Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1529-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-1529-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How can solar geoengineering and mitigation be combined under climate targets?
Mohammad M. Khabbazan
CORRESPONDING AUTHOR
Research Unit Sustainability and Global Change (FNU), University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
Workgroup for Economic and Infrastructure Policy (WIP), Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Department of Energy, Transport, and Environment (EVU), German Institute for Economic Research (DIW Berlin), Mohrenstr. 58, 10117 Berlin, Germany
Center for Earth System Research and Sustainability (CEN), University of Hamburg, Bundesstr. 53, 20146 Hamburg, Germany
Marius Stankoweit
Research Unit Sustainability and Global Change (FNU), University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
Elnaz Roshan
Research Unit Sustainability and Global Change (FNU), University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
Hauke Schmidt
Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
Hermann Held
Research Unit Sustainability and Global Change (FNU), University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), University of Hamburg, Bundesstr. 53, 20146 Hamburg, Germany
Related authors
Mohammad M. Khabbazan and Hermann Held
Earth Syst. Dynam., 10, 135–155, https://doi.org/10.5194/esd-10-135-2019, https://doi.org/10.5194/esd-10-135-2019, 2019
Short summary
Short summary
We find that for mitigation scenarios, prescribing atmosphere–ocean general circulation models' (AOGCMs') respective equilibrium climate sensitivities (ECSs) and transient climate responses (TCRs) to the one-box model results in too high global mean temperature projections due to the information loss resulting from the reduction of complexity. The one-box model offers a good emulator of these AOGCMs, provided the AOGCM's ECS and TCR values are mapped onto effective one-box counterparts.
Jana Mintenig, Mohammad M. Khabbazan, and Hermann Held
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-117, https://doi.org/10.5194/esd-2017-117, 2017
Revised manuscript not accepted
Abisha Mary Gnanaraj, Jiawei Bao, and Hauke Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2473, https://doi.org/10.5194/egusphere-2024-2473, 2024
Short summary
Short summary
We study how the Coriolis force, caused by a planet's rotation, affects the planet's energy budget and habitability. Using an atmospheric general circulation model in a simplified water-covered planet setup, we look at how different rotation rates change the amount of water vapor and clouds in the atmosphere, impacting the planet's climate. Our results show that slower rotations than Earth make the planet colder, while faster rotations make it warmer, reducing its habitability.
Ravikiran Hegde, Moritz Günther, Hauke Schmidt, and Clarissa Kroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2221, https://doi.org/10.5194/egusphere-2024-2221, 2024
Short summary
Short summary
Using a one-dimensional RCE model, we show that stratospheric aerosol forcing weakens with increasing surface temperature while CO2 forcing varies much less. This effect arises because sulfate aerosol, unlike CO2, absorbs mainly in spectral regions where the atmosphere is optically thin. It thereby masks the surface emission, which increases with warming. This spectral masking also results in weaker radiative feedback when aerosol is present.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Jakob Emanuel Deutloff, Hermann Held, and Timothy Michael Lenton
EGUsphere, https://doi.org/10.5194/egusphere-2023-1469, https://doi.org/10.5194/egusphere-2023-1469, 2023
Short summary
Short summary
We investigate the probabilities of triggering climate tipping points under various emission scenarios and how they are altered by additional carbon emissions from tipping points within the Earth's carbon cycle. We find that even “middle of the road” emission scenarios are highly unsafe with regard to triggering climate tipping points. Under such scenarios, probabilities of triggering are increased substantially by carbon emissions from tipping points within the Earth's carbon cycle.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Clarissa Alicia Kroll, Sally Dacie, Alon Azoulay, Hauke Schmidt, and Claudia Timmreck
Atmos. Chem. Phys., 21, 6565–6591, https://doi.org/10.5194/acp-21-6565-2021, https://doi.org/10.5194/acp-21-6565-2021, 2021
Short summary
Short summary
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as a consequence of aerosol-induced cold-point warming. We find that depending on the emission strength, aerosol profile height and season of the eruption, up to 4 % of the tropical aerosol forcing can be counterbalanced. A power function relationship between cold-point warming/SWV forcing and AOD in the yearly average is found, allowing us to estimate the SWV forcing for comparable eruptions.
Cathy W. Y. Li, Guy P. Brasseur, Hauke Schmidt, and Juan Pedro Mellado
Atmos. Chem. Phys., 21, 483–503, https://doi.org/10.5194/acp-21-483-2021, https://doi.org/10.5194/acp-21-483-2021, 2021
Short summary
Short summary
Intense and localised emissions of pollutants are common in urban environments, in which turbulence cannot mix these segregated pollutants efficiently in the atmosphere. Despite their relatively high resolution, regional models cannot resolve such segregation and assume instantaneous mixing of these pollutants in their model grids, which potentially induces significant error in the subsequent chemical calculation, based on our calculation with a model that explicitly resolves turbulent motions.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Short summary
We present an upper-atmosphere extension of the ICOsahedral Non-hydrostatic (ICON) model.
This includes an extension of the model dynamics from a shallow to a deep atmosphere
and the implementation of upper-atmosphere physics parameterizations.
Idealized test cases and climate simulations are performed in order to evaluate this new configuration, named UA-ICON.
Ina Tegen, David Neubauer, Sylvaine Ferrachat, Colombe Siegenthaler-Le Drian, Isabelle Bey, Nick Schutgens, Philip Stier, Duncan Watson-Parris, Tanja Stanelle, Hauke Schmidt, Sebastian Rast, Harri Kokkola, Martin Schultz, Sabine Schroeder, Nikos Daskalakis, Stefan Barthel, Bernd Heinold, and Ulrike Lohmann
Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, https://doi.org/10.5194/gmd-12-1643-2019, 2019
Short summary
Short summary
We describe a new version of the aerosol–climate model ECHAM–HAM and show tests of the model performance by comparing different aspects of the aerosol distribution with different datasets. The updated version of HAM contains improved descriptions of aerosol processes, including updated emission fields and cloud processes. While there are regional deviations between the model and observations, the model performs well overall.
Mohammad M. Khabbazan and Hermann Held
Earth Syst. Dynam., 10, 135–155, https://doi.org/10.5194/esd-10-135-2019, https://doi.org/10.5194/esd-10-135-2019, 2019
Short summary
Short summary
We find that for mitigation scenarios, prescribing atmosphere–ocean general circulation models' (AOGCMs') respective equilibrium climate sensitivities (ECSs) and transient climate responses (TCRs) to the one-box model results in too high global mean temperature projections due to the information loss resulting from the reduction of complexity. The one-box model offers a good emulator of these AOGCMs, provided the AOGCM's ECS and TCR values are mapped onto effective one-box counterparts.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Martin G. Schultz, Scarlet Stadtler, Sabine Schröder, Domenico Taraborrelli, Bruno Franco, Jonathan Krefting, Alexandra Henrot, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Colombe Siegenthaler-Le Drian, Sebastian Wahl, Harri Kokkola, Thomas Kühn, Sebastian Rast, Hauke Schmidt, Philip Stier, Doug Kinnison, Geoffrey S. Tyndall, John J. Orlando, and Catherine Wespes
Geosci. Model Dev., 11, 1695–1723, https://doi.org/10.5194/gmd-11-1695-2018, https://doi.org/10.5194/gmd-11-1695-2018, 2018
Short summary
Short summary
The chemistry–climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols. It thus allows for detailed investigations of chemical processes in the climate system. Evaluation of the model with various observational data yields good results, but the model has a tendency to produce too much OH in the tropics. This highlights the important interplay between atmospheric chemistry and dynamics.
Katharina Meraner and Hauke Schmidt
Atmos. Chem. Phys., 18, 1079–1089, https://doi.org/10.5194/acp-18-1079-2018, https://doi.org/10.5194/acp-18-1079-2018, 2018
Short summary
Short summary
Using a coupled Earth system model and radiative transfer modeling we show that the radiative forcing of a winter polar mesospheric ozone loss due to energetic particle precipitation is negligible. A climate impact of a mesospheric ozone loss as suggested by Andersson et al. (2014, Nature Communications) seems unlikely. A winter polar stratospheric ozone loss due to energetic particle precipitation leads to a small warming of the stratosphere, but only a few statistically significant changes.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Jana Mintenig, Mohammad M. Khabbazan, and Hermann Held
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-117, https://doi.org/10.5194/esd-2017-117, 2017
Revised manuscript not accepted
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
S. Tilmes, M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English
Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, https://doi.org/10.5194/gmd-8-43-2015, 2015
Short summary
Short summary
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment “G4 specified stratospheric aerosols” (G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments.
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
Related subject area
Management of the Earth system: integrated assessment
On the future role of the most parsimonious climate module in integrated assessment
A quantitative approach to evaluating the GWP timescale through implicit discount rates
The impact of uncertainty on optimal emission policies
Future supply and demand of net primary production in the Sahel
Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector
Uncertainty in temperature response of current consumption-based emissions estimates
Variation in emission metrics due to variation in CO2 and temperature impulse response functions
Simple emission metrics for climate impacts
Climate change impact on available water resources obtained using multiple global climate and hydrology models
The support of multidimensional approaches in integrate monitoring for SEA: a case of study
On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP
Comparison of physically- and economically-based CO2-equivalences for methane
Mohammad M. Khabbazan and Hermann Held
Earth Syst. Dynam., 10, 135–155, https://doi.org/10.5194/esd-10-135-2019, https://doi.org/10.5194/esd-10-135-2019, 2019
Short summary
Short summary
We find that for mitigation scenarios, prescribing atmosphere–ocean general circulation models' (AOGCMs') respective equilibrium climate sensitivities (ECSs) and transient climate responses (TCRs) to the one-box model results in too high global mean temperature projections due to the information loss resulting from the reduction of complexity. The one-box model offers a good emulator of these AOGCMs, provided the AOGCM's ECS and TCR values are mapped onto effective one-box counterparts.
Marcus C. Sarofim and Michael R. Giordano
Earth Syst. Dynam., 9, 1013–1024, https://doi.org/10.5194/esd-9-1013-2018, https://doi.org/10.5194/esd-9-1013-2018, 2018
Short summary
Short summary
The 100-year GWP is the most widely used metric for comparing the climate impact of different gases such as methane and carbon dioxide. However, there have been recent arguments for the use of different timescales. This paper uses straightforward estimates of future damages to quantitatively determine the appropriate timescale as a function of how society discounts the future and finds that the 100-year timescale is consistent with commonly used discount rates.
Nicola Botta, Patrik Jansson, and Cezar Ionescu
Earth Syst. Dynam., 9, 525–542, https://doi.org/10.5194/esd-9-525-2018, https://doi.org/10.5194/esd-9-525-2018, 2018
Short summary
Short summary
We study the impact of uncertainty on optimal greenhouse gas (GHG) emission policies for a stylized emission problem. The results suggest that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.
Florian Sallaba, Stefan Olin, Kerstin Engström, Abdulhakim M. Abdi, Niklas Boke-Olén, Veiko Lehsten, Jonas Ardö, and Jonathan W. Seaquist
Earth Syst. Dynam., 8, 1191–1221, https://doi.org/10.5194/esd-8-1191-2017, https://doi.org/10.5194/esd-8-1191-2017, 2017
Short summary
Short summary
The UN sustainable development goals for eradicating hunger are at high risk for failure in the Sahel. We show that the demand for food and feed biomass will begin to outstrip its supply in the 2040s if current trends continue. Though supply continues to increase it is outpaced by a greater increase in demand due to a combination of population growth and a shift to diets rich in animal proteins. This underscores the importance of policy interventions that would act to mitigate such developments.
Kerstin Engström, Mats Lindeskog, Stefan Olin, John Hassler, and Benjamin Smith
Earth Syst. Dynam., 8, 773–799, https://doi.org/10.5194/esd-8-773-2017, https://doi.org/10.5194/esd-8-773-2017, 2017
Short summary
Short summary
Applying a global carbon tax on fossil was shown to lead to increased bioenergy production in four out of five scenarios. Increased bioenergy production led to global cropland changes that were up to 50 % larger by 2100 compared to the reference case (without global carbon tax). For scenarios with strong cropland expansion due to high population growth coupled with low technological change or bioenergy production, the biosphere was simulated to switch from a carbon sink into a carbon source.
Joel C. Gill and Bruce D. Malamud
Earth Syst. Dynam., 7, 659–679, https://doi.org/10.5194/esd-7-659-2016, https://doi.org/10.5194/esd-7-659-2016, 2016
Short summary
Short summary
Understanding interactions between hazards and other processes can help us to better understand the complex environment in which disasters occur. This enhanced understanding may help us to better manage hazards and reduce the risk of disasters occurring. Interactions (e.g. one hazard triggering another hazard) are noted between (i) natural hazards, such as earthquakes; (ii) human activity, such as groundwater abstraction; and (iii) technological hazards/disasters, such as building collapse.
A. M. Foley, P. B. Holden, N. R. Edwards, J.-F. Mercure, P. Salas, H. Pollitt, and U. Chewpreecha
Earth Syst. Dynam., 7, 119–132, https://doi.org/10.5194/esd-7-119-2016, https://doi.org/10.5194/esd-7-119-2016, 2016
Short summary
Short summary
We introduce GENIEem-PLASIM-ENTSem (GPem), a climate-carbon cycle emulator, showing how model emulation can be used in integrated assessment modelling to resolve regional climate impacts and systematically capture uncertainty. In a case study, we couple GPem to FTT:Power-E3MG, a non-equilibrium economic model with technology diffusion. We find that when the electricity sector is decarbonised by 90 %, further emissions reductions must be achieved in other sectors to avoid dangerous climate change.
J. Karstensen, G. P. Peters, and R. M. Andrew
Earth Syst. Dynam., 6, 287–309, https://doi.org/10.5194/esd-6-287-2015, https://doi.org/10.5194/esd-6-287-2015, 2015
Short summary
Short summary
We quantify uncertainties in estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants, the metric used and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are dominated by metric parameters and emission uncertainties, while the economic data appear to have small uncertainties at the national level.
D. J. L. Olivié and G. P. Peters
Earth Syst. Dynam., 4, 267–286, https://doi.org/10.5194/esd-4-267-2013, https://doi.org/10.5194/esd-4-267-2013, 2013
B. Aamaas, G. P. Peters, and J. S. Fuglestvedt
Earth Syst. Dynam., 4, 145–170, https://doi.org/10.5194/esd-4-145-2013, https://doi.org/10.5194/esd-4-145-2013, 2013
S. Hagemann, C. Chen, D. B. Clark, S. Folwell, S. N. Gosling, I. Haddeland, N. Hanasaki, J. Heinke, F. Ludwig, F. Voss, and A. J. Wiltshire
Earth Syst. Dynam., 4, 129–144, https://doi.org/10.5194/esd-4-129-2013, https://doi.org/10.5194/esd-4-129-2013, 2013
C. M. Torre and M. Selicato
Earth Syst. Dynam., 4, 51–61, https://doi.org/10.5194/esd-4-51-2013, https://doi.org/10.5194/esd-4-51-2013, 2013
C. Azar and D. J. A. Johansson
Earth Syst. Dynam., 3, 139–147, https://doi.org/10.5194/esd-3-139-2012, https://doi.org/10.5194/esd-3-139-2012, 2012
O. Boucher
Earth Syst. Dynam., 3, 49–61, https://doi.org/10.5194/esd-3-49-2012, https://doi.org/10.5194/esd-3-49-2012, 2012
Cited articles
Anthoff, D. and Tol, R. S. J.:
The Impact of Climate Change on the Balanced Growth Equivalent: An Application of FUND,
Environ. Resour. Econ.,
43, 351–367, https://doi.org/10.1007/s10640-009-9269-5, 2009. a
Arino, Y., Akimoto, K., Sano, F., Homma, T., Oda, J., and Tomoda, T.:
Estimating option values of solar radiation management assuming that climate sensitivity is uncertain,
P. Natl. Acad. Sci. USA,
113, 5886–5891, 2016. a
Asseng, S., Foster, I., and Turner, N. C.:
The impact of temperature variability on wheat yields,
Glob. Change Biol.,
17, 997–1012, 2011. a
Bahn, O., Chesney, M., Gheyssens, J., Knutti, R., and Pana, A. C.:
Is there room for geoengineering in the optimal climate policy mix?,
Environ. Sci. Policy,
48, 67–76, 2015. a
Ban-Weiss, G. A. and Caldeira, K.: Geoengineering as an optimization problem,
Environ. Res. Lett., 5, 034009, https://doi.org/10.1088/1748-9326/5/3/034009, 2010. a, b
Barrett, S., Lenton, T. M., Millner, A., Tavoni, A., Carpenter, S., Anderies, J. M., Chapin III, F. S., Crépin, A.-S., Daily, G., Ehrlich, P., Folke, C., Galaz, V., Hughes, T., Kautsky, N., Lambin, E. F., Naylor, R., Nyborg, K., Polasky, S., Scheffer, M., Wilen, J., Xepapadeas, A., and de Zeeuw, A.: Climate engineering reconsidered,
Nat. Clim. Change, 4, 527–529, https://doi.org/10.1038/nclimate2278, 2014. a
Bellamy, R., Chilvers, J., Vaughan, N. E., and Lenton, T. M.:
'Opening up' geoengineering appraisal: Multi-Criteria Mapping of options for tackling climate change,
Global Environ. Chang.,
23, 926–937, 2013. a
Bruckner, T. and Zickfeld, K.:
Inverse integrated assessment of climate change: the guard-rail approach,
in: International Conference on Policy Modeling (EcoMod2008), Citeseer, Berlin, 2008. a
Crutzen, P. J.: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Climatic Change, 77, 211–219, https://doi.org/10.1007/s10584-006-9101-y, 2006. a
Ekholm, T.:
Climatic cost-benefit analysis under uncertainty and learning on climate sensitivity and damages,
Ecol. Econ.,
154, 99–106, 2018. a
Ekholm, T. and Korhonen, H.:
Climate change mitigation strategy under an uncertain Solar Radiation Management possibility,
Climatic Change,
139, 503–515, 2016. a
Frieler, K., Meinshausen, M., Mengel, M., Braun, N., and Hare, W.:
A scaling approach to probabilistic assessment of regional climate change, Journal of Climate, 25, 3117–3144, 2012. a
Giorgi, F. and Bi, X.: Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations,
Geophys. Res. Lett., 32, L21715, https://doi.org/10.1029/2005GL024288, 2005. a, b, c, d
Heutel, G., Moreno-Cruz, J., and Shayegh, S.:
Climate tipping points and solar geoengineering,
J. Econ. Behav. Organ.,
132, 19–45, 2016. a
Heutel, G., Moreno-Cruz, J., and Shayegh, S.:
Solar geoengineering, uncertainty, and the price of carbon,
J. Environ. Econ. Manag.,
87, 24–41, 2018. a
Irvine, P., Sriver, R., and Keller, K.:
Strong tension between the objectives to reduce sea-level rise and rates of temperature change through solar radiation management,
Nat. Clim. Change,
2, 97–100, 2012. a
Kalidindi, S., Bala, G., Modak, A., and Caldeira, K.:
Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols,
Clim. Dynam.,
44, 2909–2925, 2015. a
Khabbazan, M. M. and Held, H.: On the future role of the most parsimonious climate module in integrated assessment, Earth Syst. Dynam., 10, 135–155, https://doi.org/10.5194/esd-10-135-2019, 2019. a, b, c
Klepper, G. and Rickels, W.: The real economics of climate engineering. Economics Research International, 2012, 316564, https://doi.org/10.1155/2012/316564, 2012. a
Kolstad, C., Urama, K., Broome, J., Bruvoll, A., Cariño-Olvera, M., Fullerton, D., Gollier, C., Hanemann, W. M.,
Hassan, R., Jotzo, F., Khan, M. R., Meyer, L., and Mundaca, L.: Social, Economic and Ethical Concepts
and Methods, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., and Minx, J. C., Climate Change 2014: Mitigation of Climate Change, 207–282, Cambridge
University Press, available at: http://www.ipcc.ch/report/ar5/wg3/ (last access: 1 December 2021), 2014. a
Kravitz, B., Rasch, P. J., Forster, P. M., Andrews, T., Cole, J. N., Irvine, P. J., Ji, D., Kristjánsson, J. E., Moore, J. C., Muri, H., and Niemeier, U.: An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project, J. Geophys. Res.-Atmos., 118, 13087–13102, https://doi.org/10.1002/2013JD020502, 2013. a, b, c
Kravitz, B., MacMartin, D. G., Robock, A., Rasch, P. J., Ricke, K. L., Cole, J. N., Curry, C. L., Irvine, P. J., Ji, D., Keith, D. W., Kristjánsson, J. E., Moore, J. C., Muri, H., Singh, B., Tilmes, S., Watanabe, S., Yang, S., and Yoon, J.-H.: A multi-model assessment of regional climate disparities caused by solar geoengineering, Environ. Res. Lett., 9, 074013, https://doi.org/10.1088/1748-9326/9/7/074013, 2014. a
Kriegler, E. and Bruckner, T.:
Sensitivity analysis of emissions corridors for the 21st century,
Climatic Change,
66, 345–387, 2004. a
Kunreuther, H., Gupta, S., Bosetti, V., Cooke, R., Dutt, V., Ha-Duong, M., Held, H., Llanes-Regueiro, J., Patt, A., Shittu, E., and Weber, E.: Integrated risk and uncertainty assessment of climate change response policies, in: Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 151–206, 2014. a, b
MacMartin, D. G., Kravitz, B., and Keith, D. W.: Geoengineering: The world's largest control problem, in: 2014 American Control Conference, IEEE, 4–6 June 2014, Portland, OR, USA, https://doi.org/10.1109/ACC.2014.6858658, 2401–2406, 2014. a
Oschlies, A., Held, H., Keller, D., Keller, K., Mengis, N., Quaas, M., Rickels, W., and Schmidt, H.:
Indicators and metrics for the assessment of climate engineering,
Earths Future,
5, 49–58, 2017. a
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000–Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochem. Cy., 24, GB1011, https://doi.org/10.1029/2008GB003435, 2010. a
Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to geoengineering with tropical and Arctic SO2 injections, J. Geophys. Res.-Atmos., 113, D16101, https://doi.org/10.1029/2008JD010050, 2008. a, b
Roshan, E., Khabbazan, M. M., and Held, H.: Cost-Risk Trade-Off of Mitigation and Solar Geoengineering: Considering Regional Disparities Under Probabilistic Climate Sensitivity, Environ. Resour. Econ., 72, 263–279, https://doi.org/10.1007/s10640-018-0261-9, 2019. a, b, c
Schellnhuber, H. J.: Tragic triumph, Climatic Change, 100, 229–238, https://doi.org/10.1007/s10584-010-9838-1, 2010. a, b
Schmidt, H., Alterskjær, K., Bou Karam, D., Boucher, O., Jones, A., Kristjánsson, J. E., Niemeier, U., Schulz, M., Aaheim, A., Benduhn, F., Lawrence, M., and Timmreck, C.: Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models, Earth Syst. Dynam., 3, 63–78, https://doi.org/10.5194/esd-3-63-2012, 2012. a
Sheffield, J., Goteti, G., and Wood, E. F.:
Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling,
J. Climate,
19, 3088–3111, 2006. a
Smith, S. J. and Rasch, P. J.:
The long-term policy context for solar radiation management,
Climatic Change,
121, 487–497, 2013. a
Stankoweit, M., Schmidt, H., Roshan, E., Pieper, P., and Held, H.: Integrated mitigation and solar radiation management scenarios under combined climate guardrails, EGUGA, Vol. 17, EGU2015-7152, EGU General Assembly 2015, 12–17 April 2015, Vienna, Austria, id. 7152, 7152, 2015. a
Stern, N.: The economics of climate change: the Stern review, Cambridge University Press, Cambridge, 2007. a
Weedon, G. P., Gomes, S., Viterbo, P., Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.: The watch forcing data 1958–2001: a meteorological forcing data set for land surface- and hydrological-models, (Technical Report; 22), Oxfordshire, WATCH Programme, available at: https://publications.pik-potsdam.de/pubman/item/item_16400 (last access: 4 December 2021), 2010. a
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.:
The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data,
Water Resour. Res.,
50, 7505–7514, 2014. a
Wigley, T. M.:
A combined mitigation/geoengineering approach to climate stabilization,
Science,
314, 452–454, 2006. a
Wigley, T. M. and Raper, S. C.:
Interpretation of high projections for global-mean warming,
Science,
293, 451–4, https://doi.org/10.1126/science.1061604, 2001. a
Wu, Z., Huang, N. E., Long, S. R., and Peng, C.-K.:
On the trend, detrending, and variability of nonlinear and nonstationary time series,
P. Natl. Acad. Sci. USA,
104, 14889–14894, 2007. a
Short summary
We ask for an optimal amount of solar radiation management (SRM) in conjunction with mitigation if global warming is limited to 2 °C and regional precipitation anomalies are confined to an amount ethically compatible with the 2 °C target. Then, compared to a scenario without regional targets, most of the SRM usage is eliminated from the portfolio even if transgressing regional targets are tolerated in terms of 1/10 of the standard deviation of natural variability.
We ask for an optimal amount of solar radiation management (SRM) in conjunction with mitigation...
Altmetrics
Final-revised paper
Preprint