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Response to Reviewer Comments (RC3):  

'Comment on esd-2024-8', Benjamin Poschlod, Referee #3, 01 Jul 2024 

The study assesses the occurrence of climatic compound events during the rice growing 

season in China. Thereby, it relies on 34 years of data (1981 – 2014) of 65 stations across 

whole China. The study distinguishes between concurrent (CCE) and consecutive (CSE) 

events, two cropping systems (single-rice for a single harvest per season; late-rice for the 

second harvest of two harvests per season), and three growing stages. On this base, the 

authors perform a statistical exploration: 

1. Plotting the frequency of event types and assessing a linear trend 

2. Mapping the locations, where the events occurred 

3. Performing a correlation analysis between event duration and the temperature-moisture 

coupling 

4. Performing a “path analysis” in order to assess the contribution of temperature and moisture 

to the event duration. 

The structure of the manuscript is clear; however, I have major concerns regarding the data, 

methodology, and the interpretation of the results. As the concerns are fundamental, I won’t go 

into details with minor comments, but only raise the major concerns. Further, I have to note that 

I agree with the comments of the two other reviewers, where my concerns will partly overlap 

with. 

RE: Thank you for your positive feedbacks on our manuscript. We are very grateful for your 

constructive comments and suggestions on how our manuscript can be improved. We respond 

to the comments and suggestions given in the text point-by-point below (in blue). 

RC3.1 Sample size 

a) The whole analysis is based on 34 years and 65 stations. As the first reviewer, I think that 

this might be not sufficient to represent the heterogeneity of rice production areas across whole 

China. More importantly, the low sample size affects also the sampling of compound events. 

Especially for the hot & dry events (either CCE or CSE), only very few events are found. This 

severely limits the informative value of the following analyses. 

RE: We have followed your suggestion by using grided data based analysis instead of station-

based. We overlapped the climate data set a from CN05.1 (0.25°×0.25°) (Wu J. & Gao, 

2013)and the rice distribution map, including single-rice (Shen et al., 2023) and late-rice (Pan 

et al., 2021) for 2020. Those datasets have been considered either as the best-quality gridded 

observation climate forcing dataset and the rice distribution dataset (Li et al., 2022; Yang et al., 

2017; Zhu & Yang, 2020). As the climate forcing grids and rice distribution pixels differ largely 



in their spatial resolution, we used climate grids with ≥5% areas of rice pixels inside. With the 

update, our sample sizes increased from 28 stations to 2262 grids for single-rice and from 37 

stations to 1383 grids for late-rice (Fig R1). The updated sample size would be sufficient for 

subsequent statistical analyses.  

 

Figure R1. Comparison map of station samples and updated raster samples in the study area. 

b) The authors could try to interpolate the growing stage dates using climatic covariates (e.g. 

growing degree days) in order to better cover the whole rice production area and increase the 

sample size. 

RE: We tried to interpolate phenological dates for the grids by using the annual observed dates 

from agrometeorological stations, as suggested by you. The stations have recorded the type of 

rice planted, dates of key growth stages and yield data for the period 1981-2018. This dataset 

is authentic and reliable for interpolation of phenology and yield. In the interpolation, we have 

tried different algorithms. A comparison with the high-resolution crop phenological dataset for 

rice in China during 2000-2019 (Luo et al., 2020) as comparison and validation dataset 

suggested that results from the ordinary kriging (gaussian function) be the best choice (Fig. R2). 

Now we have finished the interpolation of four phenological dates (booting, heading, flowering 

and maturity) for 34 years (1981-2018) for each of single rice and late rice. Tentatively, the 

interpolation results seemed to be too much smoothed, and we would continue to tune it should 

we have the chance to revise the manuscript.  

 



 

Figure R2. Comparison plots of the interpolation results of the phenology dates. Taking the 

heading date of late-rice in 2018 as an example, (a) shows the interpolation results of this study, 

and (b) shows the results of resampling the ChinaCropPhen1km data to 0.25° (Luo et al., 2020). 

RC3.2 Methodology and Clarity 

a) Due to the limitations of the sample size, linear trends of aggregated event frequencies (Fig. 

1) and correlation analysis (Figs. 4,5) are subject to big uncertainties. Further, the trend over 

aggregated event types does not make any sense to me (e.g., I see an increase of H1D1 events, 

whereas H3D3 events do not seem to increase). The whole hot & dry analysis is based on only 

1 to 6 locations (see Fig. 2). 

RE:  Following your suggestion, we will re-run the statistics based on our raster data with a 

significantly larger sample size.  

b) The event definition nomenclature (Table 1) does not reflect the choice of thresholds 

intuitively: “chilling-dew wind” is based on a temperature threshold, not wind. “continuous-rain” 

is defined as at least three consecutive days with more than 0.1mm/d precipitation and less 

than an hour of sunshine. This definition includes wide ranges of precipitation (from almost dry 

to very wet). The sunshine threshold is more specific and might dominate this event definition. 

So, it’s more “cloudiness” than “continuous rain”. 

RE: Thank you for raising this question. The two terms are in local Chinese context. Chilling-

dew-wind is a kind of meteorological phenomenon that occurs in the area south of the Yangtze 

River around the Cold Dew Festival (Oct 8 or 9). Chilling-dew-wind is a cold damage that 

reduces rice production due to significant cooling caused by cold air invasion in autumn, which 

is very harmful to crop production. Chilling-dew-wind occurs during the critical period from 

heading to grain filling of late rice in southern China. For this reason, it is the main 

agrometeorological disaster in the late growing stage of late-rice production. Considering that 

the term Chilling-dew-wind has obvious regional characteristics and is not easy to be 

understood, we plan to replace it with the more understandable "chilling” for simplicity.  

 



For the “continuous-cloudiness-rainy” event, in the local Chinese context, refers to both 

“cloudiness” than “continuous rain”, each of which have specific way of influencing rice yield. In 

In southern China, continuous rain could cause pollen grains to break and anthers to be washed 

away by the rain, affecting fertilization and filling, which in turn can lead to yield loss (Tian & 

Huo, 2019). Continuous cloudiness would affected the photosynthesis of rice, leading to a 

decrease in the number of tillers, a decrease in the accumulation of dry matter, and a decrease 

in the fruiting rate (Zhang & Zheng, 2017). The standard we followed in the previous version 

seemed to use wide ranges of precipitation but very narrow range of sunshine. In the revision, 

we used precipitation for two reasons. Firstly, there is a clear correlation between daily 

precipitation and sunshine hours, and therefore using precipitation could also represent the 

occurrence of cloudiness, partly (Fig. R3). Second, we tested both indicator in the yield impact 

analyses, and continuous-rain severity derived much more apparent yield impact than 

cloudiness. Please refer to the response to comment RC3.3 for more details (Fig. R4 & R5).  

 

Figure R3. Scatter plot of daily. sunshine duration and precipitation for stages #2 and #3 for late 

rice. 

 

c) I could not well follow the methodological description in L177-201 and the respective results 

(Fig.5). 

Fig. 5: For the event type H2D1, there is only one event at one location. How can there be a 

meaningful correlation or “path analysis” between event duration and climate drivers? 

RE: Thank you for pointing this out. Our previous results have indeed suffered from limited 

sample size. The entire study would benefit from the change to a raster-data based analysis 

covering all rice cultivation areas in southern China. However, due to the limited time to prepare 

this response letter, we have not managed to re-run all our analyses on the revised gridded 

input data. We will try to show this in the formal revision stage.  

 



RC3.3 Relation to impact 

a) I acknowledge the application of plant-specific absolute thresholds, which are guided by 

literature (Tab. 1), as well as the separation into three growing stages and two cropping systems. 

However, the added value is not proven, as there is no assessment of the impact variable (yield). 

The motivation for the authors’ thresholds comes from literature, which considers the climate 

driver univariately (e.g., T >= 33°C is harmful for rice, independently from the moisture 

conditions). However, when jointly occurring with dry soil conditions, this temperature threshold 

could be at lower temperature. 

RE: Thank you for your suggestions. We have tried to assessed the actual impact of climate 

indicators on yield (Fig. R4). Tentatively, we have firstly finished the evaluation of late rice 

against compound chilling-rainy events.  

Here, we used AsiaRiceYield4km data (H. Wu et al., 2023) as the yield raster data, covering 

the period of 1995 to 2015. It is so far the dataset that provides the longest time-series covering 

whole China rice cultivation areas. Rice yield data with even longer time-series could only rely 

on the agrometeorological stations, which would again suffer from the sample size issue. To 

measure the impact, we followed Ye (Ye et al., 2015) by using detrended yield anomaly to 

remove the spatial difference in yield.  

For the intensity of events, we used severity indicators based on suggestion- RC3.3 (b). For 

chilling, we used the cold-degree-days of the growth stage based on the concept of severity. 

The cumulative deficit of average daily temperature (Tmean) ≤20°C for three or more 

consecutive days:  

𝐶𝐷𝐷𝑠𝑡𝑎𝑔𝑒 = ∑|𝑇𝐸𝑀𝑏𝑎𝑠𝑒 − 𝑇𝐸𝑀𝑖|

𝑛

𝑖=1

 

𝐶𝐷𝐷𝑠𝑡𝑎𝑔𝑒 represents the cold-degree-days for each growth stage. 𝑖 is the index of the day 

within the consecutive days that meet the condition. 𝑇𝐸𝑀𝑖 is the mean daily temperature value 

on day 𝑖. 𝑇𝐸𝑀𝑏𝑎𝑠𝑒 is the mean daily temperature threshold (20°C during Heading-flowering 

stage (stage#2) and 17°C during Grain filling stage (stage#3), according to our threshold 

indicated in the manuscript. 𝑛 is the number of consecutive days that satisfy the condition (at 

least 3 days). 

For the impact of rainy event, we used the cumulative precipitation greater than or equal to 25 

mm for three or more consecutive days. A daily 25mm rainfall was classified as the rainy in 

<QX/T, 468-2018, Code of Agricultural Meteorological Observations-Rice> for precipitation: 

𝑃𝐷𝐷𝑠𝑡𝑎𝑔𝑒 = ∑|𝑃𝑅𝐸𝑖 − 𝑃𝑅𝐸𝑏𝑎𝑠𝑒|

𝑛

𝑖=1

 



𝑃𝐷𝐷𝑠𝑡𝑎𝑔𝑒 represents the precipitation-degree-days for each growth stage. 𝑖 is the index of the 

day within the consecutive days that meet the condition. 𝑃𝑅𝐸𝑖 is the daily precipitation value 

on day 𝑖. 𝑃𝑅𝐸𝑏𝑎𝑠𝑒 is the daily precipitation threshold (25 mm). 𝑛  is the number of 

consecutive days that satisfy the condition (at least 3 days). 

 

Figure R4. Late-rice yield responses to severity of chilling (temperature) and rainy (precipitation) 

variation. Color bands indicate the value of the yield anomaly. 

 

Several interesting things could be observed from the figures: 

1) There is a clear compound impact of chilling-rainy events on late rice. As severity of chilling 

or rainy events increased (from the bottom left to the top right of the graphs), yield decreased. 

The scatters indicate a weakly concave set of isolines, indicating a larger impact on yield than 

the linear average of single events, that said, the compound impact of having chilling-rainy 

together would be stronger than the linear combination of the impacts from each stressor. 

2) The impact was more severe the Heading-flowering stage (stage#2) than in the Grain filling 

stage (stage#3), although there were much less compound events in stage #2 than in stage #3 

stage. Negative yield anomaly occurred at smaller values of severity in Fig. R4(a) than that in 

Fig. R4(b).  

 



 

Figure R5. Late-rice yield responses to severity of chilling (temperature) and cloudy (sunshine 

hours) variation. Color bands indicate the value of the yield anomaly. 

 

We have also tried to use the concept of continuous cloudiness, by using a severity indicator 

of cumulative sunshine deficit ≤ 5h. As shown in Figure R5, the is also certain pattern of the 

concurrent impact should we use sunshine hours to denote deficit in solar radiation. However, 

the pattern was much less clear than the case in Figure R4, particularly for the stage #2. 

Therefore, tentatively we have decided to use chilling and rainy events for late rice.  

Due to the limited time of writing up this response, we have not yet finished the rest part of the 

analyses, i.e. the impact of concurrent heat-drought events on single rice, and the consecutive 

events.  

b) As the first reviewer comments, the event intensity is not considered in this study. It might be 

useful to apply bivariate event definitions, which consider the intensity of the marginals. This 

could be implemented, e.g. via copulas. See Zscheischler et al., 2017 for an application and 

Salvadori et al., 2016 for the theory. As a starting point, the authors could use their univariate 

thresholds for the marginals, and apply survival Kendall return periods to assess the bivariate 

occurrence probability. That probability would then ideally show a higher correlation with the 

yields than the correlation between each marginal and the yield. 

RE: Thank you for your suggestion. In the revision, we plan to use an indicator that combines 

both the intensity and duration of the occurrence of an extreme event: severity (Haqiqi et al., 

2021) for each of the climate factor (Fig. R6). According to this reference, we define severity 

here base on the cumulative deviation from the threshold value of each hazard. We have 

exactly done so in the example of evaluating yield impact. Then, we could follow your approach 

to derive the bivariate probability as the measure of intensity of the compound event, by using 

copulas and survival Kendall return periods approach or similar approaches. An example of 

computing severity for chilling and rainy events have been supplied in the response to RC 3.3 

(a). We would also apply this to heat and drought events.  



 

Figure R6. Reference chart for the definition of severity (https://doi.org/10.5194/hess-25-551-

2021). 

RC3.4 Analysis & interpretation of the results 

a) I cannot follow some of the interpretations. In section 3.3 (L244ff) the authors claim to show 

the “dependence of compound events on temperature-moisture coupling”. The event itself is 

defined via the joint exceedance of temperature and moisture thresholds. As far as I understand, 

the “temperature-moisture coupling” is the Pearson rank correlation between temperature and 

moisture during the growing phase (see L165-176). By definition of a bivariate event, the event 

occurrence will be dependent on the marginal probabilities and the joint dependence structure. 

So, I do not see the informative value of section 3.3. and Fig. 4. 

RE: Following your suggestion, we will redefine compound events through the marginal 

probabilities and the joint dependence. And explore relationships between event duration 

versus the temperature-moisture correlation on that basis. 

We intended to link the likelihood/severity of compound events to climatological coupling 

between temperature and moisture. Our hypothesis follows your comment: locations/stations 

with stronger temperature-moisture coupling could have much more frequent/severe compound 

events. Our existing results based on limited sample showed that, there is some weak evidence 

supporting that hypothesis, for concurrent compound events. But for consecutive events, there 

seemed no linkage between the correlation and the CSEs. With the update in the input data, 

we will re-run this part of analyses to check whether there would be strong evidence rejecting 

above hypothesis. The test will help us decide whether to keep this part of analyses, or focus 

on yield impact exclusively.  

Further, regarding Fig. 4: I do not consider it appropriate to assess linear relationships between 

event duration (total number of event days) on the y-axis versus the temperature-moisture 

correlation on the x-axis. The kernel density estimates suggest nicely distributed data – in reality 



there is so few data, that a histogram is more appropriate. Furthermore, this whole analysis 

again suffers from the sampling. Taking the example of the H1D1 event, 6 locations show 

events at all. 5 of them are clustered in the north east (see Fig. 2a). By that means, the analysis 

is sensitive to the spatially inhomogeneous sampling density of locations. b) Section 3.4 claims 

to assess the “contribution of temperature and moisture to the changes in compound events”. I 

do not see how the performed analysis incorporates *changes* in compound events. For the 

hot & dry part, this analysis shows a large amount of variability (Figs. 5a,c), which I’d attribute 

to the low number of sampled events. I would be very careful to (over-)interpret these results.   

RE:  Thank you for your suggestion. In the current manuscript, we intended to show that, 

stations with stronger temperature-moisture correlation in climatological mean are more likely 

to experience compound events. Here the correlation was based on climatological conditions 

(differ by location/station with multi-annual average condition), while the total duration of events 

was used to denote the overall likelihood/duration/intensity of the location/station). But yes, our 

current results still suffered from the limited sample size. We will update the figures after re-

running all analyses by using the updated input data.  
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