Articles | Volume 9, issue 3
https://doi.org/10.5194/esd-9-1025-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-9-1025-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A theory of Pleistocene glacial rhythmicity
Mikhail Y. Verbitsky
CORRESPONDING AUTHOR
The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, Saint Petersburg, Russia
Michel Crucifix
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Dmitry M. Volobuev
The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, Saint Petersburg, Russia
Viewed
Total article views: 5,561 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Mar 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,217 | 1,222 | 122 | 5,561 | 124 | 110 |
- HTML: 4,217
- PDF: 1,222
- XML: 122
- Total: 5,561
- BibTeX: 124
- EndNote: 110
Total article views: 4,577 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Aug 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,531 | 937 | 109 | 4,577 | 116 | 103 |
- HTML: 3,531
- PDF: 937
- XML: 109
- Total: 4,577
- BibTeX: 116
- EndNote: 103
Total article views: 984 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Mar 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
686 | 285 | 13 | 984 | 8 | 7 |
- HTML: 686
- PDF: 285
- XML: 13
- Total: 984
- BibTeX: 8
- EndNote: 7
Viewed (geographical distribution)
Total article views: 5,561 (including HTML, PDF, and XML)
Thereof 5,211 with geography defined
and 350 with unknown origin.
Total article views: 4,577 (including HTML, PDF, and XML)
Thereof 4,252 with geography defined
and 325 with unknown origin.
Total article views: 984 (including HTML, PDF, and XML)
Thereof 959 with geography defined
and 25 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
26 citations as recorded by crossref.
- Asymptotic analysis of internal relaxation oscillations in a conceptual climate model Ł. Płociniczak 10.1093/imamat/hxaa014
- The genome sequence of Mesua ferrea and comparative demographic histories of forest trees A. Patil et al. 10.1016/j.gene.2020.145214
- Toward generalized Milankovitch theory (GMT) A. Ganopolski 10.5194/cp-20-151-2024
- Anti‐Phased Miocene Ice Volume and CO2 Changes by Transient Antarctic Ice Sheet Variability L. Stap et al. 10.1029/2020PA003971
- Nonlinear climate dynamics: From deterministic behaviour to stochastic excitability and chaos D. Alexandrov et al. 10.1016/j.physrep.2020.11.002
- Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do M. Verbitsky & M. Crucifix 10.5194/cp-19-1793-2023
- A Theory of Orbital-Forced Glacial Cycles: Resolving Pleistocene Puzzles H. Ou 10.3390/jmse11030564
- Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations K. Riechers et al. 10.5194/cp-18-863-2022
- The Mid-Pleistocene Transition: a delayed response to an increasing positive feedback? J. Shackleton et al. 10.1007/s00382-022-06544-2
- Crossover and peaks in the Pleistocene climate spectrum; understanding from simple ice age models P. Ditlevsen et al. 10.1007/s00382-019-05087-3
- Coherence resonance in paleoclimatic modeling A. Bosio et al. 10.1007/s00382-022-06351-9
- Russian Climate Research in 2015–2018 I. Mokhov 10.1134/S0001433820040064
- ESD Ideas: Propagation of high-frequency forcing to ice age dynamics M. Verbitsky et al. 10.5194/esd-10-257-2019
- A gradual change is more likely to have caused the Mid-Pleistocene Transition than an abrupt event E. Legrain et al. 10.1038/s43247-023-00754-0
- Synchronization phenomena observed in glacial–interglacial cycles simulated in an Earth system model of intermediate complexity T. Mitsui et al. 10.5194/esd-14-1277-2023
- Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution M. Verbitsky 10.5194/esd-13-879-2022
- ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability M. Verbitsky & M. Crucifix 10.5194/esd-12-63-2021
- Influence of the choice of insolation forcing on the results of a conceptual glacial cycle model G. Leloup & D. Paillard 10.5194/cp-18-547-2022
- Insolation evolution and ice volume legacies determine interglacial and glacial intensity T. Mitsui et al. 10.5194/cp-18-1983-2022
- Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland P. Köhler & R. van de Wal 10.1038/s41467-020-18897-5
- Path-dependence of the Plio–Pleistocene glacial/interglacial cycles J. Carrillo et al. 10.1073/pnas.2322926121
- <i>π</i>-theorem generalization of the ice-age theory M. Verbitsky & M. Crucifix 10.5194/esd-11-281-2020
- Quantification and interpretation of the climate variability record A. von der Heydt et al. 10.1016/j.gloplacha.2020.103399
- Genome sequencing and comparative analysis of Ficus benghalensis and Ficus religiosa species reveal evolutionary mechanisms of longevity A. Chakraborty et al. 10.1016/j.isci.2022.105100
- Machine learning approach reveals strong link between obliquity amplitude increase and the Mid-Brunhes transition T. Mitsui & N. Boers 10.1016/j.quascirev.2021.107344
- A theory of Pleistocene glacial rhythmicity M. Verbitsky et al. 10.5194/esd-9-1025-2018
25 citations as recorded by crossref.
- Asymptotic analysis of internal relaxation oscillations in a conceptual climate model Ł. Płociniczak 10.1093/imamat/hxaa014
- The genome sequence of Mesua ferrea and comparative demographic histories of forest trees A. Patil et al. 10.1016/j.gene.2020.145214
- Toward generalized Milankovitch theory (GMT) A. Ganopolski 10.5194/cp-20-151-2024
- Anti‐Phased Miocene Ice Volume and CO2 Changes by Transient Antarctic Ice Sheet Variability L. Stap et al. 10.1029/2020PA003971
- Nonlinear climate dynamics: From deterministic behaviour to stochastic excitability and chaos D. Alexandrov et al. 10.1016/j.physrep.2020.11.002
- Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do M. Verbitsky & M. Crucifix 10.5194/cp-19-1793-2023
- A Theory of Orbital-Forced Glacial Cycles: Resolving Pleistocene Puzzles H. Ou 10.3390/jmse11030564
- Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations K. Riechers et al. 10.5194/cp-18-863-2022
- The Mid-Pleistocene Transition: a delayed response to an increasing positive feedback? J. Shackleton et al. 10.1007/s00382-022-06544-2
- Crossover and peaks in the Pleistocene climate spectrum; understanding from simple ice age models P. Ditlevsen et al. 10.1007/s00382-019-05087-3
- Coherence resonance in paleoclimatic modeling A. Bosio et al. 10.1007/s00382-022-06351-9
- Russian Climate Research in 2015–2018 I. Mokhov 10.1134/S0001433820040064
- ESD Ideas: Propagation of high-frequency forcing to ice age dynamics M. Verbitsky et al. 10.5194/esd-10-257-2019
- A gradual change is more likely to have caused the Mid-Pleistocene Transition than an abrupt event E. Legrain et al. 10.1038/s43247-023-00754-0
- Synchronization phenomena observed in glacial–interglacial cycles simulated in an Earth system model of intermediate complexity T. Mitsui et al. 10.5194/esd-14-1277-2023
- Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution M. Verbitsky 10.5194/esd-13-879-2022
- ESD Ideas: The Peclet number is a cornerstone of the orbital and millennial Pleistocene variability M. Verbitsky & M. Crucifix 10.5194/esd-12-63-2021
- Influence of the choice of insolation forcing on the results of a conceptual glacial cycle model G. Leloup & D. Paillard 10.5194/cp-18-547-2022
- Insolation evolution and ice volume legacies determine interglacial and glacial intensity T. Mitsui et al. 10.5194/cp-18-1983-2022
- Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland P. Köhler & R. van de Wal 10.1038/s41467-020-18897-5
- Path-dependence of the Plio–Pleistocene glacial/interglacial cycles J. Carrillo et al. 10.1073/pnas.2322926121
- <i>π</i>-theorem generalization of the ice-age theory M. Verbitsky & M. Crucifix 10.5194/esd-11-281-2020
- Quantification and interpretation of the climate variability record A. von der Heydt et al. 10.1016/j.gloplacha.2020.103399
- Genome sequencing and comparative analysis of Ficus benghalensis and Ficus religiosa species reveal evolutionary mechanisms of longevity A. Chakraborty et al. 10.1016/j.isci.2022.105100
- Machine learning approach reveals strong link between obliquity amplitude increase and the Mid-Brunhes transition T. Mitsui & N. Boers 10.1016/j.quascirev.2021.107344
1 citations as recorded by crossref.
Latest update: 17 Nov 2024
Short summary
Using a dynamical climate model purely reduced from the conservation laws of ice-moving media, we show that ice-sheet physics coupled with a linear climate temperature feedback conceal enough dynamics to satisfactorily explain the system response over the full Pleistocene. There is no need, a priori, to call for a nonlinear response of, for example, the carbon cycle.
Using a dynamical climate model purely reduced from the conservation laws of ice-moving media,...
Altmetrics
Final-revised paper
Preprint