Articles | Volume 5, issue 2
https://doi.org/10.5194/esd-5-441-2014
https://doi.org/10.5194/esd-5-441-2014
Research article
 | 
05 Dec 2014
Research article |  | 05 Dec 2014

Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land

L. Wang-Erlandsson, R. J. van der Ent, L. J. Gordon, and H. H. G. Savenije

Viewed

Total article views: 8,908 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
4,432 3,958 518 8,908 262 301
  • HTML: 4,432
  • PDF: 3,958
  • XML: 518
  • Total: 8,908
  • BibTeX: 262
  • EndNote: 301
Views and downloads (calculated since 14 Mar 2014)
Cumulative views and downloads (calculated since 14 Mar 2014)
Latest update: 23 Nov 2025
Download
Short summary
We investigate the temporal characteristics of partitioned evaporation on land, and we present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) -- a hydrological land-surface model developed to provide inputs to moisture tracking. The terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). This can cause differences in moisture recycling, which is investigated more in Part 2.
Share
Altmetrics
Final-revised paper
Preprint