Articles | Volume 16, issue 2
https://doi.org/10.5194/esd-16-411-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-16-411-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early opportunity signals of a tipping point in the UK's second-hand electric vehicle market
Chris A. Boulton
CORRESPONDING AUTHOR
Global Systems Institute, University of Exeter, Exeter, EX4 4QE, UK
Joshua E. Buxton
Global Systems Institute, University of Exeter, Exeter, EX4 4QE, UK
Timothy M. Lenton
Global Systems Institute, University of Exeter, Exeter, EX4 4QE, UK
Related authors
Vasilis Dakos, Chris A. Boulton, Joshua E. Buxton, Jesse F. Abrams, Beatriz Arellano-Nava, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, https://doi.org/10.5194/esd-15-1117-2024, 2024
Short summary
Short summary
Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
B. B. B. Booth, D. Bernie, D. McNeall, E. Hawkins, J. Caesar, C. Boulton, P. Friedlingstein, and D. M. H. Sexton
Earth Syst. Dynam., 4, 95–108, https://doi.org/10.5194/esd-4-95-2013, https://doi.org/10.5194/esd-4-95-2013, 2013
Mark S. Williamson and Timothy M. Lenton
Earth Syst. Dynam., 15, 1483–1508, https://doi.org/10.5194/esd-15-1483-2024, https://doi.org/10.5194/esd-15-1483-2024, 2024
Short summary
Short summary
Climate models have transitioned to a superrotating atmospheric state under a broad range of warm climates. Such a transition would change global weather patterns should it occur. Here we simulate this transition using an idealized climate model and look for any early warnings of the superrotating state before it happens. We find several early warning indicators that we attribute to an oscillating pattern in the windfield fluctuations.
Vasilis Dakos, Chris A. Boulton, Joshua E. Buxton, Jesse F. Abrams, Beatriz Arellano-Nava, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, https://doi.org/10.5194/esd-15-1117-2024, 2024
Short summary
Short summary
Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far.
Sibel Eker, Timothy M. Lenton, Tom Powell, Jürgen Scheffran, Steven R. Smith, Deepthi Swamy, and Caroline Zimm
Earth Syst. Dynam., 15, 789–800, https://doi.org/10.5194/esd-15-789-2024, https://doi.org/10.5194/esd-15-789-2024, 2024
Short summary
Short summary
Cascading effects through cross-system interactions are one of the biggest promises of positive tipping points to create rapid climate and sustainability action. Here, we review these in terms of their interactions with sociotechnical systems such as energy, transport, agriculture, society, and policy.
Antony Philip Emenyu, Thomas Pienkowski, Andrew M. Cunliffe, Timothy M. Lenton, and Tom Powell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2531, https://doi.org/10.5194/egusphere-2023-2531, 2023
Short summary
Short summary
This paper explores what processes could boost adoption rates for regenerative agriculture programs in Africa and draws on insights from successful rapid scaling of TIST in east Africa. Found that the cultivation of reinforcing feedback processes that strengthened the social capital around adoption and elimination of barriers to carbon accreditation for RA projects to be key success factors and possible opportunities new and ongoing RA programs to boost their adoption rates.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Mila Kim-Chau Fiona Ong, Fenna Blomsma, and Timothy Michael Lenton
EGUsphere, https://doi.org/10.5194/egusphere-2023-2361, https://doi.org/10.5194/egusphere-2023-2361, 2023
Short summary
Short summary
We investigate the initially successful transition from regional bottle reuse for mineral water to a widespread bottle reuse system in Germany, its subsequent destabilisation, and what this teaches us about tipping dynamics in packaging systems. Our findings demonstrate opportunities to create an enabling environment for change, and the role of specific reinforcing feedback loops and interventions in accelerating or impeding sustainable transitions.
Jakob Emanuel Deutloff, Hermann Held, and Timothy Michael Lenton
EGUsphere, https://doi.org/10.5194/egusphere-2023-1469, https://doi.org/10.5194/egusphere-2023-1469, 2023
Short summary
Short summary
We investigate the probabilities of triggering climate tipping points under various emission scenarios and how they are altered by additional carbon emissions from tipping points within the Earth's carbon cycle. We find that even “middle of the road” emission scenarios are highly unsafe with regard to triggering climate tipping points. Under such scenarios, probabilities of triggering are increased substantially by carbon emissions from tipping points within the Earth's carbon cycle.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Thomas S. Ball, Naomi E. Vaughan, Thomas W. Powell, Andrew Lovett, and Timothy M. Lenton
Geosci. Model Dev., 15, 929–949, https://doi.org/10.5194/gmd-15-929-2022, https://doi.org/10.5194/gmd-15-929-2022, 2022
Short summary
Short summary
C-LLAMA is a simple model of the global food system operating at a country level from 2013 to 2050. The model begins with projections of diet composition and populations for each country, producing a demand for each food commodity and finally an agricultural land use in each country. The model can be used to explore the sensitivity of agricultural land use to various drivers within the food system at country, regional, and continental spatial aggregations.
Elisa Lovecchio and Timothy M. Lenton
Geosci. Model Dev., 13, 1865–1883, https://doi.org/10.5194/gmd-13-1865-2020, https://doi.org/10.5194/gmd-13-1865-2020, 2020
Short summary
Short summary
We present here the newly developed BPOP box model. BPOP is aimed at studying the impact of large-scale changes in the biological pump, i.e. the cycle of production, export and remineralization of the marine organic matter, on the nutrient and oxygen concentrations in the shelf and open ocean. This model has been developed to investigate the global consequences of the evolution of larger and heavier phytoplankton cells but can be applied to a variety of past and future case studies.
Emma W. Littleton, Anna B. Harper, Naomi E. Vaughan, Rebecca J. Oliver, Maria Carolina Duran-Rojas, and Timothy M. Lenton
Geosci. Model Dev., 13, 1123–1136, https://doi.org/10.5194/gmd-13-1123-2020, https://doi.org/10.5194/gmd-13-1123-2020, 2020
Short summary
Short summary
This study presents new functionality to represent bioenergy crops and harvests in JULES, a land surface model. Such processes must be explicitly represented before the environmental effects of large-scale bioenergy production can be fully evaluated, using Earth system modelling. This new functionality allows for many types of bioenergy plants and harvesting regimes to be simulated, such as perennial grasses, short rotation coppicing, and forestry rotations.
David I. Armstrong McKay and Timothy M. Lenton
Clim. Past, 14, 1515–1527, https://doi.org/10.5194/cp-14-1515-2018, https://doi.org/10.5194/cp-14-1515-2018, 2018
Short summary
Short summary
This study uses statistical analyses to look for signs of declining resilience (i.e. greater sensitivity to small shocks) in the global carbon cycle and climate system across the Palaeocene–Eocene Thermal Maximum (PETM), a global warming event 56 Myr ago driven by rapid carbon release. Our main finding is that carbon cycle resilience declined in the 1.5 Myr beforehand (a time of significant volcanic emissions), which is consistent with but not proof of a carbon release tipping point at the PETM.
Sebastian Bathiany, Bregje van der Bolt, Mark S. Williamson, Timothy M. Lenton, Marten Scheffer, Egbert H. van Nes, and Dirk Notz
The Cryosphere, 10, 1631–1645, https://doi.org/10.5194/tc-10-1631-2016, https://doi.org/10.5194/tc-10-1631-2016, 2016
Short summary
Short summary
We examine if a potential "tipping point" in Arctic sea ice, causing abrupt and irreversible sea-ice loss, could be foreseen with statistical early warning signals. We assess this idea by using several models of different complexity. We find robust and consistent trends in variability that are not specific to the existence of a tipping point. While this makes an early warning impossible, it allows to estimate sea-ice variability from only short observational records or reconstructions.
Timothy M. Lenton, Peter-Paul Pichler, and Helga Weisz
Earth Syst. Dynam., 7, 353–370, https://doi.org/10.5194/esd-7-353-2016, https://doi.org/10.5194/esd-7-353-2016, 2016
Short summary
Short summary
We identify six past revolutions in energy input and material cycling in Earth and human history. We find that human energy use has now reached a magnitude comparable to the biosphere, and conclude that a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems. Our work was inspired by recognising the connections between Earth system science and industrial ecology at the "LOOPS" workshop.
Mark S. Williamson, Sebastian Bathiany, and Timothy M. Lenton
Earth Syst. Dynam., 7, 313–326, https://doi.org/10.5194/esd-7-313-2016, https://doi.org/10.5194/esd-7-313-2016, 2016
Short summary
Short summary
We find early warnings of abrupt changes in complex dynamical systems such as the climate where the usual early warning indicators do not work. In particular, these are systems that are periodically forced, for example by the annual cycle of solar insolation. We show these indicators are good theoretically in a general setting then apply them to a specific system, that of the Arctic sea ice, which has been conjectured to be close to such a tipping point. We do not find evidence of it.
Z. A. Thomas, F. Kwasniok, C. A. Boulton, P. M. Cox, R. T. Jones, T. M. Lenton, and C. S. M. Turney
Clim. Past, 11, 1621–1633, https://doi.org/10.5194/cp-11-1621-2015, https://doi.org/10.5194/cp-11-1621-2015, 2015
Short summary
Short summary
Using a combination of speleothem records and model simulations of the East Asian Monsoon over the penultimate glacial cycle, we search for early warning signals of past tipping points. We detect a characteristic slower response to perturbations prior to an abrupt monsoon shift at the glacial termination; however, we do not detect these signals in the preceding shifts. Our results have important implications for detecting tipping points in palaeoclimate records outside glacial terminations.
G. Colbourn, A. Ridgwell, and T. M. Lenton
Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, https://doi.org/10.5194/gmd-6-1543-2013, 2013
B. B. B. Booth, D. Bernie, D. McNeall, E. Hawkins, J. Caesar, C. Boulton, P. Friedlingstein, and D. M. H. Sexton
Earth Syst. Dynam., 4, 95–108, https://doi.org/10.5194/esd-4-95-2013, https://doi.org/10.5194/esd-4-95-2013, 2013
V. N. Livina and T. M. Lenton
The Cryosphere, 7, 275–286, https://doi.org/10.5194/tc-7-275-2013, https://doi.org/10.5194/tc-7-275-2013, 2013
Related subject area
Topics: Antroposphere | Interactions: Human/Earth system interactions | Methods: Other methods
Advancing the estimation of future climate impacts within the United States
Corinne Hartin, Erin E. McDuffie, Karen Noiva, Marcus Sarofim, Bryan Parthum, Jeremy Martinich, Sarah Barr, Jim Neumann, Jacqueline Willwerth, and Allen Fawcett
Earth Syst. Dynam., 14, 1015–1037, https://doi.org/10.5194/esd-14-1015-2023, https://doi.org/10.5194/esd-14-1015-2023, 2023
Short summary
Short summary
This study utilizes a reduced-complexity model, Framework for Evaluating Damages and Impacts (FrEDI), to assess the impacts from climate change in the United States across 10 000 future probabilistic emission and socioeconomic projections. Climate-driven damages are largest for the health category, with the majority of damages in this category coming from the valuation estimates of premature mortality attributable to climate-driven changes in extreme temperature and air quality scenarios.
Cited articles
Arthur, W. B.: Competing Technologies, Increasing Returns, and Lock-In by Historical Events, Econ. J., 99, 116–131, https://doi.org/10.2307/2234208, 1989.
Auto Trader UK: The Road to 2030, https://www.autotraderroadto2030.co.uk/ (last access: 28 September 2023), 2023.
Boulton, C. A. and Lenton, T. M.: A new method for detecting abrupt shifts in time series [version 1; peer review: 2 approved with reservations], F1000Research, 8, 746, https://doi.org/10.12688/f1000research.19310.1, 2019.
Brummitt, C. D., Barnett, G., and D'Souza, R. M.: Coupled catastrophes: sudden shifts cascade and hop among interdependent systems, J. R. Soc. Interface, 12, 20150712, https://doi.org/10.1098/rsif.2015.0712, 2015.
Dakos, V., Scheffer, M., Van Nes, E. H., Brovkin, V., Petoukhov, V., and Held, H.: Slowing down as an early warning signal for abrupt climate change, P. Natl. Acad. Sci. USA, 105, 14308–14312, https://doi.org/10.1073/pnas.0802430105, 2008.
Dakos, V., Boulton, C. A., Buxton, J. E., Abrams, J. F., Arellano-Nava, B., Armstrong McKay, D. I., Bathiany, S., Blaschke, L., Boers, N., Dylewsky, D., López-Martínez, C., Parry, I., Ritchie, P., van der Bolt, B., van der Laan, L., Weinans, E., and Kéfi, S.: Tipping point detection and early warnings in climate, ecological, and human systems, Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, 2024.
Ditlevsen, P. D. and Johnsen, S. J.: Tipping points: Early warning and wishful thinking, Geophys. Res. Lett., 37, L19703, https://doi.org/10.1029/2010GL044486, 2010.
Dosi, G., Moneta, A., and Stepanova, E.: Dynamic increasing returns and innovation diffusion: bringing Polya Urn processes to the empirical data, Ind. Innov., 26, 461–478, https://doi.org/10.1080/13662716.2018.1444978, 2019.
Geels, F. W.: Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective, Technol. Forecast. Soc., 72, 681–696, https://doi.org/10.1016/j.techfore.2004.08.014, 2005.
Geels, F. W. and Ayoub, M.: A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration, Technol. Forecast. Soc., 193, 122639, https://doi.org/10.1016/j.techfore.2023.122639, 2023.
Grübler, A., Nakićenović, N., and Victor, D. G.: Dynamics of energy technologies and global change, Energ. Policy, 27, 247–280, https://doi.org/10.1016/S0301-4215(98)00067-6, 1999.
Held, H. and Kleinen, T.: Detection of climate system bifurcations by degenerate fingerprinting, Geophys. Res. Lett., 31, L23207, https://doi.org/10.1029/2004gl020972, 2004.
IEA: Global EV Outlook 2024, IEA, Paris, https://www.iea.org/reports/global-ev-outlook-2024 (last access: 29 November 2024), 2024.
Kucharavy, D. and De Guio, R.: Application of S-shaped curves, Procedia Engineer., 9, 559–572, https://doi.org/10.1016/j.proeng.2011.03.142, 2011.
Lenton, T. M.: Tipping positive change, Philos. T. R. Soc. B, 375, 20190123, https://doi.org/10.1098/rstb.2019.0123, 2020.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.
Lenton, T. M., Benson, S., Smith, T., Ewer, T., Lanel, V., Petykowski, E., Powell, T. W. R., Abrams, J. F., Blomsma, F., and Sharpe, S.: Operationalising positive tipping points towards global sustainability, Global Sustainability, 5, e1, https://doi.org/10.1017/sus.2021.30, 2022a.
Lenton, T. M., Boulton, C. A., and Scheffer, M.: Resilience of countries to COVID-19 correlated with trust, Sci. Rep., 12, 75, https://doi.org/10.1038/s41598-021-03358-w, 2022b.
Mercure, J.-F., Lam, A., Buxton, J., Boulton, C., and Lenton, T.: Evidence of a cascading positive tipping point towards electric vehicles, Research Square, 19, https://doi.org/10.21203/rs.3.rs-3979270/v1, 2024.
Nakicenovic, N.: The automobile road to technological change: Diffusion of the automobile as a process of technological substitution, Technol. Forecast. Soc., 29, 309–340, https://doi.org/10.1016/0040-1625(86)90021-1, 1986.
Neuman, Y., Nave, O., and Dolev, E.: Buzzwords on their way to a tipping-point: A view from the blogosphere, Complexity, 16, 58–68, https://doi.org/10.1002/cplx.20347, 2011.
Otto, I. M., Donges, J. F., Cremades, R., Bhowmik, A., Hewitt, R. J., Lucht, W., Rockström, J., Allerberger, F., McCaffrey, M., Doe, S. S. P., Lenferna, A., Morán, N., Van Vuuren, D. P., and Schellnhuber, H. J.: Social tipping dynamics for stabilizing Earth's climate by 2050, P. Natl. Acad. Sci. USA, 117, 2354–2365, https://doi.org/10.1073/pnas.1900577117, 2020.
Rogers, E. M.: Diffusion of innovations, Simon and Schuster, New York, US, ISBN 9780743222099, 2003.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., Van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions, Nature, 461, 53–59, https://doi.org/10.1038/nature08227, 2009.
Sharpe, S. and Lenton, T. M.: Upward-scaling tipping cascades to meet climate goals: plausible grounds for hope, Clim. Policy, 21, 421–433, https://doi.org/10.1080/14693062.2020.1870097, 2021.
Silverberg, G. and Verspagen, B.: Collective learning, innovation and growth in a boundedly rational, evolutionary world, J. Evol. Econ., 4, 207–226, https://doi.org/10.1007/BF01236369, 1994.
Veraart, A. J., Faassen, E. J., Dakos, V., Van Nes, E. H., Lürling, M., and Scheffer, M.: Recovery rates reflect distance to a tipping point in a living system, Nature, 481, 357–359, https://doi.org/10.1038/nature10723, 2012.
Wissel, C.: A universal law of the characteristic return time near thresholds, Oecologia, 65, 101–107, https://doi.org/10.1007/bf00384470, 1984.
Zeppini, P., Frenken, K., and Kupers, R.: Thresholds models of technological transitions, Environmental Innovation and Societal Transitions, 11, 54–70, https://doi.org/10.1016/j.eist.2013.10.002, 2014.
Short summary
Early warning signals used to detect tipping points are tested on a dataset of daily views of online electric vehicle (EV) adverts. The attention given to EV adverts spikes upwards after specific events before returning to normality more slowly over time. Alongside increases in autocorrelation and variance, these results are consistent with the movement towards a tipping point to an EV-dominated market, highlighting the ability of these signals to work in previously untested social systems.
Early warning signals used to detect tipping points are tested on a dataset of daily views of...
Special issue
Altmetrics
Final-revised paper
Preprint