. F., Peña Cruz, A., Pitman, N. C. A., Núñez Vargas, P., Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh, J., and Torres-Lezama, A.: Drought Sensitivity Of The Amazon Rainforest, Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033, 2009. a
Pithan, F., Shepherd, T. G., Zappa, G., and Sandu, I.: Climate Model Biases In Jet Streams, Blocking And Storm Tracks Resulting From Missing Orographic
Drag, Geophys. Res. Lett., 43, 7231–7240, https://doi.org/10.1002/2016gl069551, 2016. a
Pomposi, C., Giannini, A., Kushnir, Y., and Lee, D. E.: Understanding Pacific
Ocean Influence On Interannual Precipitation Variability In The Sahel, Geophys. Res. Lett., 43, 9234–9242, https://doi.org/10.1002/2016GL069980, 2016. a
Poveda, G., Mesa, O. J., and Waylen, P. R.: Nonlinear forecasting of river
flows in Colombia based upon ENSO and its associated economic value for
hydropower generation, in: Climate and water, Springer, 351–371, https://doi.org/10.1007/978-94-015-1250-3_15, 2003. a
Poveda, G., Waylen, P. R., and Pulwarty, R. S.: Annual and inter-annual
variability of the present climate in northern South America and southern
Mesoamerica, Palaeogeogr. Palaeocl. Palaeoecol., 234, 3–27,
https://doi.org/10.1016/j.palaeo.2005.10.031, 2006. a, b
Prein, A. F. and Gobiet, A.: Impacts Of Uncertainties In European Gridded
Precipitation Observations On Regional Climate Analysis, Int. J. Climatol., 37, 305–327, https://doi.org/10.1002/joc.4706, 2017. a
Ratnam, J., Behera, S., Masumoto, Y., and Yamagata, T.: Remote Effects Of El Niño And Modoki Events On The Austral Summer Precipitation Of Southern
Africa, J. Climate, 27, 3802–3815, https://doi.org/10.1175/JCLI-D-13-00431.1, 2014. a
Ropelewski, C. F. and Halpert, M. S.: North American precipitation and
temperature patterns associated with the El Niño/Southern Oscillation (ENSO), Mon. Weather Rev., 114, 2352–2362,
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2, 1986. a
Rouault, M. and Richard, Y.: Intensity And Spatial Extent Of Droughts In
Southern Africa, Geophys. Res. Lett., 32, L15702, https://doi.org/10.1029/2005GL022436, 2005. a
Salazar, J. F., Villegas, J. C., Rendón, A. M., Rodríguez, E., Hoyos,
I., Mercado-Bettín, D., and Poveda, G.: Scaling properties reveal
regulation of river flows in the Amazon through a forest reservoir, Hydrol.
Earth Syst. Sci., 22, 1735–1748, https://doi.org/10.5194/hess-22-1735-2018, 2018. a, b
Salzmann, U., Williams, M., Haywood, A. M., Johnson, A. L., Kender, S., and
Zalasiewicz, J.: Climate and environment of a Pliocene warm world, Palaeogeogr. Palaeocl. Palaeoecol., 309, 1–8, https://doi.org/10.1016/j.palaeo.2011.05.044, 2011. a
Santer, B. D., Solomon, S., Pallotta, G., Mears, C., Po-Chedley, S., Fu, Q.,
Wentz, F., Zou, C.-Z., Painter, J., Cvijanovic, I., and Bonfils, C.: Comparing tropospheric warming in climate models and satellite data, J. Climate, 30, 373–392, 2017. a
Sausen, R., Schubert, S., and Dümenil, L.: A model of river runoff for use in coupled atmosphere-ocean models, J. Hydrol., 155, 337–352,
https://doi.org/10.1016/0022-1694(94)90177-5, 1994. a
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B.:
Catastrophic Shifts In Ecosystems, Nature, 413, 591–596, https://doi.org/10.1038/35098000, 2001. a
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R.,
Dakos, V., Held, H., Van Nes, E. H., Rietkerk, M., and Sugihara, G.:
Early-Warning Signals For Critical Transitions, Nature, 461, 53–59,
https://doi.org/10.1038/nature08227, 2009. a
Schmittner, A., Silva, T. A., Fraedrich, K., Kirk, E., and Lunkeit, F.: Effects Of Mountains And Ice Sheets On Global Ocean Circulation, J. Climate, 24, 2814–2829, https://doi.org/10.1175/2010JCLI3982.1, 2011. a
Seager, R. and Henderson, N.: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived
atmospheric model data, J. Climate, 26, 7876–7901, https://doi.org/10.1175/JCLI-D-13-00018.1, 2013. a
Semtner Jr., A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanog., 6, 379–389,
https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2, 1976. a
Sheen, K., Smith, D., Dunstone, N., Eade, R., Rowell, D., and Vellinga, M.:
Skilful Prediction Of Sahel Summer Rainfall On Inter-Annual And Multi-Year
Timescales, Nat. Commun., 8, 14966, https://doi.org/10.1038/ncomms14966, 2017. a
Spiegl, T., Paeth, H., and Frimmel, H.: Evaluating Key Parameters For The
Initiation Of A Neoproterozoic Snowball Earth With A Single Earth System Model Of Intermediate Complexity, Earth Planet. Sc. Lett., 415, 100–110, https://doi.org/10.1016/j.epsl.2015.01.035, 2015. a
Staver, A. C., Archibald, S., and Levin, S. A.: The Global Extent And
Determinants Of Savanna And Forest As Alternative Biome States, Science, 334,
230–232, https://doi.org/10.1126/science.1210465, 2011. a, b
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric Component Of The MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013. a
Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations, Tech. Rep. 60, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, University of California, California, 2000. a
Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M., and Roeckner,
E.: Increased El Niño Frequency In A Climate Model Forced By Future
Greenhouse Warming, Nature, 398, 694–697, https://doi.org/10.1038/19505, 1999. a
Tippett, M. K. and Giannini, A.: Potentially Predictable Components Of
African Summer Rainfall In An SST-forced GCM Simulation, J. Climate, 19, 3133–3144, https://doi.org/10.1175/JCLI3779.1, 2006. a
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric Moisture
Transports From Ocean To Land And Global Energy Flows In Reanalyses, J. Climate, 24, 4907–4924, https://doi.org/10.1175/2011jcli4171.1, 2011. a, b, c
Wang, G. and Hendon, H. H.: Sensitivity Of Australian Rainfall To Inter-El Niño Variations, J. Climate, 20, 4211–4226,
https://doi.org/10.1175/JCLI4228.1, 2007. a
Wara, M. W., Ravelo, A. C., and Delaney, M. L.: Permanent El Niño-like
conditions during the Pliocene warm period, Science, 309, 758–761,
https://doi.org/10.1126/science.1112596, 2005. a, b, c
Warman, L. and Moles, A. T.: Alternative stable states in Australia's Wet
Tropics: a theoretical framework for the field data and a field-case for the theory, Landsc. Ecol., 24, 1–13, https://doi.org/10.1007/s10980-008-9285-9, 2009. a
Watson, J. E., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C.,
Thompson, I., Ray, J. C., Murray, K., Salazar, A., McAlpine, C., Potapov, P., Walston, J., Robinson, J. G., Painter, M., Wilkie, D., Filardi, C., Laurance, W. F., Houghton, R. A., Maxwell, S., Grantham, H., Samper, C., Wang, S., Laestadius, L., Runting, R. K., Silva-Chávez, G. A., Ervin, J., and Lindenmayer, D.: The Exceptional Value Of Intact Forest Ecosystems, Nat. Ecol. Evol., 2, 599–610, https://doi.org/10.1038/s41559-018-0490-x, 2018. a
Weng, W., Luedeke, M. K., Zemp, D. C., Lakes, T., and Kropp, J. P.: Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia, Hydrol. Earth Syst. Sci., 22, 911–927,
https://doi.org/10.5194/hess-22-911-2018, 2018.
a
Wu, Z., Boke-Olén, N., Fensholt, R., Ardö, J., Eklundh, L., and
Lehsten, V.: Effect of climate dataset selection on simulations of terrestrial GPP: Highest uncertainty for tropical regions, PloS One, 13,
e0199383, https://doi.org/10.1371/journal.pone.0199383, 2018. a
Yang, K., Koike, T., Fujii, H., Tamagawa, K., and Hirose, N.: Improvement of
Surface Flux Parametrizations With A Turbulence-Related Length, Q. J. Roy. Meteorol. Soc., 128, 2073–2087, https://doi.org/10.1256/003590002320603548, 2002. a
Yeh, S.-W., Cai, W., Min, S.-K., McPhaden, M. J., Dommenget, D., Dewitte, B.,
Collins, M., Ashok, K., An, S.-I., Yim, B.-Y., and Kug, J.-S.: ENSO Atmospheric Teleconnections And Their Response To Greenhouse Gas Forcing, Rev. Geophys., 56, 185–206, https://doi.org/10.1002/2017RG000568, 2018. a
Zebiak, S. E., Orlove, B., Muñoz, Á. G., Vaughan, C., Hansen, J., Troy, T., Thomson, M. C., Lustig, A., and Garvin, S.: Investigating El Niño–Southern Oscillation And Society Relationships, Wiley
Interdisciplin. Rev.: Clim. Change, 6, 17–34, https://doi.org/10.7916/D84X577H, 2015. a
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M., Hirota, M., Montade, V.,
Sampaio, G., Staal, A., Wang-Erlandsson, L., and Rammig, A.: Self-amplified
Amazon Forest Loss Due To Vegetation-Atmosphere Feedbacks, Nat. Commun., 8, 14681, https://doi.org/10.1038/ncomms14681, 2017. a
Zeng, N. and Neelin, J. D.: The Role Of Vegetation-Climate Interaction And
Interannual Variability In Shaping The African Savanna, J. Climate, 13, 2665–2670, https://doi.org/10.1175/1520-0442(2000)013<2665:TROVCI>2.0.CO;2, 2000. a
Zeng, N. and Yoon, J.: Expansion Of The World's Deserts Due To
Vegetation-Albedo Feedback Under Global Warming, Geophys. Res. Lett., 36, L17401, https://doi.org/10.1029/2009GL039699, 2009. a
Zhang, Y. G., Pagani, M., and Liu, Z.: A 12-million-year temperature history of the tropical Pacific Ocean, Science, 344, 84–87, https://doi.org/10.1126/science.1246172, 2014. a
Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: ImprovementS Of
The MODIS Terrestrial Gross And Net Primary Production Global Data Set,
Remote Sens. Environ., 95, 164–176, https://doi.org/10.1016/j.rse.2004.12.011, 2005. a
Zhou, C. and Wang, K.: Evaluation Of Surface Fluxes In ERA-Interim Using
Flux Tower Data, J. Climate, 29, 1573–1582, https://doi.org/10.1175/JCLI-D-15-0523.1, 2016. a
Short summary
Earth's climate can be studied as a system with different components that can be strongly altered by human influence. One possibility is that the El Niño phenomenon becomes more frequent. We investigated the potential impacts of the most frequent El Niño: a permanent one. The most noticeable impacts include variations in global water availability and vegetation productivity, potential dieback of the Amazon rainforest, greening of western North America, and further aridification of Australia.
Earth's climate can be studied as a system with different components that can be strongly...
Altmetrics
Final-revised paper
Preprint