Articles | Volume 13, issue 2
https://doi.org/10.5194/esd-13-911-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-911-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Downscaling of climate change scenarios for a high-resolution, site-specific assessment of drought stress risk for two viticultural regions with heterogeneous landscapes
Marco Hofmann
CORRESPONDING AUTHOR
Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, 65366, Germany
Claudia Volosciuk
Science and Innovation Department, World Meteorological Organization, Geneva, 1211, Switzerland
Deutscher Wetterdienst, Offenbach am Main, 63067, Germany
Martin Dubrovský
Institute of Atmospheric Physics, The Czech Academy of Sciences,
Prague, 141 00, Czech Republic
Global Change Research Institute, The Czech Academy of Sciences, Brno, 603 00, Czech Republic
Douglas Maraun
Wegener Center for Climate and Global Change, University of Graz,
Graz, 8010, Austria
Hans R. Schultz
Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, 65366, Germany
Related authors
No articles found.
Armin Schaffer, Tobias Lichtenegger, Albert Ossó, and Douglas Maraun
EGUsphere, https://doi.org/10.5194/egusphere-2025-4235, https://doi.org/10.5194/egusphere-2025-4235, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme rainfall in Europe is often linked to weather fronts. To understand how these events may change in the future, we first need to evaluate how well climate models represent them. We found that all models show substantial biases, particularly for cold fronts, while higher-resolution models improve their simulation. Warm fronts also show biases, though they are generally better represented than cold fronts. This highlights the importance of high-resolution models for reliable projections.
Daniel Viviroli, Martin Jury, Maria Staudinger, Martina Kauzlaric, Heimo Truhez, and Douglas Maraun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1920, https://doi.org/10.5194/egusphere-2025-1920, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Estimating the frequency and magnitude of floods is challenging due to the limited length of streamflow records. Here, we explore whether an extensive archive of meteorological forecasts run over past dates can assist in this context. After processing and concatenating these data for use as input to a hydrological model, we derive flood statistics from simulated streamflow. Results are promising for the larger catchments studied, providing a valuable complementary perspective on rare floods.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Yi Yang, Douglas Maraun, Albert Ossó, and Jianping Tang
Nat. Hazards Earth Syst. Sci., 23, 693–709, https://doi.org/10.5194/nhess-23-693-2023, https://doi.org/10.5194/nhess-23-693-2023, 2023
Short summary
Short summary
This study quantifies the spatiotemporal variation and characteristics of compound long-duration dry and hot events in China over the 1961–2014 period. The results show that over the past few decades, there has been a substantial increase in the frequency of these compound events across most parts of China, which is dominated by rising temperatures. We detect a strong increase in the spatially contiguous areas experiencing concurrent dry and hot conditions.
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023, https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary
Short summary
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering thousands of landslides. Landslide storylines help to show potential future changes under changing environmental conditions. The often neglected uncertainty quantification was the aim of this study. We found uncertainty arising from the landslide model to be of the same order as climate scenario uncertainty. Understanding the dimensions of uncertainty is crucial for allowing informed decision-making.
Cited articles
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 30, 258–270,
https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Allen, R. G.: Skin layer evaporation to account for small precipitation
events – An enhancement to the FAO-56 evaporation model, Agr. Water Manage., 99, 8–18, https://doi.org/10.1016/j.agwat.2011.08.008, 2011.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO
Irrigation and drainage paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, ISBN 92-5-104219-5, 1998.
Allen, R. G., Walter, I. A., Elliot, R., Howell, T., Itenfisu, D., and Jensen, M.: The ASCE Standardized Reference Evapotranspiration Equation, ASCE-EWRI Task Committee Report, https://doi.org/10.1061/9780784408056, 2005.
Berthold, G., Meilinger, F., Dettweiler, I., and Muskat, S.: Die Umsetzung
der Wasserrahmenrichtlinie in Hessen – Ausblick und Rückblick, in:
Umweltschonender Weinbau – das solidarische Ziel, Hessisches Ministerium
für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz, https://www.rheingau.com/fileadmin/user_upload/Wein/Wein/Ressourcenschutz_im_Weinbau_Das_solidarische_Ziel_Broschu%CC%88re_Web.pdf
(last access: 27 July 2018), 2016.
Bindi, M., Fibbi, L., and Miglietta, F.: Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations, Eur. J. Agron., 14, 145–155, https://doi.org/10.1016/S1161-0301(00)00093-9, 2001.
Böhm, P., Friedrich, K., and Sabel, K.-J.: Die Weinbergsböden von
Hessen, Hessisches Landesamt für Umwelt und Geologie, Wiesbaden, https://www.hlnug.de/fileadmin/dokumente/boden/heft7.pdf (last access: 20 September 2019), 2007.
Bormann, H.: Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate
stations, Climatic Change, 104, 729–753, https://doi.org/10.1007/s10584-010-9869-7, 2011.
Bota, J., Tomás, M., Flexas, J., Medrano, H., and Escalona, J. M.:
Differences among grapevine cultivars in their stomatal behavior and water
use efficiency under progressive water stress, Agr. Water Manage., 164, 91–99, https://doi.org/10.1016/j.agwat.2015.07.016, 2016.
Bülow, K., Huebener, H., Keuler, K., Menz, C., Pfeifer, S., Ramthun, H.,
Spekat, A., Steger, C., Teichmann, C., and Warrach-Sagi, K.: User tailored
results of a regional climate model ensemble to plan adaption to the changing climate in Germany, Adv. Sci. Res., 16, 241–249, https://doi.org/10.5194/asr-16-241-2019, 2019.
Cook, B. I. and Wolkovich, E. M.: Climate change decouples drought from early wine grape harvests in France, Nat. Clim. Change, 6, 715–719, https://doi.org/10.1038/nclimate2960, 2016.
Costa, J. M., Ortuño, M. F., Lopes, C. M., and Chaves, M. M.: Grapevine
varieties exhibiting differences in stomatal response to water deficit, Funct. Plant Biol., 39, 179–189, https://doi.org/10.1071/FP11156, 2012.
Coumou, D. and Robinson, A.: Historic and future increase in the global land area affected by monthly heat extremes, Environ. Res. Lett., 8, 034018, https://doi.org/10.1088/1748-9326/8/3/034018, 2013.
Cronshey, R., McCuen, R. H., Miller, N., Rawls, W., Robbins, S., and Woodward, D.: Urban Hydrology for Small Watersheds TR-55, United States
Department of Agriculture, NRCS, https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf
(last access: 13 February 2021), 1986.
Destatis: Landwirtschaftliche Bodennutzung – Rebflächen, Statistisches
Bundesamt, Wiesbaden, https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00076093
(last access: 20 February 2019), 2018.
Dubrovský, M., Žalud, Z., and Šťastná, M.: Sensitivity of Ceres-Maize Yields to Statistical Structure of Daily Weather Series, Climatic Change, 46, 447–472, https://doi.org/10.1023/A:1005681809065, 2000.
Dubrovský, M., Buchtele, J., and Žalud, Z.: High-Frequency and Low-Frequency Variability in Stochastic Daily Weather Generator and Its
Effect on Agricultural and Hydrologic Modelling, Climatic Change, 63, 145–179, https://doi.org/10.1023/b:clim.0000018504.99914.60, 2004.
DWD Climate Data Center (CDC): Historical daily station observations (temperature, pressure, precipitation, sunshine duration, etc.) for Germany,
version v006, DWD Climate Data Center (CDC) [data set], https://opendata.dwd.de, last access: 4 December 2018.
DWD Climate Data Center (CDC): Multi-annual station means for the climate
normal reference period 1971–2000, for current station location and for
reference station location, Version V0.x, https://opendata.dwd.de (last access: 20 February 2019), 2020.
Ebrahimian, M., Nuruddin, A. A. B., Soom, M., Sood, A. M., and Neng, L. J.:
Runoff Estimation in Steep Slope Watershed with Standard and Slope-Adjusted
Curve Number Methods, Pol. J. Environ. Stud., 21, 1191–1202, 2012.
Emde, K.: Experimentelle Untersuchungen zu Oberflächenabfluß und
Bodenaustrag in Verbindung mit Starkregen bei verschiedenen Bewirtschaftungssystemen in Weinbergsarealen des oberen Rheingaus, Geisenheimer Berichte 12, Gesellschaft zur Förderung der Forschungsanstalt Geisenheim, Geisenheim, ISBN 3-9802964-1-5, 1992.
Erfurt, M., Skiadaresis, G., Tijdeman, E., Blauhut, V., Bauhus, J., Glaser, R., Schwarz, J., Tegel, W., and Stahl, K.: A multidisciplinary drought
catalogue for southwestern Germany dating back to 1801, Nat. Hazards Earth
Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, 2020.
Esri: “Topographic” [base map], Scale not specified, “Worldwide Topographic Map”, 19 February 2012,
http://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f
(last access: 25 May 2017), 2012.
Everard, J. E., Dale, U., Rachel, K., and Michael, T.: Multi-seasonal effects of warming and elevated CO2 on the physiology, growth and production of mature, field grown, Shiraz grapevines, OENO One, 51, 127–132,
https://doi.org/10.20870/oeno-one.2017.51.2.1586, 2017.
Feldmann, H., Schädler, G., Panitz, H.-J., and Kottmeier, C.: Near future changes of extreme precipitation over complex terrain in Central Europe derived from high resolution RCM ensemble simulations, Int. J. Climatol., 33, 1964–1977, https://doi.org/10.1002/joc.3564, 2013.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 741–866, https://doi.org/10.1017/CBO9781107415324.020, 2013.
Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., and Santos, J. A.: Future
scenarios for viticultural zoning in Europe: ensemble projections and
uncertainties, Inte. J. Biometeorol., 57, 909–925, https://doi.org/10.1007/s00484-012-0617-8, 2013.
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and Vidale, P. L.: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps, J. Geophys. Res.-Atmos., 108, 1–19, https://doi.org/10.1029/2002JD002287, 2003.
Garofalo, P., Ventrella, D., Kersebaum, K. C., Gobin, A., Trnka, M., Giglio,
L., Dubrovský, M., and Castellini, M.: Water footprint of winter wheat
under climate change: Trends and uncertainties associated to the ensemble of
crop models, Sci. Total Environ., 658, 1186–1208, https://doi.org/10.1016/j.scitotenv.2018.12.279, 2019.
Gaudillère, J. P., Van Leeuwen, C., and Ollat, N.: Carbon isotope
composition of sugars in grapevine, an integrated indicator of vineyard water status, J. Exp. Bot., 53, 757–763, https://doi.org/10.1093/jexbot/53.369.757, 2002.
Gaudin, R., Celette, F., and Gary, C.: Contribution of runoff to incomplete
off season soil water refilling in a Mediterranean vineyard, Agr. Water Manage., 97, 1534–1540, https://doi.org/10.1016/j.agwat.2010.05.007, 2010.
Gruber, B.: Untersuchungen zur Bodenfeuchtedynamik und zum Pflanzenwasserhaushalt bei verschiedenen Bodenmanagement- und
Laubwandsystemen von Vitis vinifera L. (cv. Riesling) im Steilhang – ein Ansatz zur bedarfsgerechten Steuerung von Tröpfchenbewässerungsanlagen, Geisenheimer Berichte 71, Gesellschaft zur Förderung der Hochschule Geisenheim e.V., 235 pp., ISBN 13 978-3-934-742-60-4, 2012.
Gruber, B. R. and Schultz, H. R.: Coupling of plant to soil water status at
different vineyard sites, Acta Hort. (ISHS), 689, 381–390, 2005.
Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S., San Martín, D., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R.,
Iturbide, M., Vrac, M., Dubrovsky, M., Ribalaygua, J., Pórtoles, J.,
Räty, O., Räisänen, J., Hingray, B., Raynaud, D., Casado, M. J.,
Ramos, P., Zerenner, T., Turco, M., Bosshard, T., Štěpánek, P.,
Bartholy, J., Pongracz, R., Keller, D. E., Fischer, A. M., Cardoso, R. M.,
Soares, P. M. M., Czernecki, B., and Pagé, C.: An intercomparison of a
large ensemble of statistical downscaling methods over Europe: Results from
the VALUE perfect predictor cross-validation experiment, Int. J. Climatol., 39, 3750–3785, https://doi.org/10.1002/joc.5462, 2019.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., and Kumar, R.: Revisiting the recent European droughts from a long-term perspective, Scient. Rep., 8, 9499, https://doi.org/10.1038/s41598-018-27464-4, 2018.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and
Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013:
The Physical Science Basis, Contribution of Working Group I to the Fifth
Assessement Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.3390/atmos11121364, 2013.
Hartmann, E., Schulz, J.-P., Seibert, R., Schmidt, M., Zhang, M., Luterbacher, J., and Tölle, M. H.: Impact of Environmental Conditions on
Grass Phenology in the Regional Climate Model COSMO-CLM, Atmosphere, 11, 1364, https://doi.org/10.1017/CBO9781107415324.008, 2020.
Hausfather, Z. and Peters, G. P.: Emissions – the `business as usual' story is misleading, Nature, 577, 618–620, 2020.
Hertig, E., Maraun, D., Bartholy, J., Pongracz, R., Vrac, M., Mares, I.,
Gutiérrez, J. M., Wibig, J., Casanueva, A., and Soares, P. M. M.: Comparison of statistical downscaling methods with respect to extreme events
over Europe: Validation results from the perfect predictor experiment of the
COST Action VALUE, Int. J. Climatol., 39, 3846–3867, https://doi.org/10.1002/joc.5469, 2019.
Hlavinka, P., Kersebaum, K. C., Dubrovský, M., Fischer, M., Pohanková, E., Balek, J., Žalud, Z., and Trnka, M.: Water balance,
drought stress and yields for rainfed field crop rotations under present and
future conditions in the Czech Republic, Clim. Res., 65, 175–192,
https://doi.org/10.3354/cr01339, 2015.
HLNUG: Bodenflächendaten weinbauliche Nutzfläche 1:5000 BFD5W,
Hessisches Landesamt für Naturschutz, Umwelt und Geologie, Wiesbaden,
https://www.hlnug.de/?id=7664 (last access: 8 October 2019), 2008.
Hochschule Geisenheim University: Tagesauswertungen der Wetterstationen, http://rebschutz.hs-geisenheim.de/wetterstationen/tagesauswertung.php, last access: 14 December 2018.
Hofmann, M. and Schultz, H. R.: Warum es seit 1989 wieder heller wird, Der
Deutsche Weinbau, 16–17, 32–34, 2010.
Hofmann, M. and Schultz, H. R.: Modeling the water balance of sloped vineyards under various climate change scenarios, BIO Web Conf., 5, 01026, https://doi.org/10.1051/bioconf/20150501026, 2015.
Hofmann, M., Lux, R., and Schultz, H. R.: Constructing a framework for risk
analyses of climate change effects on the water budget of differently sloped
vineyards with a numeric simulation using the Monte Carlo method coupled to
a water balance model, Front. Plant Sci., 5, 1–22, https://doi.org/10.3389/fpls.2014.00645, 2014.
Hoppmann, D., Schaller, K., and Stoll, M.: Terroir, Ulmer Verlag, Stuttgart,
372 pp., ISBN 978-3-8001-0350-8, 2017.
Huang, M., Gallichand, J., Wang, Z., and Goulet, M.: A modification to the
Soil Conservation Service curve number method for steep slopes in the Loess
Plateau of China, Hydrol. Process., 20, 579–589, https://doi.org/10.1002/hyp.5925,
2006.
Hübener, H., Bülow, K., Fooken, C., Früh, B., Hoffmann, P., Höpp, S., Keuler, K., Menz, C., Mohr, V., Radtke, K., Ramthun, H.,
Spekat, A., Steger, C., Toussaint, F., Warrach-Sagi, K., and Woldt, M.:
ReKliEs-De Ergebnisbericht, DKRZ, https://doi.org/10.2312/WDCC/ReKliEsDe_Ergebnisbericht, 2017.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O., Bouwer, L.,
Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S.,
Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jäger, L. and Porten, M.: Biodiversität in Weinbausteillagen, Die
Winzer-Zeitschrift, 3, 26–28, 2018.
Jones, G. V. and Schultz, H. R.: Climate change and emerging cool climate
wine regions, Wine & Viticulture Journal, November/December, 51–53, 2016.
Jones, G. V., Duchène, E., Tomasi, D., Yuste, J., Bratislavska, O.,
Schultz, H. R., Martinez, C., Boso, S., Langellier, F., Perruchot, C., and
Guimberteau, G.: Changes in European Winegrape Phenology and Relationships
with Climate, in: XIV International GESCO-Viticulture-Congress, 23–27 August 2005, Geisenheim, 55–61, ISBN 3-93472-19-X, 2005a.
Jones, G. V., White, M., Cooper, O., and Storchmann, K.: Climate Change and
Global Wine Quality, Climatic Change, 73, 319–343, https://doi.org/10.1007/s10584-005-4704-2, 2005b.
Karim, J. R., Burr, W. S., and Thomson, D. J.: Appendix A: Multitaper R Package, in: Applications of Multitaper Spectral Analysis to Nonstationary
Data, PhD diss., Queen's University, 149–183, http://hdl.handle.net/1974/12584 (last access: 11 September 2021), 2014.
Keller, M.: Deficit Irrigation and Vine Mineral Nutrition, Am. J. Enol. Viticult., 56, 267–283, 2005.
Kenny, G. J. and Harrison, H. A.: The Effects of Climate Variability and
Change on Grape Suitability in Europe, J. Wine Res., 3, 163–183, 1992.
Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R.,
Camilloni, I., Doblas-Reyes, F. J., Fiore, A. M., Kimoto, M., Meehl, G. A.,
Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J., Vecchi, G., and Wang, H. J.: Near-term Climate Change: Projections and Predictability, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 953–1028, https://doi.org/10.1017/CBO9781107415324.023, 2013.
Kjellström, E., Boberg, F., Castro, M., Christensen, J. H., Nikulin, G.,
and Sánchez, E.: Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models, Clim. Res., 44, 135–150, https://doi.org/10.3354/cr00932, 2010.
Kjellström, E., Nikulin, G., Hansson, U., Strandberg, G., and Ullerstig,
A.: 21st century changes in the European climate: uncertainties derived from
an ensemble of regional climate model simulations, Tellus A, 63, 24–40, https://doi.org/10.1111/j.1600-0870.2010.00475.x, 2011.
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf,
S., and Gray, L.: Extreme weather events in early summer 2018 connected by a
recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf, 2019.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué,
M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E.,
Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kreienkamp, F., Huebener, H., Linke, C., and Spekat, A.: Good practice for
the usage of climate model simulation results – a discussion paper, Environ. Syst. Res. 1, 1–13, https://doi.org/10.1186/2193-2697-1-9, 2012.
Lebon, E., Dumas, V., Pieri, P., and Schultz, H. R.: Modelling the seasonal
dynamics of the soil water balance of vineyards, Funct. Plant Biol., 30, 699–710, https://doi.org/10.1071/FP02222, 2003.
Le Roux, R., de Rességuier, L., Corpetti, T., Jégou, N., Madelin, M., van Leeuwen, C., and Quénol, H.: Comparison of two fine scale spatial models for mapping temperatures inside winegrowing areas, Agr. Forest Meteorol., 247, 159–169, https://doi.org/10.1016/j.agrformet.2017.07.020, 2017.
Löhnertz, O., Hoppmann, D., Emde, K., Friedrich, K., Schmanke, M., and
Zimmer, T.: Die Standortkartierung der hessischen Weinbaugebiete, in: Geologische Abhandlungen Hessen 114, edited by: Becker, R. E., Hessisches
Landesamt für Umwelt und Geologie, Wiesbaden, https://www.hlnug.de/static/medien/boden/fisbo/wbsa/start.htm
(last access: 28 May 2019), 2004.
Lovelli, S., Perniola, M., Di Tommaso, T., Ventrella, D., Moriondo, M., and
Amato, M.: Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area, Agr. Water Manage., 97, 1287–1292, https://doi.org/10.1016/j.agwat.2010.03.005, 2010.
Malheiro, A. C., Santos, J. A., Fraga, H., and Pinto, J. G.: Climate change
scenarios applied to viticultural zoning in Europe, Clim. Res., 43, 163–177, https://doi.org/10.3354/cr00918, 2010.
Manabe, S., and Wetherald, R. T.: Thermal Equilibrium of the Atmosphere with
a Given Distribution of Relative Humidity, J. Atmos. Sci., 24, 241–259, https://doi.org/10.1175/1520-0469(1967)024<0241:teotaw>2.0.co;2, 1967.
Maniak, U.: Hydrologie und Wasserwirtschaft, Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-05396-2, 2010.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema,
V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009rg000314, 2010.
Maraun, D., Widmann, M., Gutiérrez, J. M., Kotlarski, S., Chandler, R. E., Hertig, E., Wibig, J., Huth, R., and Wilcke, R. A. I.: VALUE: A framework to validate downscaling approaches for climate change studies, Earth's Future, 3, 1–14, https://doi.org/10.1002/2014EF000259, 2015.
Maraun, D., Huth, R., Gutiérrez, J. M., Martín, D. S., Dubrovsky,
M., Fischer, A., Hertig, E., Soares, P. M. M., Bartholy, J., Pongrácz,
R., Widmann, M., Casado, M. J., Ramos, P., and Bedia, J.: The VALUE perfect
predictor experiment: Evaluation of temporal variability, Int. J. Climatol., 39, 3786–3818, https://doi.org/10.1002/joc.5222, 2019.
Maraun, D., Truhetz, H., and Schaffer, A.: Regional Climate Model Biases, Their Dependence on Synoptic Circulation Biases and the Potential for Bias
Adjustment: A Process-Oriented Evaluation of the Austrian Regional Climate
Projections, J. Geophys. Res.-Atmos., 126, e2020JD032824, https://doi.org/10.1029/2020JD032824, 2021.
Matthews, M. A., Anderson, M. M., and Schultz, H. R.: Phenologic and growth
responses to early and late season water deficits in Cabernet franc, Vitis,
26, 147–160, 1987.
Maule, C. F., Thejll, P., Christensen, J. H., Svendsen, S. H., and Hannaford, J.: Improved confidence in regional climate model simulations of precipitation evaluated using drought statistics from the ENSEMBLES models,
Clim. Dynam., 40, 155–173, https://doi.org/10.1007/s00382-012-1355-7, 2013.
McLeod, A. I.: Kendall: Kendall rank correlation and Mann–Kendall trend test, R package version 2.2, CRAN, http://CRAN.R-project.org/package=Kendall (last access: 2 May 2019), 2011.
Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled
atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 –
Part 1: Model description and calibration, Atmos. Chem. Phys., 11, 1417–1456, https://doi.org/10.5194/acp-11-1417-2011, 2011.
Monteith, J. L. and Unsworth, M. H.: Chapter 13 – Steady-State Heat Balance: (i) Water Surfaces, Soil, and Vegetation, in: Principles of Environmental Physics (Fourth Edition), edited by: Monteith, J. L. and Unsworth, M. H., Academic Press, Boston, 217–247, https://doi.org/10.1016/B978-0-12-386910-4.00013-5, 2013.
Moriondo, M., Bindi, M., Fagarazzi, C., Ferrise, R., and Trombi, G.: Framework for high-resolution climate change impact assessment on grapevines at a regional scale, Reg. Environ. Change, 11, 553–567, https://doi.org/10.1007/s10113-010-0171-z, 2010.
Moriondo, M., Jones, G. V., Bois, B., Dibari, C., Ferrise, R., Trombi, G., and Bindi, M.: Projected shifts of wine regions in response to climate change, Climatic Change, 119, 825–839, https://doi.org/10.1007/s10584-013-0739-y, 2013.
Morlat, R., Penavayre, M., Jacquet, A., Asselin, C., and Lemaitre, C.:
Influence des terroirs sur le fonctionnement hydrique et la photosynthèse de la vigne en millessime exceptionnellement sec (1990), Conséquence sur la maturation du raisin, Int. J. Vine Wine Sci., 26, 197–218, 1992.
Moutinho-Pereira, J., Goncalves, B., Bacelar, E., Boaventura Cunha, J., Coutinho, J., and Correira, C. M.: Effects of elevated CO2 on grapevine (Vitis vinifera L.): Physiological an yield attributes, Vitis, 48, 159–165, 2009.
Neethling, E., Barbeau, G., Coulon-Leroy, C., and Quénol, H.: Spatial
complexity and temporal dynamics in viticulture: A review of climate-driven
scales, Agr. Forest Meteorol., 276–277, 107618, https://doi.org/10.1016/j.agrformet.2019.107618, 2019.
Ojeda, H., Deloire, A., and Carbonneau, A.: Influence of water deficits on grape berry growth, Vitis, 40, 141–145, 2001.
Ollat, N., Bordenave, L., Tandonnet, J. P., Boursiquot, J. M., and Marguerit, E.: Grapevine rootstocks: origins and perspectives, Acta Hortic., 1136, 11–22, https://doi.org/10.17660/ActaHortic.2016.1136.2, 2016.
Pellegrino, A., Gozé, E., Lebon, E., and Wery, J.: A model-based diagnosis tool to evaluate the water stress experienced by grapevine in field sites, Eur. J. Agron., 25, 49–59, https://doi.org/10.1016/j.eja.2006.03.003, 2006.
Petermann, J., Petersen, B., and Gnittke, I.: Hotspots im Bundesprogramm
biologische Vielfalt, Referat Öffentlichkeitsarbeit, BMU – Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, https://biologischevielfalt.bfn.de/ (last access: 13 February 2021), 2012.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., van Lipzig, N. P., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Quénol, H., Grosset, M., Barbeau, G., van Leeuwen, C., Hofmann, M., Foss, C., Irimia, L., Rochard, J., Boulanger, J.-P., Tissot, C., and Miranda, C.: Adaptation of Viticulture to Climate Change: High Resolution Observations of Adaptation scenario for Viticulture: The ADVICLIM European Project, Bulletin de l'OIV, 87, 395–406, 2014.
Richardson, C. W.: Stochastic simulation of daily precipitation, temperature, and solar radiation, Water Resour. Res., 17, 182–190, https://doi.org/10.1029/WR017i001p00182, 1981.
Rötter, R. P., Palosuo, T., Pirttioja, N. K., Dubrovsky, M., Salo, T.,
Fronzek, S., Aikasalo, R., Trnka, M., Ristolainen, A., and Carter, T. R.:
What would happen to barley production in Finland if global warming exceeded
4 ∘C? A model-based assessment, Eur. J. Agron., 35, 205–214, https://doi.org/10.1016/j.eja.2011.06.003, 2011.
RPDA: Die Weinbaukartei des Landes Hessen – Stand 2012, Regierungspräsidium Darmstadt, Dezernat Weinbau, Eltville, Darmstadt, 2012.
Sadras, V. O., Montoro, A., Moran, M. A., and Aphalo, P. J.: Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine, Agr. Forest Meteorol., 165, 35–42, https://doi.org/10.1016/j.agrformet.2012.06.005, 2012a.
Sadras, V. O., Schultz, H. R., Girona, J., and Marsal, J.: Grapevine, in:
Crop yield response to water, FAO irrigation and drainage paper 66, edited
by: Steduto, P., Hsiao, T. C., Fereres, E., and Raes, D., Food and Agriculture Organization of the United Nations, Rome, 460–485, ISBN 978-92-5-107274-5, 2012b.
Santos, J. A., Malheiro, A. C., Pinto, J. G., and Jones, G. V.: Macroclimate
and viticultural zoning in Europe: observed trends and atmospheric forcing,
Clim. Res., 51, 89–103, https://doi.org/10.3354/cr01056, 2012.
Santos, J. A., Grätsch, S. D., Karremann, M. K., Jones, G. V., and Pinto, J. G.: Ensemble projections for wine production in the Douro Valley of Portugal, Climatic Change, 117, 211–225, https://doi.org/10.1007/s10584-012-0538-x, 2013.
Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L.-T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C., Molitor, D., Junk, J., Beyer, M., and Schultz, H. R.: A Review of the Potential Climate Change
Impacts and Adaptation Options for European Viticulture, Appl. Sci., 10, 3092, https://doi.org/10.3390/app10093092, 2020.
Savoi, S., Wong, D. C. J., Arapitsas, P., Miculan, M., Bucchetti, B.,
Peterlunger, E., Fait, A., Mattivi, F., and Castellarin, S. D.: Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.), BMC Plant Biol., 16, 67, https://doi.org/10.1186/s12870-016-0760-1, 2016.
Schär, C., Vidale, P. L., Luthi, D., Frei, C., Haberli, C., Liniger, M.
A., and Appenzeller, C.: The role of increasing temperature variability in
European summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004.
Schultz, H. R.: Water relations and photosynthetic responses of two grapevine cultivars of different geographical origin during water stress, Acta Horticult., 427, 251–266, 1996.
Schultz, H. R.: Climate Change and viticulture: A European perspective on
climatology, carbon dioxide and UV-B effects, Aust. J. Grape Wine Res., 6, 2–12, 2000.
Schultz, H. R.: Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought, Plant Cell Environ., 26, 1393–1405,
https://doi.org/10.1046/j.1365-3040.2003.01064.x, 2003.
Schultz, H. R.: Issues to be considered for strategic adaptation to climate
evolution – is atmospheric evaporative demand changing?, OENO One, 51,
109–114, https://doi.org/10.20870/oeno-one.2017.51.2.1619, 2017.
Schultz, H. R. and Hofmann, M.: The ups and downs of environmental impact
on grapevines: future challenges in temperate viticulture, in: Grapevine in
a Changing Environment: A Molecular and Ecophysiological Perspective, edited
by: Gerós, H., Chaves, M. M., Medrano, H., and Delrot, S.,
Wiley-Blackwell, https://doi.org/10.1002/9781118735985.ch2, 2015.
Schultz, H. R. and Jones, G. V.: Climate Induced Historic and Future Changes in Viticulture, J. Wine Res., 21, 137–145, 2010.
Schultz, H. R. and Lebon, E.: Modelling the effect of climate change on
grapevine water relations, Acta Hort. (ISHS), 689, 71–78, 2005.
Smart, D. R., Schwass, E., Lakso, A., and Morano, L.: Grapevine Rooting
Patterns: A Comprehensive Analysis and a Review, Am. J. Enol. Viticult., 57,
89–104, 2006.
Strub, L. and Loose, S.: The cost disadvantage of steep slope viticulture and strategies for its preservation, OENO One, 55, 49–68, https://doi.org/10.20870/oeno-one.2021.55.1.4494, 2021.
Sturman, A., Zawar-Reza, P., Soltanzadeh, I., Katurji, M., Bonnardot, V.,
Parker, A. K., Trought, M. C. T., Quénol, H., Le Roux, R., Gendig, E., and Schulmann, T.: The application of high-resolution atmospheric modelling to weather and climate variability in vineyard regions, OENO One, 51, 99–105, https://doi.org/10.20870/oeno-one.2016.0.0.1538, 2017.
Suklitsch, M., Gobiet, A., Truhetz, H., Awan, N. K., Göttel, H., and Jacob, D.: Error characteristics of high resolution regional climate models
over the Alpine area, Clim. Dynam., 37, 377–390, https://doi.org/10.1007/s00382-010-0848-5, 2011.
Tölle, M. H., Gutjahr, O., Busch, G., and Thiele, J. C.: Increasing
bioenergy production on arable land: Does the regional and local climate
respond? Germany as a case study, J. Geophys. Res.-Atmos., 119, 2711–2724, https://doi.org/10.1002/2013jd020877, 2014.
Trömel, S. and Schönwiese, C. D.: Probability change of extreme
precipitation observed from 1901 to 2000 in Germany, Theor. Appl. Climatol., 87, 29–39, https://doi.org/10.1007/s00704-005-0230-4, 2007.
Umweltbundesamt: Schwefeldioxid-Emissionen nach Quellkategorien, Nationale
Trendtabellen für die deutsche Berichterstattung atmosphärischer
Emissionen seit 1990, Emissionsentwicklung 1990 bis 2019 (Stand 01/2021),
https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/schwefeldioxid-emissionen#entwicklung-seit-1990, last access: 17 December 2021.
van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, Exeter, UK, 160 pp., http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf
(last access: 28 May 2021), 2009.
Van Leeuwen, C. and Destrac-Irvine, A.: Modified grape composition under
climate change conditions requires adaptations in the vineyard, OENO One, 51, 147–154, https://doi.org/10.20870/oeno-one.2016.0.0.1647, 2017.
Van Leeuwen, C. and Seguin, G.: Incidences de l'alimentation en eau de la vigne, appreciée per l'etat hydrique du feuillage, sur le developpement de l'appareil végétatif et la maturation du raisin, J. Vine Wine Sci., 28, 81–110, 1994.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vorderbrügge, T., Friedrich, K., Sauer, S., Peter, M., and Miller, R.:
Ableitung der FK für Acker aus dem Klassenzeichen der Bodenschätzung, Hesssisches Landesamt für Naturschutz, Umwelt und Geologie, Wiesbaden, https://www.hlnug.de/static/medien/boden/fisbo/bs/doku/zwischenbericht2005/CD Zwischenbericht 2005/methode_FK_al_20060329.pdf (last access: 26 April 2019), 2006.
Webb, L. B., Whetton, P. H., and Barlow, E. W. R.: Modelled impact of future
climate change on the phenology of winegrapes in Australia, Aust. J. Grape Wine Res., 13, 165–175, https://doi.org/10.1111/j.1755-0238.2007.tb00247.x, 2007.
Webb, L. B., Whetton, P. H., and Barlow, E. W. R.: Observed trends in winegrape maturity in Australia, Global Change Biol., 17, 2707–2719,
https://doi.org/10.1111/j.1365-2486.2011.02434.x, 2011.
Wild, M.: Global dimming and brightening: A review, J. Geophys. Res., 114,
1–31, https://doi.org/10.1029/2008jd011470, 2009.
Wild, M.: Enlightening Global Dimming and Brightening, B. Am. Meteorol. Soc., 93, 27–37, https://doi.org/10.1175/bams-d-11-00074.1, 2012.
Wilks, D. S.: Adapting stochastic weather generation algorithms for climate
change studies, Climatic Change, 22, 67–84, https://doi.org/10.1007/BF00143344, 1992.
Williams, L. E. and Matthews, M. A.: Grapevine, in: Irrigation of Agricultural Crops, edited by: Stewart, B. A. and Nielsen, D. R., ASA-CSSA-SSSA, Madison, WI, 1019–1055, ISBN 0-89118-102-4, 1990.
WMO: WMO Statement on the State of the Global Climate in 2019, WMO – World
Meteorological Organization, https://library.wmo.int/index.php?lvl=notice_display&id=21700#.X80KANhKiUk
(last access: 18 March 2022), 2020.
Wohlfahrt, Y., Smith, J. P., Tittmann, S., Honermeier, B., and Stoll, M.:
Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE), Eur. J. Agron., 101, 149–162, https://doi.org/10.1016/j.eja.2018.09.005, 2018.
Woodward, D. E., Hawkins, R. H., Jiang, R., Hjelmfelt, A. T., and Van Mullem, J. A.: Runoff Curve Number Method: Examination of the Initial Abstraction Ratio, in: World Water Environmental Resources Congress 2003, 23–26 June 2003, Philadelphia, Pennsylvania, USA, 1–10,
https://doi.org/10.1061/40685(2003)308, 2003.
Xu, Z., Jiang, Y., Jia, B., and Zhou, G.: Elevated-CO2 Response of
Stomata and Its Dependence on Environmental Factors, Front. Plant Sci., 7, 657, https://doi.org/10.3389/fpls.2016.00657, 2016.
Zimmer, T.: Untersuchungen zum Wasserhaushalt von Weinbergsböden im Rheingau, Geisenheimer Berichte 35, Gesellschaft zur Förderung der Forschungsanstalt Geisenheim, Geisenheim, 232 pp., ISBN 3-9805265-5-0, 1999.
Short summary
We modelled water budget developments of viticultural growing regions on the spatial scale of individual vineyard plots with respect to landscape features like the available water capacity of the soils, slope, and aspect of the sites. We used an ensemble of climate simulations and focused on the occurrence of drought stress. The results show a high bandwidth of projected changes where the risk of potential drought stress becomes more apparent in steep-slope regions.
We modelled water budget developments of viticultural growing regions on the spatial scale of...
Altmetrics
Final-revised paper
Preprint