Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-291-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-291-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-million-year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes
Gaëlle Leloup
CORRESPONDING AUTHOR
Agence Nationale pour la gestion des déchets radioactifs (ANDRA), 1 Rue Jean Monnet, 92290 Châtenay-Malabry, France
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Didier Paillard
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Related authors
Gaëlle Leloup and Didier Paillard
Clim. Past, 18, 547–558, https://doi.org/10.5194/cp-18-547-2022, https://doi.org/10.5194/cp-18-547-2022, 2022
Short summary
Short summary
Over the last 2.6 Myr, the Quaternary period has been marked by the alternation of extended and reduced Northern Hemisphere ice sheets, known as glacial-interglacial cycles. With a simple model, we are able to reproduce the main features of the ice volume evolution, like the switch of periodicity, from 41 kyr cycles to 100 kyr cycles, observed in the data after 1 Ma. The quality of the model-data agreement depending on the input insolation and period considered is discussed.
Didier Paillard
EGUsphere, https://doi.org/10.5194/egusphere-2025-2885, https://doi.org/10.5194/egusphere-2025-2885, 2025
Short summary
Short summary
This paper presents classical and new mathematical formulas to compute various "flavors" of the insolation forcing used to interpret paleoclimatic series, or to simulate climate at different times. It provides a description of the usual concepts while insisting on the difficulties associated with them, like the definition of a calendar. Then it presents novel formulas to compute extrema of insolation for a given latitude. It thus presents a new open-source software package available online.
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814, https://doi.org/10.5194/gmd-17-3801-2024, https://doi.org/10.5194/gmd-17-3801-2024, 2024
Short summary
Short summary
All accurate climate models use equations with poorly defined parameters, where knobs for the parameters are turned to fit the observations. This process is called tuning. In this article, we use another paradigm. We use a thermodynamic hypothesis, the maximum entropy production, to compute temperatures, energy fluxes, and precipitation, where tuning is impossible. For now, the 1D vertical model is used for a tropical atmosphere. The correct order of magnitude of precipitation is computed.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Gaëlle Leloup and Didier Paillard
Clim. Past, 18, 547–558, https://doi.org/10.5194/cp-18-547-2022, https://doi.org/10.5194/cp-18-547-2022, 2022
Short summary
Short summary
Over the last 2.6 Myr, the Quaternary period has been marked by the alternation of extended and reduced Northern Hemisphere ice sheets, known as glacial-interglacial cycles. With a simple model, we are able to reproduce the main features of the ice volume evolution, like the switch of periodicity, from 41 kyr cycles to 100 kyr cycles, observed in the data after 1 Ma. The quality of the model-data agreement depending on the input insolation and period considered is discussed.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Cited articles
Archer, D., Kheshgi, H., and Maier-Reimer, E.: Multiple timescales for
neutralization of fossil fuel CO2, Geophys. Res. Lett., 24,
405–408, https://doi.org/10.1029/97GL00168, 1997. a
Bachan, A., Lau, K. V., Saltzman, M. R., Thomas, E., Kump, L. R., and Payne,
J. L.: A model for the decrease in amplitude of carbon isotope excursions
across the Phanerozoic, Am. J. Sci., 317, 641–676,
https://doi.org/10.2475/06.2017.01, 2017. a
Baroni, I. R., Palastanga, V., and Slomp, C. P.: Enhanced Organic Carbon Burial
in Sediments of Oxygen Minimum Zones Upon Ocean Deoxygenation, Front.
Mar. Sci., 6, 839, https://doi.org/10.3389/fmars.2019.00839, 2020. a, b
Bergman, N. M., Lenton, T. M., and Watson, A. J.: COPSE: A new model of
biogeochemical cycling over Phanerozoic time, Am. J. Sci.,
304, 397–437, https://doi.org/10.2475/ajs.304.5.397, 2004. a
Berner, R.: Modeling atmospheric O2 over Phanerozoic time, Geochim.
Cosmochim. Ac., 65, 685–694,
https://doi.org/10.1016/S0016-7037(00)00572-X, 2001. a
Berner, R. A. and Canfield, D. E.: A new model for atmospheric oxygen over
Phanerozoic time, Am. J. Sci., 289, 333–361,
https://doi.org/10.2475/ajs.289.4.333, 1989. a
Billups, K., Pälike, H., Channell, J., Zachos, J., and Shackleton, N.:
Astronomic calibration of the late Oligocene through early Miocene
geomagnetic polarity time scale, Earth Planet. Sc. Lett., 224,
33–44, https://doi.org/10.1016/j.epsl.2004.05.004, 2004. a
Bolton, E. W., Berner, R. A., and Petsch, S. T.: The Weathering of Sedimentary
Organic Matter as a Control on Atmospheric O2: II. Theoretical Modeling,
Am. J. Sci., 306, 575–615, https://doi.org/10.2475/08.2006.01, 2006. a
Bopp, L., Le Quéré, C., Heimann, M., Manning, A. C., and Monfray, P.:
Climate-induced oceanic oxygen fluxes: Implications for the contemporary
carbon budget, Global Biogeochem. Cy., 16, 1–13,
https://doi.org/10.1029/2001GB001445, 2002. a
Burton, M. R., Sawyer, G. M., and Granieri, D.: Deep Carbon Emissions from
Volcanoes, Rev. Mineral. Geochem., 75, 323–354,
https://doi.org/10.2138/rmg.2013.75.11, 2013. a
Canfield, D.: The Early History of Atmospheric Oxygen: Homage to Robert M.
Garrels, Ann. Rev. Earth Pl. Sc., 33, 1–36,
https://doi.org/10.1146/annurev.earth.33.092203.122711, 2005. a
Chang, S. and Berner, R. A.: Coal weathering and the geochemical carbon cycle,
Geochim. Cosmochim. Ac., 63, 3301–3310,
https://doi.org/10.1016/S0016-7037(99)00252-5, 1999. a
Ciais, P., Sabine, C., Bala, G., L. Bopp, V. B., Canadell, J., Chhabra, A.,
DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni,
R., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 465–570, https://doi.org/10.1017/CBO9781107415324.015, 2013. a
de Boer, B., Lourens, L., and van de Wal, R.: Persistent 400,000-year
variability of Antarctic ice volume and the carbon cycle is revealed
throughout the Plio-Pleistocene, Nat. Commun., 5, 2999,
https://doi.org/10.1038/ncomms3999, 2014. a
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115,
https://doi.org/10.1016/0304-4203(95)00008-F, 1995. a
Hemingway, J. D., Hilton, R. G., Hovius, N., Eglinton, T. I., Haghipour, N.,
Wacker, L., Chen, M.-C., and Galy, V. V.: Microbial oxidation of lithospheric
organic carbon in rapidly eroding tropical mountain soils, Science, 360,
209–212, https://doi.org/10.1126/science.aao6463, 2018. a
Hilton, R. G.: Climate regulates the erosional carbon export from the
terrestrial biosphere, Geomorphology, 277, 118–132,
https://doi.org/10.1016/j.geomorph.2016.03.028, 2017. a
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nat.
Rev. Earth Environ., 1, 284–299, https://doi.org/10.1038/s43017-020-0058-6,
2020. a, b, c, d
Hilton, R. G., Gaillardet, J., Calmels, D., and Birck, J.-L.: Geological
respiration of a mountain belt revealed by the trace element rhenium, Earth
Planet. Sc. Lett., 403, 27–36,
https://doi.org/10.1016/j.epsl.2014.06.021, 2014. a
Jessen, G. L., Lichtschlag, A., Ramette, A., Pantoja, S., Rossel, P. E.,
Schubert, C. J., Struck, U., and Boetius, A.: Hypoxia causes preservation of
labile organic matter and changes seafloor microbial community composition
(Black Sea), Sci. Adv., 3, e1601897, https://doi.org/10.1126/sciadv.1601897,
2017. a
Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C., and
Paytan, A.: Early Cenozoic decoupling of the global carbon and sulfur cycles,
Paleoceanography, 18, 1090, https://doi.org/10.1029/2003PA000908, 2003. a
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C.
M., and Levrard, B.: A long-term numerical solution for the insolation
quantities of the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004. a, b
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new
orbital solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89,
https://doi.org/10.1051/0004-6361/201116836, 2011. a
Lauretano, V., Littler, K., Polling, M., Zachos, J. C., and Lourens, L. J.:
Frequency, magnitude and character of hyperthermal events at the onset of the
Early Eocene Climatic Optimum, Clim. Past, 11, 1313–1324,
https://doi.org/10.5194/cp-11-1313-2015, 2015. a
Laurin, J., Meyers, S. R., Uličný, D., Jarvis, I., and Sageman, B. B.: Axial
obliquity control on the greenhouse carbon budget through middle- to
high-latitude reservoirs, Paleoceanography, 30, 133–149,
https://doi.org/10.1002/2014PA002736, 2015. a
Leloup, G.: Code and data for results and figures of the manuscript “Multi-million year cycles in modelled δ13C as a response to astronomical forcing of organic matter fluxes” submitted to Earth System Dynamics, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7129166, 2022. a
Liebrand, D., Beddow, H. M., Lourens, L. J., Pälike, H., Raffi, I., Bohaty,
S. M., Hilgen, F. J., Saes, M. J., Wilson, P. A., van Dijk, A. E., Hodell,
D. A., Kroon, D., Huck, C. E., and Batenburg, S. J.: Cyclostratigraphy and
eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis
Ridge Site 1264, Earth Planet. Sc. Lett., 450, 392–405,
https://doi.org/10.1016/j.epsl.2016.06.007, 2016. a
Ludwig, W., Probst, J.-L., and Kempe, S.: Predicting the oceanic input of
organic carbon by continental erosion, Global Biogeochem. Cy., 10,
23–41, https://doi.org/10.1029/95GB02925, 1996. a
Martinez, M. and Dera, G.: Orbital pacing of carbon fluxes by a ∼ 9 My
eccentricity cycle during the Mesozoic, P. Natl. Acad. Sci. USA, 112, 12604–12609, https://doi.org/10.1073/pnas.1419946112, 2015. a, b, c, d
Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers,
Am. J. Sci., 282, 401–450, https://doi.org/10.2475/ajs.282.4.401,
1982. a
Müller, R. D. and Dutkiewicz, A.: Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide
periodicities, Sci. Adv., 4, eaaq0500, https://doi.org/10.1126/sciadv.aaq0500, 2018. a
Niemeyer, D., Kemena, T. P., Meissner, K. J., and Oschlies, A.: A model study
of warming-induced phosphorus–oxygen feedbacks in open-ocean oxygen minimum
zones on millennial timescales, Earth Syst. Dynam., 8, 357–367,
https://doi.org/10.5194/esd-8-357-2017, 2017. a
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, Eos Trans. AGU, 77, 379–379,
https://doi.org/10.1029/96EO00259, 1996. a, b
Petsch, S., Edwards, K., and Eglinton, T.: Microbial transformations of organic
matter in black shales and implications for global biogeochemical cycles,
Palaeogeogr. Palaeocl., 219, 157–170,
https://doi.org/10.1016/j.palaeo.2004.10.019, 2005. a
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear,
C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The Heartbeat of
the Oligocene Climate System, Science, 314, 1894–1898,
https://doi.org/10.1126/science.1133822, 2006. a, b
Russon, T., Paillard, D., and Elliot, M.: Potential origins of 400–500 kyr
periodicities in the ocean carbon cycle: A box model approach, Global
Biogeochem. Cy., 24, GB2013, https://doi.org/10.1029/2009GB003586, 2010. a
Smith, J. C., Galy, A., Hovius, N., Tye, A. M., Turowski, J. M., and Schleppi,
P.: Runoff-driven export of particulate organic carbon from soil in temperate
forested uplands, Earth Planet. Sc. Lett., 365, 198–208,
https://doi.org/10.1016/j.epsl.2013.01.027, 2013. a
Sproson, A. D.: Pacing of the latest Ordovician and Silurian carbon cycle by a 4.5 Myr orbital cycle, Palaeogeogr. Palaeocl.,
540, 109543, https://doi.org/10.1016/j.palaeo.2019.109543, 2020. a
Sprovieri, M., Sabatino, N., Pelosi, N., Batenburg, S. J., Coccioni, R.,
Iavarone, M., and Mazzola, S.: Late Cretaceous orbitally-paced carbon isotope
stratigraphy from the Bottaccione Gorge (Italy), Palaeogeogr.
Palaeocl., 379/380, 81–94,
https://doi.org/10.1016/j.palaeo.2013.04.006, 2013.
a, b
Stolper, D. A., Bender, M. L., Dreyfus, G. B., Yan, Y., and Higgins, J. A.: A
Pleistocene ice core record of atmospheric O2 concentrations, Science,
353, 1427–1430, https://doi.org/10.1126/science.aaf5445, 2016. a
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658,
https://doi.org/10.1126/science.1153847, 2008. a
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595,
https://doi.org/10.1016/j.dsr.2010.01.005, 2010. a
Torres, M., West, A., and Li, G.: Sulphide oxidation and carbonate dissolution
as a source of CO2 over geological timescales, Nature, 507, 346–349,
https://doi.org/10.1038/nature03814, 2014. a
Wang, P., Tian, J., and Lourens, L. J.: Obscuring of long eccentricity
cyclicity in Pleistocene oceanic carbon isotope records, Earth Planet.
Sc. Lett., 290, 319–330,
https://doi.org/10.1016/j.epsl.2009.12.028, 2010. a
Westerhold, T.: Cenozoic global reference benthic carbon and oxygen isotope
dataset (CENOGRID), Pangaea, https://doi.org/10.1594/PANGAEA.917503, 2020. a, b
Westerhold, T., Röhl, U., Donner, B., McCarren, H. K., and Zachos, J. C.: A
complete high-resolution Paleocene benthic stable isotope record for the
central Pacific (ODP Site 1209), Paleoceanography, 26, PA2216,
https://doi.org/10.1029/2010PA002092, 2011. a
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292,
686–693, https://doi.org/10.1126/science.1059412, 2001. a
Short summary
Records of past carbon isotopes exhibit oscillations. It is clear over very different time periods that oscillations of 400 kyr take place. Also, strong oscillations of approximately 8–9 Myr are seen over different time periods. While earlier modelling studies have been able to produce 400 kyr oscillations, none of them produced 8–9 Myr cycles. Here, we propose a simple model for the carbon cycle that is able to produce 8–9 Myr oscillations in the modelled carbon isotopes.
Records of past carbon isotopes exhibit oscillations. It is clear over very different time...
Altmetrics
Final-revised paper
Preprint