
1 

 

Evaluating Dynamic Global Vegetation Models in China: Challenges 

in capturing trends in Leaf Area and Gross Primary Productivity, 

but effective seasonal variation representation 

Anzhou Zhao1, Ziyang Li1,2, Lidong Zou2,3*, Jiansheng Wu4, Kayla Stan5, Arturo Sanchez-Azofeifa6 

1School of Mining and Geomatics Engineering, Hebei University of Engineering, Handan 056038, China 5 
2Institute of Applied Artificial Intelligence of The Guangdong-Hongkong-Macao Greater Bay, Shenzhen Polytechnic 

University, Shenzhen 518055, China 
3School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518055, China 
4Key Laboratory for Urban Habitat Environmental Science and Technology, Shenzhen Graduate School, Peking University, 

Shenzhen 518055, PR China 10 
5School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 103 Bobby Chain 

Technology Center (TEC), 118 College Dr, Hattiesburg, MS, 39406 United States 
6Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada 

Correspondence to: Lidong Zou (lidongzou@szpu.edu.cn) 

Abstract. Terrestrial ecosystems are crucial in mitigating global climate change, and Dynamic Global Vegetation Models 15 

(DGVMs) have become essential tools for simulating these ecosystems. However, uncertainties remain in DGVM 

simulations for China, highlighting the need to systematic evaluations of their dynamics across various time scales to 

enhance model performance. As such, we utilize reprocessed monthly MODIS Leaf Area Index (LAI) and Contiguous Solar-

induced Fluorescence (CSIF) data as observational references to assess the long-term trends and seasonal variations of LAI 

and Gross Primary Production (GPP) simulated by 14 models (CABLE-POP, CLASSIC, CLM5.0, DLEM, IBIS, ISAM, 20 

ISBA-CTRIP, JULES, LPJ-GUESS, LPX, OCN, ORCHIDEEv3, SDGVM, and VISIT) in China from 2003 to 2019. 

Additionally, we evaluate the trends and seasonal variations of simulated LAI and GPP in response to environmental and 

climatic factors. Our findings indicate that: (1) While the overall trend of simulated LAI is captured, the spatial performance 

of simulated LAI and GPP is poor, with underestimation in forested areas, overestimation in grasslands, and misestimation in 

croplands; (2) The models misestimate the simulated LAI and GPP responses to changes in environmental factors, and their 25 

inaccuracy in capturing anthropogenic impacts on vegetation dynamics. We indicate that the main reason for the model's 

misestimation is that the model's understanding of the CO2 fertilization effect is inadequate, and thus fails to simulate the 

vegetation response to CO2 concentration. (3) Despite these issues, the models can effectively capture the seasonality of LAI 

and GPP in China, largely due to their robust representation of seasonal responses to climate factors. 
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1 Introduction 30 

Terrestrial ecosystems sequester approximately 30% of anthropogenic carbon emissions, playing a significant role in global 

climate stabilization (Le Quéré et al., 2015). Although China covers only 6.5% of Earth's land area, it is estimated to 

contribute between 10% and 31% of the global carbon sink in terrestrial ecosystems, highlighting its crucial role in climate 

mitigation (Piao et al., 2022). However, significant uncertainties remain in estimating China's carbon budget due to limited 

understanding of carbon cycle mechanisms (Wang et al., 2023; Zhong et al., 2023). Developing measurable and verifiable 35 

methods for carbon sink accounting is essential for informing China's emission reduction and sink enhancement policies. 

Currently, although China's terrestrial ecosystems have effectively offset a portion of the country's fossil fuel emissions, the 

growth rate of carbon sinks is significantly slowed by the increase in fossil fuel emissions (Piao et al., 2022). Additionally, 

China's forest ecosystems, dominated by young and middle-aged planted forests, offer substantial potential for future carbon 

sequestration (Zhang et al., 2017). Accurate estimation and prediction of carbon sinks in China's terrestrial ecosystems 40 

remain critical and challenging tasks for the scientific community.  

To date, the primary methods for assessing terrestrial ecosystem carbon sinks include the inventory method, atmospheric 

inversion method, Eddy covariance method, and ecosystem process modeling method (Piao et al., 2022). However, 

estimating China’s terrestrial ecosystems presents significant challenges due to strong heterogeneity of terrestrial ecosystems. 

The use of different estimation methods in China often yields widely varying results (Piao et al., 2022). Even with the 45 

atmospheric inversion method, estimates of carbon sinks in China’s terrestrial ecosystems show considerable variation, 

largely due to the complex distribution of diverse ecosystem types and the uneven pattern of atmospheric CO2 observation 

stations across the country (Wang et al., 2020; Chen et al., 2021). Meanwhile, the inventory and Eddy covariance methods 

are significantly constrained by limited spatial resolution and the availability of ground stations (Jiang et al., 2016; Piao et al., 

2022). As a subset of ecosystem process models and a crucial component of the Earth System Model (ESM), the Dynamic 50 

Global Vegetation Model (DGVM) provided gridded carbon flux estimates and simulated the complex processes, such as 

ecosystem carbon and nutrient cycling, vegetation growth-death, and natural or anthropogenic disturbance, as well as 

mechanisms within the terrestrial ecosystem carbon cycle. DGVMs have therefore become essential tools for evaluating 

carbon sequestration in terrestrial ecosystems on both global and regional scales. Despite their ability to overcome 

limitations related to spatial resolution and predict future changes in carbon sinks (Friedlingstein et al., 2020), modeling 55 

regional carbon sequestration capacity in China remains particularly challenging due to significant uncertainties in model 

structure, parameters, and driving factors such as climate and land-use change data (Houghton, 2020). For example, Wang et 

al. (2022a) found that the model's sensitivity to temperature contradicted actual observations when predicting carbon sinks in 

the Chinese region. Additionally, Piao et al. (2018) noted that models often overlook or simplify the impacts of ecosystem 

management practices, such as forest management and irrigated agriculture, on the carbon cycle.  60 

The ability of the DGVMs to accurately simulate the response of vegetation and ecosystem dynamics in response to 

historical climatic and ecological processes, as well as carbon and biogeochemical cycling, is crucial for predicting future 
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ecosystem changes. There is significant potential for improving these models by systematically comparing model outputs 

with relevant observations (Prentice and Cowling, 2013). DGVMs have been tested against various metrics, including carbon 

and water fluxes, photosynthetic capacity, and carbon storage at sites around the world. For instance, Kucharik et al. (2006) 65 

assessed the plant phenology using data from three eddy covariance sites to evaluate forest CO2 and water vapor exchange. 

Similarly, Macbean et al. (2021) found that DGVMs underestimated net ecosystem exchange (NEE) based on their analysis 

of NEE data from 12 dryland flux sites in the southwestern United States. Medlyn et al. (2015) utilized used data from the 

Duke FACE and ORNL FACE experiments to improve DGVMs' ability to predict the impact of elevated CO2 (eCO2) on 

forests. Additionally, remotely sensed observations are widely used to evaluate model outputs on a regional scale due to the 70 

limited number of ground-based observation sites (Piao et al., 2020; Zou et al., 2023; Zeng et al., 2018). For instance, Song 

et al. (2021) observed that the peak of Leaf Area Index (LAI) occurs 1-2 months earlier than predicted by the ESM. Anav et 

al. (2015) reported significant global variability in model-estimated gross primary production (GPP). Similarly, Winkler et al. 

(2021) found that models failed to effectively capture the slowdown in global greening, contrasting with remotely sensed 

observations. Zou et al. (2023) evaluated the annual and seasonal trend of LAI, and the effect of El Niño on the greenness of 75 

DGVMs in tropical rainforest regions from 2003 to 2019. These discrepancies indicate that the models struggle to accurately 

represent spatially diverse characteristics due to their narrow focus on processes that govern carbon flux, primarily involving 

only CO2 and climate factors.  

Meanwhile, accurately assessing the various responses of DGVMs and observations to both environmental and 

anthropogenic factors could provide insights to improve DGVM. Wang et al. (2022a) discovered that, compared to an 80 

upscaled flux tower dataset using satellite, DGVMs did not accurately capture the temperature and precipitation responses in 

certain tropical regions. Jiao et al. (2024) determined that the DGVMs generally overestimated the sensitivity of temperature 

and precipitation in China when compared with multi-source data. Yuan et al. (2019) found that models underestimated the 

limiting effect of vapor pressure deficit (VPD) on vegetation productivity. Furthermore, the models exhibit considerable 

ambiguity in their simulations of vegetation responses to human activities. Many models lack observational constraints (Li et 85 

al., 2017), and some even fail to account for land-use changes (Séférian et al., 2019). For example, Zeng et al. (2018) found 

that ESMs typically underestimated shifts in land-use types due to agricultural deforestation in Southeast Asia. Song et al. 

(2021)suggested that errors in the land-use and land-cover change (LULCC) dataset used as input data for many DGVMs 

likely led to inaccurate estimations of vegetation biomass changes in China. 

LAI and GPP are critical parameters in the carbon cycle of terrestrial ecosystems, representing vegetation canopy structure 90 

and photosynthetic activity, respectively. These parameters are also key outputs of DGVMs (Piao et al., 2022; Zou et al., 

2023). However, the accuracy of LAI and GPP simulations by these models in China, and their responses to environmental 

and anthropogenic factors, remain unclear. This uncertainty significantly hampers our systematic understanding of carbon 

cycling mechanisms in China's terrestrial ecosystems.  Advanced reanalyzed LAI remotely sensed datasets are available to 

validate the LAI dynamics simulated by DGVMs (Zou et al., 2023; Yuan et al., 2011). However, due to substantial 95 

uncertainties in GPP inversion models derived directly from remotely sensed data in China (Wang et al., 2024), it has been 
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proposed that SIF (Solar-Induced Chlorophyll Fluorescence) remotely sensed data, which directly reflects vegetative 

photosynthesis, could be a more reliable substitute for large-scale GPP estimation (Li et al., 2018). However, it remains 

poorly documented what the comparison between observations and models simulations, leading to significant uncertainty 

about the applicability of DGVM in China. 100 

In this context, we systematically assessed the performance of 14 DGVM models (CABLE-POP, CLASSIC, CLM5.0, 

DLEM, IBIS, ISAM, ISBA-CTRIP, JULES, LPJ-GUESS, LPX, OCN, ORCHIDEEv3, SDGVM, and VISIT) in simulating 

the interannual trends and seasonality of LAI and GPP across China's landmass from 2003 to 2019. Additionally, to identify 

model deficiencies and provide insights for improvement, we evaluated the impacts of environmental and anthropogenic 

factors on LAI and GPP simulations at both interannual and seasonal scales. The specific objective of this study is to offer 105 

guidance for future enhancements in the simulation of vegetation LAI and GPP, ultimately reducing uncertainties in the 

study of carbon sinks in China's terrestrial ecosystems. 

2 Materials and methods 

2.1 Study area 

China, located at the intersection of East and Central Asia, spans approximately 18° to 53° north latitude and 73° to 135° east 110 

longitude. The country features a diverse topography, ranging from expansive plains and rolling hills in the east to towering 

plateaus and mountain ranges in the west, with a general west-to-east elevation gradient. China's climate is complex, 

exhibiting considerable spatial variability in both annual precipitation and temperature. The eastern monsoon region, 

characterized by abundant rainfall and a pronounced north-south temperature gradient, supports a wide variety of plant 

species. In contrast, the arid regions of western China experience minimal precipitation and sparse vegetation cover. This 115 

climatic diversity has given rise to a wide range of vegetation types, from moist evergreen broad-leaved forests to arid desert 

steppes. Additionally, there are significant regional differences in the seasonal and interannual fluctuations of these 

vegetation patterns. 

Since the late 20th century, China has undertaken several large-scale ecological projects. These include the Three-North 

Shelterbelt Project (initiated in 1978), which aims to improve the ecological conditions of northern China's arid and semi-120 

arid regions; the Grain for Green Program (launched in 1999), which focuses on converting farmland back to forest and 

grassland in ecologically fragile areas of western and northern China; and the Natural Forest Protection Program (started in 

1998), which primarily targets the Yangtze River Basin and the upper reaches of the Yellow River. These initiatives have 

significantly influenced vegetation cover and ecosystem functions across the country. 

For the purposes of this study, China’s vegetation is classified into four major categories: forest, grassland, cropland, and  125 

non-vegetated areas (Fig. S1). 
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2.2 Dynamic Global Vegetation Model (DGVM) 

DGVMs offer a wide range of capabilities, serving as essential tools for systematizing our understanding of the functionality 

and universality of vegetation and ecosystems. The development of DGVMs has enhanced our comprehension of the 

empirical relationships among functional plant traits and their interactions with the environment. These models also allow 130 

for predictions of the impacts of climate change on ecosystems and the resulting biogeochemical feedbacks. Specifically, 

DGVMs can simulate surface fluxes of CO2, water, as well as the dynamics of water and carbon reservoirs and their 

responses to factors such as climate change, atmospheric composition, and land-use changes. 

In this study, we employed14 DGVM models (CABLE-POP, CLASSIC, CLM5.0, DLEM, IBIS, ISAM, ISBA-CTRIP, 

JULES, LPJ-GUESS, LPX, OCN, ORCHIDEEv3, SDGVM, and VISIT), selected for their superior performance in 135 

simulating gridded monthly LAI and GPP, to explore vegetation dynamics. These models were coordinated by the 

Comparative Productivity in Net Biota project (Trends in the Land Carbon Cycle, TRENDY), which is part of a broader 

initiative. All models were subjected to scenarios: S1, S2, and S3. Additionally, they were driven by historical climate fields 

and land use data from the Climate Research Unit's National Center for Environmental Prediction (CRUNCEP) dataset. In 

S1 simulations, the models were influenced solely by increasing atmospheric CO2 concentrations, with a constant climate 140 

based on cyclic climate averages and variability from the early 20th century. The S2 scenario varied both atmospheric CO2 

concentrations and climate, while the S3 scenario included variations in CO2 concentrations, climate, and land use. For this 

study, the S2 scenario, which involved varying atmospheric CO2 concentrations and climate, was used to obtain simulated 

LAI and GPP.  The difference between the S3 and S2 simulations (S3-S2) was utilized to evaluate the models' representation 

of the impacts of land use changes on LAI and GPP. All model data were sampled on a 0.5° × 0.5° grid. 145 

2.3 Benchmark and environmental data 

This study utilizes the reprocessed MODIS LAI in China from 2003 to 2019 (Yuan et al., 2011) to validate the simulated 

LAI of the 14 DGVMs. The reprocessing of the observed LAI data involves filling gaps in the original MODIS LAI 

(MOD15A2H and MYD15A2H) datasets, which are identified as low-quality, using a modified spatio-temporal filtering 

(mTSF) technique. This is followed by a second round of processing using the TIMESAT SG filtering technique to generate 150 

the final products. For this study, the observed LAI data were resampled into monthly gridded data with a resolution of 0.5° 

× 0.5°. 

To validate the simulated GPP of DGVM, we used the CSIF dataset, which is processed by a neural network as a proxy for 

remotely sensed observations (Zhang et al., 2018). The CSIF dataset is derived from MODIS surface reflectance and OCO-2 

SIF inversion data, trained using machine learning algorithms on daily SIF observations to produce a cloud-independent 155 

CSIF dataset. This dataset accurately captures the seasonal dynamics of satellite-observed SIF and shows a high degree of 

consistency with ecosystem GPP, making it a suitable proxy for GPP. In this study, the CSIF data were aggregated from a 4-

day period to a monthly scale, and the spatial resolution was sampled to a 0.5°×0.5° grid using mean aggregation. 
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Meanwhile, to enable a direct comparison of SIF and GPP values, both SIF and GPP data were normalized at both the annual 

and monthly scales. 160 

FLUXNET, established with the aim of offering a high-quality, shared dataset for land-surface model validation and 

development, is a global network of micrometeorological flux measurement sites. We used the FLUXNET dataset to analyze 

the seasonal response of LAI and GPP. In this study, we used monthly-scale GPP data from FLUXNET to validate the 

seasonal correlation of GPP at the site scale. Due to the limited duration of consistently observed GPP at the sites in China, 

they are not suitable for long-term trend validation of GPP, but can be used for seasonal validation. 165 

We utilize the monthly CO2 concentration data from the Mauna Loa Observatory in Hawaii 

(https://gml.noaa.gov/ccgg/trends/data.html https://gml.noaa.gov/ccgg/trends/data.html) as a representative regional indicator 

for CO2 concentrations within China. 

 To reduce uncertainty in analyzing LAI responses to environmental factors, we employed the same dataset that drives the 

DGVM. Specifically, historical temperature and precipitation data were sourced from the reanalyzed CRUNCEP dataset. We 170 

utilized monthly data from the atmospheric stress component of CRUNCEP (https://rda.ucar.edu/datasets/ds) and 

standardized the spatial resolution to 0.5° × 0.5°. 

Given that the CRUNCEP dataset does not include a variable for light radiation, this study utilizes monthly-scale net solar 

radiation data sourced from ERA5 (https://cds.climate.copernicus.eu/cdsapp#! /search?type=dataset). The spatial resolution 

of this data is sampled at 0.5°× 0.5°. 175 

2.4 Auxiliary data 

The IGBP classification scheme in MCD12Q1 of MODIS was used to categorize China into four types: forest (Tree Cover), 

grassland, cropland (Crop), and non-vegetated areas (Non vegetable) (Fig. S1). The image resolution was initially resampled 

to 0.5°× 0.5° using the majority rule, Evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest, 

deciduous broadleaf forest, mixed forest, woody savanna, and savanna were then combined into a single category termed 180 

forested land. Closed shrubland, open shrubland, grassland, and permanent wetland were collectively classified as grassland. 

Farmland and agricultural land (natural vegetation) were grouped together as cropland. Urban and built-up land, permanent 

snow and ice, and unutilized land were also categorized as non-vegetation. Finally, urban and built-up land, permanent snow 

and ice, unused land, and water bodies were combined and classified as non-vegetated areas. 

We used the percent tree cover data from the Terra MODIS Vegetation Continuum Field (VCF) product dataset, which 185 

provides subpixel-level estimates of global surface vegetation, as an indicator of actual tree cover validate the accuracy of 

models for land use change in forested land. The spatial resolution of the tree cover data was aggregated to a 0.5°× 0.5° 

annual scale through mean aggregation. 

This study also utilized the statistical yearbooks of each Chinese province to assess the influence of human activities on 

vegetation in selected regions. For provinces predominantly characterized by grassland land-use types (Tibet, Sichuan, 190 

Qinghai, and Inner Mongolia), the intensity of grazing was determined by counting the number of livestock enclosures 
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reported in the respective province's statistical yearbooks. In contrast, for provinces primarily featuring cropland land-use 

types (Henan, Heilongjiang, and Jiangsu), the extent of crop cultivation was assessed by calculating the area dedicated to 

farming practices as reported in the statistical yearbooks. 

2.5 Analysis 195 

The Theil-Sen Median method was employed to determine interannual trends in extensive time series, with significance 

testing conducted via the Mann-Kendall (MK) test. The primary metric for evaluating model performance focused on the 

interannual trends of LAI and GPP, as simulated by the DGVM model at both regional and pixel scales. To spatially evaluate 

the DGVM model's performance, a t-test was executed using a running sample size of nine, based on a 3 × 3 sliding window 

of remotely sensed observation images. 200 

To elucidate the mechanisms underlying the trends in annual LAI and GPP changes, and to address the limitations of 

DGVMs, we analyzed the impacts on vegetation dynamics from two perspectives: human activities and environmental 

drivers This study assessed the influence of human activities on vegetation dynamics by examining variations in grazing 

intensity and crop cultivation area, both sourced directly from statistical yearbooks. Grazing intensity was calculated by 

tallying the number of cattle and sheep confined, then multiplying this by an empirical estimate of pasture consumption per 205 

animal. To evaluate the response of annually observed and simulated LAI to environmental factors (atmospheric CO2 

concentration, precipitation, temperature, and radiation) from 2003 to 2019, the multiple linear regression equations were 

primarily employed to determine the sensitivity of these observed and simulated LAI values to environmental variables: 

 2LAI a CO b pre c tem d rad =  +  +  +  +    (1) 

 
anthropogenic 0X = +  (2) 210 

where LAI and CO2 are annual average LAI and Carbon dioxide concentration; the pre, tem and rad are the annual average 

precipitation, temperature, and radiation, respectively; a, b, c and d are regression coefficients, and ε is the residual error 

term. Xanthropogenic is the amount of influence of anthropogenic on vegetation dynamics, ε0 is the influence of other possible 

factors on vegetation dynamics without anthropogenic. The dependent and independent variables were normalized. 

Pearson correlation coefficients were used to assess the seasonal performance of LAI and GPP for each model at both 215 

regional and pixel scales. Multi-year averages of observed and simulated LAI and GPP, calculated from January to 

December, were determined. Subsequently, their respective correlation coefficients (r) and significance (p) were 

independently calculated. Positive correlation coefficient with a p-value less than 0.5 suggests that the model demonstrates 

strong seasonal cycle performance. Additionally, the site GPP data from FLUXNET was utilized to evaluate the seasonal 

performance of DGVMs at various sites within China. 220 

Meanwhile, the cross-correlation function (CCF) was used to analyze the correlation between monthly-scale LAI and GPP 

data across all years, alongside climate factors—specifically precipitation, temperature, and radiation—that may influence 

the seasonal dynamics of vegetation. CCF is a statistical tool employed to quantify the correlation between two time series, 
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which reflecting the correlation of one series with another at varying time lags. In the context of climate data analysis, CCF 

can detect seasonal variations by identifying cyclical patterns and analyse seasonal lags. Our objective is to determine the 225 

seasonal correlation between LAI and GPP in relation to these environmental factors and to identify any temporal delay in 

the vegetation's response to seasonal climate changes. Additionally, we aimed to quantify the extent to which these 

environmental factors impact vegetation growth and the subsequent lag effects they produce. 

3 Result 

3.1 Long-term trends in LAI and GPP in China 230 

In general, the LAI and GPP of all models exhibit an upward trend, aligning with the direction of remotely sensed 

observation (Fig. 1). Regarding the spatial distribution of the observed LAI (Fig. S2), most of area experienced an increase 

in LAI from 2003 to 2019, with 60.305% of the area showing a significant upward trend and a total of 88.106% of the area 

exhibiting some level of increase. The regions with significant increases were primarily located in areas dominated by 

forested and cultivated land use types. The increasing trend of observed LAI is 0.0122 m2m-2yr-1, which aligns with the trend 235 

simulated by the MME (0.00935 ± 0.0058 m2m-2yr-1), suggesting that the simulated LAI effectively captures the overall 

interannual trend of LAI. However, the normalized interannual trend of the observed CSIF is 0.115, which exceeds the 

normalized GPP trend simulated by the MME (0.0863 ± 0.0214), indicating that the models may underestimate the actual 

GPP interannual trend. The spatial distribution pattern of the observed CSIF data closely mirrors that of the observed LAI 

(Fig. S3), with most areas displaying an increasing trend—66.395% of the area showing a significant increase, and a total of 240 

93.224% of the area showing some increase 

 

Fig.1. Overall annual average LAI and GPP trends in China during 2003-2019. (a) Annual trends in observed and simulated LAI; 

(b) Annual trends in observed and simulated GPP. The asterisk (*) indicated the significant trend (p<0.05). 
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Spatially, the comparison between simulated and observed LAI reveals that all models exhibit both overestimations and 245 

underestimations across most regions of China (Fig. 2). In the MME (Fig. 2a), only about one-third of the area demonstrates 

strong performance in simulating LAI trends. The normalized trend comparisons between simulated GPP and observed CSIF 

mirrors the performance observed with LAI (Fig. 3). However, most models tend to underestimate GPP over a larger area 

than they do LAI. Notably, the MME underestimates GPP in more than 50% of the area (Fig. 3a). While The DLEM and 

IBIS models simulate GPP trends more accurately than other models, their accuracy still does not exceed 50% (Fig. 3e-f). 250 
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Fig.2. Evaluation of the LAI trend performance of the DGVMs from 2003 to 2019 in China. A paired t-test with a sample size of 9 

was conducted using a 3 × 3 sliding window to determine whether the model simulated a trend that was not significantly different 

from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than the 

observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', respectively. 255 
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Fig.3. Evaluation of the normalized GPP trend performance of the DGVMs from 2003 to 2019 in China. A paired t-test with a 

sample size of 9 was conducted using a 3 × 3 sliding window to determine whether the model simulated a trend that was not 

significantly different from the observed data (Good), significantly smaller than the observed data (Underestimate), or 

significantly larger than the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', 260 
respectively. 
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Combining the results from Figures 2 and 3, we observed that the regions where the models overestimate or underestimate 

LAI and GPP display similar overall distribution patterns. These patterns closely correspond with the spatial distribution of 

vegetation and land use types in China. To enhance the accuracy and relevance of our analysis, we classified the study area 

based on these land use types. As shown in Fig. S4, the overall simulated LAI and GPP trends in forested land were 265 

generally underestimated. The LAI trend for MME in forested land was 0.0153± 0.0105 m2m-2yr-1, and the normalized trend 

of GPP was 0.131± 0.0249. These values are significantly lower than the trend value of observed LAI in forested land 

(0.0272 m2m-2yr-1), and the normalized trend of observed CSIF (0.158). In contrast, the trends of observed LAI in grassland 

and cropland were 0.00466 m2m-2yr-1 and 0.0863 m2m-2yr-1, respectively, which falls within the margin of error of the multi-

model trend. The LAI trend values for the models in grassland and cropland were 0.00883 ± 0.00662 m2m-2yr-1 and 0.01131 270 

± 0.00724 m2m-2yr-1, respectively. The normalized trend of observed CSIF in grassland and cropland were 0.08634 and 

0.12752, respectively. In grassland, the normalized MME's GPP was 0.09148 ± 0.02566, which includes the trend of 

observed CSIF within its error margin. However, the normalized post-trend value of GPP for MME in cropland (0.09271 ± 

0.03029) was relatively low. 

Upon calculating the percentage of area misestimated for forest land, grassland, and cropland respectively (Fig. S5), distinct 275 

patterns of misestimation became evident across different land use types.  The models underestimated the LAI trend in forest 

land by up to 71.26% of the area, with overestimation occurring in less than 10% of the area. Conversely, for grassland, the 

models overestimated the LAI trend in 60.8% of the area, with underestimation occurring in less than 10%. In cropland, the 

models overestimated the LAI trend for 20.91% of the area and underestimated it for 41.8%. Overall, the models 

predominantly underestimated the LAI trend in forest land, displayed varying degrees of misestimation in cropland.  280 

3.2 Long-term responses of LAI and GPP to environmental factors 

The variation in the impact of environmental factors on vegetation LAI can be understood as a combination of the trends in 

these factors and their sensitivity to LAI (Fig. 4). Among these factors, the sensitivity of LAI to CO₂ concentrations—both 

observed and simulated data—was significantly higher compared to other environmental variables. The annual normalized 

trend increase in CO2 concentration was 0.197, markedly surpassing that of precipitation (0.0346), temperature (0.0475), and 285 

light radiation (-0.0359) (Figs. 4, S6-S8). Thus, when considering both trends and sensitivities, CO₂ concentration stands out 

as the most dominant environmental factor driving changes in both observed and most simulated LAI. 
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Fig. 4. The long-term response of observed and simulated annual mean LAI to CO₂, precipitation, temperature, and radiation over 

different land use types during 2003-2019 in China. (a-d) The sensitivity of response of annual mean observed and simulated LAI 290 
to the four environmental factors, respectively. The asterisk (*) indicated the significant sensitivity (p<0.05) for environmental 

factors; (e) The annual mean normalized trends of the four environmental factors. The asterisk (*) indicated the significant 

trend(p<0.05) for environmental factors. 
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The study identified CO2 concentration as the most significant environmental factor influencing changes in both observed 

and simulated LAI. A spatial comparison was conducted to assess the impact of CO₂ concentration on simulated LAI 295 

changes versus those observed in observed LAI (Fig. 5). The results indicated that in most models, the influence of CO₂ 

concentration on LAI changes deviated significantly from actual observations. Even the best-performing model, CLM5, 

accurately accounted for less than 40% of the area with accurately observed LAI changes, with large areas showing either 

overestimation or underestimation. These misestimated areas displayed a consistent pattern in their spatial distribution, 

mirroring the spatial trends observed in the model's overall LAI trend performance (Fig. 2), where significant overestimation 300 

occurred in grasslands. Regarding spatial differences in the sensitivity of observed and simulated LAI to precipitation, 

temperature, and radiation effects (Figs. S9-S11), the models still exhibited substantial areas of underestimated and 

overestimated misestimation for these three environmental factors. However, the proportion of well-performing models 

increased compared to the influenced by CO₂ concentration. Notably, the spatial distribution of simulated LAI changes in 

response to CO2 concentration closely resembled the spatial distribution of actual LAI changes (Fig. 2 and Fig. 5). 305 
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Fig. 5. Spatial distribution of sensitivity differences between the effects of CO2 concentration on observed and simulated LAI in 

China. A paired t-tests with a sample size of 9 were conducted using a 3 × 3 sliding window to determine whether the effect of 

CO2 concentration on the amount of simulated LAI change was not significantly different from the effect on the amount of 

observed LAI change (Good), was significantly smaller than the observed data (Underestimate), or was significantly larger than 310 
the observed data (Overestimate). U, G, and O represent 'Underestimate', 'Good', and 'Overestimate', respectively. 
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3.3 Seasonal variations in LAI and GPP in China 

Site-scale seasonal performance was validated using data from five FLUXNET sites in China, comparing simulated GPP 

with observed CSIF (Fig. S12). the results in Fig. S12 demonstrate that a significant portion of the simulated GPP and CSIF 

data exhibits strong seasonality across the different sites, closely aligning with the seasonal patterns observed in the GPP 315 

data from the FLUXNET sites. The seasonal correlations between the FLUXNET sites and the simulated GPP and CSIF 

exceeded the significance threshold. 

The overall seasonal correlations between simulated LAI and GPP indicates that most models performed well in terms of 

seasonal accuracy in vegetated areas (Fig. 6). With a few exceptions, such as the DLEM model, most models demonstrated 

that seasonal correlations with observed LAI exceeded the threshold, indicating significant seasonal performance. 320 

Additionally, all models showed exceptionally high seasonal correlations between GPP and CSIF, surpassing the threshold. 

In summary, the models effectively capture the seasonal performance of both LAI and GPP, whether considered globally or 

across different land use types. 

 

Fig. 6. The overall seasonal correlation between observed and simulated and LAI in China. (a) The seasonal correlation of 325 
simulated LAI with observed LAI over different land use types; (b) The seasonal correlation of simulated GPP with observed 

CSIF over different land use types. The red line indicates the correlation coefficient corresponding to the significance level (p = 

0.05). The values over the red line indicated that the model can capture the seasonality of MODIS LAI or CSIF in phase. 

Spatially, most areas exhibited good to very good seasonal performance for LAI and GPP across most models (Fig. 7 and 8). 

Specifically, the percentage of areas with good seasonal performance for LAI in MME was 95.6%, while for GPP it was 330 

88.58%. When analyzing land use type classification in China, regions exhibiting weak seasonal performance (i.e., p > 0.05) 

in LAI and GPP were predominantly found in non-vegetated areas. Therefore, among vegetated regions, the seasonal 

accuracy of simulated LAI and GPP across China is remarkably high. 
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Fig. 7. Spatial distribution pearson correlations of the seasonality of observed and simulated LAI during 2003-2019 in China. 335 
Pearson correlations were using a 3 × 3 sliding window to determine whether simulated seasonal LAI was highly significantly 

correlated (p<0.01) with observed data (Very Good), significantly correlated (p<0.05) with observed data (Good), or not 

significantly correlated (p>0.05) with observed data (Bad). B, G, and VG represent 'Bad', 'Good', and 'Very Good', respectively. 
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 340 

Fig. 8. Spatial distribution pearson correlations of the seasonality of observed and simulated GPP during 2003-2019 in China. 

Pearson correlations were using a 3 × 3 sliding window to determine whether simulated seasonal GPP was highly significantly 
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correlated (p<0.01) with observed data (Very Good), significantly correlated (p<0.05) with observed data (Good), or not 

significantly correlated (p>0.05) with observed data (Bad). B, G, and VG represent 'Bad', 'Good', and 'Very Good', respectively. 

3.4 Seasonal responses of LAI and GPP to climate factors 345 

The CCF analysis revealed notably strong correlations between he observed and simulated LAI and climate factors 

(precipitation, temperature, and radiation) (Fig. 9-11). Similarly, the CCF correlations with all simulated GPP are also very 

high, except for the DLEM. The correlation coefficients of these models with climate factors all surpass the threshold of 

significance. Specifically, the CCF seasonal correlations of observed and simulated LAI and GPP with precipitation and 

temperature slightly surpassed those with radiation. Additionally, the lagged effects of precipitation and temperature were 350 

not as pronounced as radiation on LAI and GPP growth promotion. Specifically, the CCF correlations of observed LAI with 

precipitation and temperature were 0.959, and 0.952, as the correlations of observed CSIF were 0.954 and 0.946, 

respectively. These values were marginally higher than the CCF correlations of observed LAI and CSIF with radiation, at 

0.899 and 0.893. In contrast, the CCF correlations of simulated LAI for MME with precipitation, temperature, and radiation 

were 0.935, 0.97, and 0.942, which of simulated GPP with the three climate factors were 0.951, 0.993, and 0.962, 355 

respectively. This implies that the simulated LAI and GPP may overestimate the seasonal response to climatic factors. 

However, in non-vegetated areas, the CCF correlations of observed CSIF with all three environmental factors were lower, 

with coefficients of 0.764, 0.696, and 0.645 for precipitation, radiation, and temperature, respectively. Nonetheless the CCF 

correlations of the simulated GPP with the three climate factors remained very high for the MME, showing coefficients of 

0.878, 0.94, and 0.953 for precipitation, radiation, and temperature respectively. Although the high CCF intercorrelations 360 

between seasonal simulated LAI and climate factors are evident, the models generally captured the lagged effects of these 

factors on LAI for periods 1-2 months longer than observed in remotely sensed data, except for radiation. This time lag is 

more pronounced in the simulated LAI response compared to actual observations, particularly when compared to the 

simulated GPP response. 

https://doi.org/10.5194/esd-2024-44
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



20 

 

 365 

Fig. 9. The overall CCF of observed and simulated data with precipitation. (a-b) The maximum CCF correlation between observed 

and simulated LAI and GPP and precipitation; (c-d) The lags between observed and simulated data corresponding to precipitation. 

The red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line 

indicated that the LAI or GPP can capture the seasonality of the climate factor in phase. 
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 370 

Fig. 10. The overall CCF of observed and simulated data with radiation. (a-b) The maximum CCF correlation between observed 

and simulated LAI and GPP and radiation; (c-d) The lags between observed and simulated data corresponding to radiation. The 

red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line 

indicated that the LAI or GPP can capture the seasonality of the climate factor in phase. 
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 375 

Fig. 11. The overall CCF of observed and simulated data with temperature. (a-b) The maximum CCF correlation between 

observed and simulated LAI and GPP and temperature; (c-d) The lags between observed and simulated data corresponding to 

temperature. The red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over 

the red line indicated that the LAI or GPP can capture the seasonality of the climate factor in phase. 

4 Discussion 380 

In this study, our findings revealed discrepancies in simulating trends in LAI and GPP, highlighting the limitations of 

DGVMs in China. Specifically, the models tended to underestimate LAI and GPP in forested areas, overestimate them in 

grassland regions, and exhibit inaccuracies in agricultural zones. A likely contributing factor to these discrepancies is the 

models' overestimation of the sensitivity of LAI and GPP to elevated CO2 concentrations in China. Despite these challenges, 

the models demonstrated a solid capacity to capture the seasonal variations of LAI and GPP. This ability is likely due to their 385 

effective representation of vegetation responses to seasonal climatic factors. Numerous studies have shown that vegetation 
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dynamics are shaped by a complex interaction of factors, with human activities and climate change playing significant roles 

(Li et al., 2021; Liu et al., 2022; Ge et al., 2021). The capacity of these models to accurately simulate the effects of both 

natural and human influences on vegetation dynamics is critical to their overall effectiveness. 

4.1 The environmental drivers of long-term changes on vegetation dynamics and photosynthetic capacity 390 

Increasing concentrations of CO₂, climate change, nitrogen deposition, and land use collectively shape long-term vegetation 

greening trends (Piao et al., 2013; Li et al., 2024). Our study indicates a significant misestimation of trends in simulated LAI 

and GPP at both pixel and regional scales in China (Fig.1-3). This apparent accuracy in capturing overall LAI may arise 

from the spatial heterogeneity in overestimation and underestimation of LAI trends across regions, which offsets errors in the 

calculation of overall simulated LAI (Fig.1a, Fig 2). The primary reason for these inaccuracies in simulated LAI and GPP 395 

trends at pixel scale appears to be the limited ability of DGVMs to capture vegetation responses to elevated CO₂ 

concentrations (Fig.4-5). This aligns with previous findings that underscore the significant role of CO₂ fertilization in global 

vegetation changes (Zhu et al., 2016; Piao et al., 2020). Differences between observed and simulated LAI trends reveal a 

spatial pattern similar to those seen in the disparities between observed and simulated LAI responses to CO₂ concentration, 

indicating that misestimation of simulated LAI trends likely stems from the model’s inadequate representation of LAI 400 

response to CO₂ variations (Fig.2, Fig.5). Besides, the model’s representation of LAI response to climate change appears to 

have a minor effect on trend accuracy, which is less critical than the response to CO₂ (Fig. 4-5, Fig. S9-S11). One the other 

hand, the spatial patterns of dominant environmental and anthropogenic drivers affecting observed LAI responses differ 

markedly from those affecting simulated responses (Fig. S13). In particular, the areas where dominant drivers in the model 

diverge from actual drivers are prominent in southeastern and south-central forested regions, northern and western grasslands, 405 

and northern crop areas in China (Fig. S13 a, b). For example, in south-central and southeastern forests, the model suggests 

that temperature is the primary driver of LAI trends, whereas CO₂ and anthropogenic factors are the actual dominant 

influences. Conversely, in northern and western grasslands, the model emphasizes CO₂ dominance, while precipitation is, in 

reality, the primary driver. These discrepancies partly explain the model’s underestimation of LAI response to CO₂ in 

southern forested areas and its overestimation in northern grasslands (Fig. 5). Parameterization and model structure are 410 

fundamental for ecosystem models to generate realistic projections, playing a critical role in their accuracy (Luo et al., 2016). 

On the one hand, due to the complexity of physiological processes and environmental interactions in ecosystems, model 

accuracy is highly sensitive to parameterization. However, DGVMs often simplify these interactions, using empirical 

functions to model leaf-level photosynthetic processes—such as CO₂ partial pressure, carboxylation, and electron transport 

(Reich et al., 2014; Wang et al., 2017). This approach can result in modeled stomatal conductance responses to 415 

environmental factors that deviate from observed reality, particularly during the light reaction phase (Buckley, 2017; 

Mcdermid et al., 2021). Simulating stomatal conductance under varying conditions (temperature, moisture, vapor pressure, 

and light radiation) on a global scale is challenging, as models typically rely on a single temperature response curve, which 

fails to capture ecosystem variability (Powell et al., 2013; Trugman et al., 2018; Lin et al., 2015). Furthermore, the species-
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specific sensitivity of stomatal conductance to CO₂ is often overlooked, limiting the model's ability to reflect diverse 420 

physiological responses  (Buckley, 2017). DGVMs generally employ Plant Functional Types (PFTs) to simulate vegetation 

responses to environmental changes (Rogers et al., 2017), but PFTs simplify plant functional and adaptive traits, reducing 

the accuracy of physiological responses under climate change (Rogers et al., 2014). Given substantial interspecies 

differences in photosynthetic and water-use efficiencies, a single PFT approach is insufficient to represent the varied 

responses of diverse plant types to environmental shifts (Rezende et al., 2016; Rogers et al., 2014).  425 

On the other hand, model behavior is also shaped by equations representing real-world processes, which affect the model's 

capacity to simulate system functions accurately (Luo et al., 2016). Studies show that current models fail to capture nitrogen 

and phosphorus limitations on CO₂ fertilization effects (Terrer et al., 2019). Nutrient limitations, particularly of nitrogen and 

phosphorus, can lead to reduced Rubisco—an essential, nitrogen-rich enzyme in photosynthesis—which, in turn, down-

regulates photosynthetic capacity and decreases CO₂ assimilation by vegetation (Ainsworth and Rogers, 2007; Long et al., 430 

2004; Terrer et al., 2016; 2018). DGVM assumptions of C-N and C-P coupling are thus inadequate. While plants employ 

various symbiotic strategies to mitigate nitrogen limitation, DGVMs often overlook these mechanisms (Sulman et al., 2019). 

Additionally, evidence from phosphorus-limited ecosystems suggests that elevated CO₂ may aid plants in acquiring or 

mineralizing phosphorus (Nazeri et al., 2013). However, models generally assume a relatively closed phosphorus cycle, and 

the fundamental dynamics of vegetation under phosphorus limitation remain poorly understood, introducing uncertainty in 435 

C-P coupling (Medlyn et al., 2016). 

4.2 Impacts of human activities on vegetation dynamics  

While linear models are useful for analyzing the contribution of environmental factors to long-term vegetation trends, 

determining the impact of human activities on vegetation dynamics remains a subject of debate in previous studies (Ge et al., 

2021; Liu et al., 2022). This uncertainty arises from the complexity of human activities and the diverse conditions across 440 

different study areas (Liang et al., 2023). In China, specific human activities, such as enhancing the productivity of cropland 

and implementing reforestation policies, have been shown to significantly enhance vegetation growth (Zhang et al., 2000). 

Conversely, urbanization and other similar human activities have been found to have a considerable negative effect on 

vegetation growth (Wang et al., 2022b; Lin et al., 2019; Jiang et al., 2022). To quantify the effects of land use changes 

driven by human activities, two sets of scenarios were applied in DGVMs, which the S3 scenario applies historical changes 445 

in land use, and the other S2 scenario a time-invariant pre-industrial land cover distribution. By difference of the two 

scenarios, the dynamic evolution of vegetation in response to land use change can be quantified (Friedlingstein et al., 2022).  

In this study, we analyzed the trends of grazing intensity and crop acreage in provinces predominantly characterized by 

grassland and cropland. This analysis was conducted by examining the number of livestock and crop acreage from the 

respective provinces' statistical yearbooks. Additionally, tree cover data are utilized to represent actual regional trends in 450 

forested land, allowing us to assess the model's ability to capture the effects of human activities on LAI. The S3-S2 scenario 

was employed to evaluate the influence of land use change on vegetation LAI and GPP as perceived by the DGVM model 
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(Fig. S14). Overall, the model did not show a significant effect of land use change on LAI in forested land and grassland 

areas within the MME. Spatially, most simulated LAI and GPP trends exhibited similar patterns under the S3-S2 scenario 

(Fig. S15 and Fig. S16), with most of the area showing insignificant changes (72.473% and 87.308% of the area showed 455 

insignificant changes in LAI and GPP, respectively). In terms of tree cover change data (Fig. S17), there was a significant 

increase in tree cover in the southern and northeastern regions of China, with 80.603% of the area experiencing growth, and 

31.544% showing significant growth. Across different land use types all land use types showed an increase in tree cover, 

with particularly growth observed in overall, forested land, and cropland, particularly in forested land where the annual 

growth rate reached 0.417(Fig. S17). Data on grazing intensity and cropped area were obtained from statistical yearbook for 460 

grassland and cropland, respectively, and trends in grazing intensity or cropped area were compared with trends in 

normalized LAI from the model's S3-S2 scenario (Fig. S18). The results indicated that the model's representation of LAI 

changes due to land use change was inadequate in several provinces dominated by cropland and grassland. For instance, the 

model's normalized LAI trend does not accurately reflect the actual anthropogenic changes on vegetation LAI in IM 

province, where the changes were insignificant. In Qinghai (QH), Tibet (TI), Sichuan (SC), Heilongjiang (HLJ), and Hunan 465 

(HN), the direction of the LAI trend in the model's S3-S2 scenario contradicts the direction of anthropogenic effects on 

vegetation LAI. Consequently, the model fails to adequately capture the intensity or direction of anthropogenic impacts on 

vegetation LAI. 

Although DGVMs can dynamically adjust to imposed land use change, there are substantial limitations for models to 

response to land-use changes, which struggle to ensure the quality of input data and incorporate land management practices 470 

and accurately simulate ecosystem responses to change. Most of DGVMs use the HYDE and LUH2 database for land use 

change data input variables (Klein Goldewijk et al., 2017; Hurtt et al., 2020). The historical land use estimates within the 

datasets exhibit regional variations and limitations of spatial resolution accuracy, which may result in inaccurate simulations 

of responses to land use changes due to discrepancies in the data (Prestele et al., 2016). The globally applicable gridded 

dataset necessitates simplifications of patterns and historical trends in deforestation, cropland, and pasture management, yet 475 

these simplifications inherently introduce uncertainties (Prestele et al., 2016; Arneth et al., 2017). These limitations may 

contribute to the model's inadequate representation of anthropogenic factors affecting regional vegetation LAI and GPP 

trends in China, as the models struggle to accurately capture the impacts of human activities on forested land, grassland, and 

cropland.  

4.3 Climatic factor influencing the seasonal performance of the DGVM 480 

In contrast to the vegetation trend, the models simulate the seasonal cycle of LAI and GPP excellently both overall and 

spatially (Fig. 6-8). The simulated GPP also demonstrates high seasonal cycle correlations with observed GPP in sites (Fig. 

S12). Seasonal variations in precipitation, radiation, and temperature play a crucial role in influencing the seasonal dynamics 

of vegetation (Hou et al., 2022; Duan et al., 2022; Wu et al., 2015). While temperature is often considered the primary factor 

controlling plant phenology, the complex interactions between temperature and other climatic factors cannot be overlooked 485 
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(Flynn and Wolkovich, 2018). Radiation works in concert with temperature to regulate the timing of defoliation, meet 

vegetation growth thresholds, and influence phenological events (Flynn and Wolkovich, 2018; Chuine, 2010), while 

precipitation affects plant phenology primarily through its indirect influence on the thermal requirements of these events (Fu 

et al., 2014). The findings that observed LAI and CSIF exhibit similar seasonal fluctuations in response to the three key 

climate factors suggest that the model may effectively capture the response to seasonality of vegetation in China (Fig. S19-490 

Fig. S20). In this paper, we verified the seasonal cyclic correlation of simulated LAI and GPP with climate factors through 

CCF (Fig. 9-11), and demonstrated that the simulated LAI and GPP equipped with realistic seasonal cycles due to the 

simulated vegetation's ability to respond to cyclic climatic variations affecting its seasonality. Given that the Farquhar model 

and its variants, which underpin the photosynthesis module of the DGVM, provide a detailed and unified understanding of 

the photosynthesis (Farquhar et al., 1980), DGVMs are capable of reasonably simulate dynamics of photosynthesis and 495 

vegetation change (Zhao et al., 2022). To further improve simulation accuracy, researchers have developed more mechanistic 

models that account for vegetation growth influenced by seasonal climate variations (Piao et al., 2019). Moreover, we 

observed that the simulated LAI response to seasonal climate factors typically lags behind simulated GPP response, which 

aligns with the analysis by Zhao et al. (2022). This discrepancy arises because the model simulates carbon allocation to 

canopy structure in response to seasonal climate changes more slowly than what occurs in reality (Zhao et al., 2022; Du et al., 500 

2020). 

4.4 Uncertainties of the observed LAI in China 

Remotely sensed observation used in the study might be compromised by various factors such as atmospheric disturbances 

and sensor errors, leading to noise, blurring, and distortion. Even with the use of the latest reprocessed MODIS LAI data and 

advanced spatio-temporal filtering techniques, it is impossible to completely eliminate the potential impacts of cloud cover, 505 

aerosol pollution, and sensor degradation (Yuan et al., 2011; Zou et al., 2023). These limitations mean that satellite-based 

estimates may inherently underpredict values, requiring careful consideration when comparing model data to ensure 

appropriate metrics and accurate site-based comparisons for model evaluation (De Kauwe et al., 2016). The quality of the 

MODIS LAI data used in this study is particularly low in non-vegetated areas, but significantly better in vegetated regions 

(Fig. S21). Additionally, in northern China, pixel quality is severely affected from December to February due to snow 510 

accumulation and other factors. Consequently, the pixel quality of the remotely sensed observation themselves represents the 

primary source of uncertainty in the experiments conducted in this study. 

5. Conclusion 

This study evaluated the long-term trends and seasonality performance in LAI and GPP in DGVMs in China from 2003 to 

2019. Overall, DGVMs struggled to accurately capture the trends of simulated LAI and GPP in the region, though they 515 

effectively captured their seasonality. While the overall trend of simulated LAI was reasonably represented, the trend of 
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simulated GPP was not. Spatially, both simulated LAI and GPP trends exhibited similar inaccuracies, with notable 

misestimations. The distribution of these over- and underestimations in simulated LAI trends was closely linked to land use 

type: the models tended to underestimate LAI and GPP trends in forested areas, overestimate them in grasslands, and 

misestimate them in croplands. Despite these issues, the seasonal variations of simulated LAI and GPP were consistent with 520 

both measurements and remotely sensed observations, demonstrating a strong alignment in capturing seasonal fluctuations. 

To elucidate the reasons for the inability of DGVMs to simulate LAI trends accurately and the good performance in seasonal 

variations of simulated LAI and GPP, we analyzed the model's shortcomings in responding to environmental and 

anthropogenic changes, as well as its correlation with seasonal climate factors and lagged effects. The findings indicate that: 

(1) With regard to environmental factors, the simulated LAI and GPP exhibited an inadequate sensitivity in response to 525 

changes in environmental conditions, particularly to CO₂ concentrations. Furthermore, the failure to capture the impacts of 

human activities on vegetation dynamics is likely due to limitations in input land-use data and the oversimplified 

representation of land management and land-use change in DGVMs. Overall, the insufficient response of the simulated LAI 

and GPP to CO₂ fertilization effects is the primary factor contributing to the model's misestimation of LAI and GPP trends in 

China. (2) The accurate capture of seasonal variations in simulated LAI and GPP in response to climate factors strongly 530 

supports the reliability of DGVMs in modeling seasonal fluctuations in China. 

Acknowledgement 

This research was funded by the Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic University 

(6023271029K), the National Natural Science Foundation of China (No. 42171212), and was also carried out with the aid of 

the Guangdong Basic and Applied Basic Research Foundation under Grant(2021A1515110769) and the National Natural 535 

Science Foundation of Hebei Province of China (No. D2022402030). 

Competing interests: 

The authors declare that they have no conflict of interest. 

 

 540 

 

 

 

 

https://doi.org/10.5194/esd-2024-44
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



28 

 

References 545 

Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms 

and environmental interactions, Plant, cell & environment, 30, 258-270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 

2007. 

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray‐Tortarolo, G., Papale, D., Parazoo, N. C., and 

Peylin, P.: Spatiotemporal patterns of terrestrial gross primary production: A review, Reviews of Geophysics, 53, 785-818, 550 

https://doi.org/10.1002/2015RG000483, 2015. 

Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B., Bayer, A. D., Bondeau, A., Calle, L., and Chini,  L. P.: 

Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed, Nature Geoscience, 10, 

79-84, https://doi.org/10.1038/ngeo2882, 2017. 

Buckley, T. N.: Modeling Stomatal Conductance  Plant Physiology, 174, 572-582, https://doi.org/10.1104/pp.16.01772, 555 

2017. 

Chen, B., Zhang, H., Wang, T., and Zhang, X.: An atmospheric perspective on the carbon budgets of terrestrial ecosystems 

in China: Progress and challenges, science Bulletin, 66, 1713-1718, https://doi.org/10.1016/j.scib.2021.05.017, 2021. 

Chuine, I.: Why does phenology drive species distribution?, Philosophical Transactions of the Royal Society B: Biological 

Sciences, 365, 3149-3160, https://doi.org/10.1098/rstb.2010.0142, 2010. 560 

De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C., and Terrer, C.: Satellite based estimates underestimate the 

effect of CO2 fertilization on net primary productivity, Nature Climate Change, 6, 892-893, 

https://doi.org/10.1038/nclimate3105, 2016. 

Du, E., Terrer, C., Pellegrini, A. F., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X., and Jackson, R. B.: Global 

patterns of terrestrial nitrogen and phosphorus limitation, Nature Geoscience, 13, 221-226, https://doi.org/10.1038/s41561-565 

019-0530-4, 2020. 

Duan, H., Qi, Y., Kang, W., Zhang, J., Wang, H., and Jiang, X.: Seasonal Variation of Vegetation and Its Spatiotemporal 

Response to Climatic Factors in the Qilian Mountains, China, Sustainability, 14, 4926, https://doi.org/10.3390/su14094926, 

2022. 

Farquhar, G. D., von Caemmerer, S. v., and Berry, J. A.: A biochemical model of photosynthetic CO 2 assimilation in leaves 570 

of C 3 species, planta, 149, 78-90, https://doi.org/10.1007/BF00386231, 1980. 

Flynn, D. and Wolkovich, E.: Temperature and photoperiod drive spring phenology across all species in a temperate forest 

community, New Phytologist, 219, 1353-1362, https://doi.org/10.1111/nph.15232, 2018. 

Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., 

and Peters, G. P.: Global carbon budget 2022, Earth System Science Data, 14, 4811-4900, https://doi.org/10.5194/essd-14-575 

4811-2022, 2022. 

Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., 

and Sitch, S.: Global carbon budget 2020, Earth System Science Data Discussions, 2020, 1-3, https://doi.org/10.5194/essd-

12-3269-2020, 2020. 

Fu, Y. H., Piao, S., Zhao, H., Jeong, S. J., Wang, X., Vitasse, Y., Ciais, P., and Janssens, I. A.: Unexpected role of winter 580 

precipitation in determining heat requirement for spring vegetation green‐up at northern middle and high latitudes, Global 

change biology, 20, 3743-3755, https://doi.org/10.1111/gcb.12610, 2014. 

Ge, W., Deng, L., Wang, F., and Han, J.: Quantifying the contributions of human activities and climate change to vegetation 

net primary productivity dynamics in China from 2001 to 2016, Science of the Total Environment, 773, 145648, 

https://doi.org/10.1016/j.scitotenv.2021.145648, 2021. 585 

Hou, Q., Pei, T., Yu, X., Chen, Y., Ji, Z., and Xie, B.: The seasonal response of vegetation water use efficiency to 

temperature and precipitation in the Loess Plateau, China, Global Ecology and Conservation, 33, e01984, 

https://doi.org/10.1016/j.gecco.2021.e01984, 2022. 

Houghton, R. A.: Terrestrial fluxes of carbon in GCP carbon budgets, Global Change Biology, 26, 3006-3014, 

https://doi.org/10.1111/gcb.15050, 2020. 590 

Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., and 

Goldewijk, K. K.: Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6, 

Geoscientific Model Development Discussions, 2020, 1-65, https://doi.org/10.5194/gmd-13-5425-2020, 2020. 

https://doi.org/10.5194/esd-2024-44
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

 

Jiang, F., Chen, J. M., Zhou, L., Ju, W., Zhang, H., Machida, T., Ciais, P., Peters, W., Wang, H., and Chen, B.: A 

comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches, Scientific Reports, 595 

6, 22130, https://doi.org/10.1038/srep22130, 2016. 

Jiang, H., Xu, X., Zhang, T., Xia, H., Huang, Y., and Qiao, S.: The relative roles of climate variation and human activities in 

vegetation dynamics in coastal China from 2000 to 2019, Remote Sensing, 14, 2485, https://doi.org/10.3390/rs14102485, 

2022. 

Jiao, K., Liu, Z., Wang, W., Yu, K., Mcgrath, M. J., and Xu, W.: Carbon cycle responses to climate change across China's 600 

terrestrial ecosystem: Sensitivity and driving process, Science of the Total Environment, 915, 170053, 

https://doi.org/10.1016/j.scitotenv.2024.170053, 2024. 

Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene–HYDE 

3.2, Earth System Science Data, 9, 927-953, https://doi.org/10.5194/essd-9-927-2017, 2017. 

Kucharik, C. J., Barford, C. C., El Maayar, M., Wofsy, S. C., Monson, R. K., and Baldocchi, D. D.: A multiyear evaluation 605 

of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, 

and CO2 and H2O vapor exchange, Ecological Modelling, 196, 1-31, https://doi.org/10.1016/j.ecolmodel.2005.11.031, 2006. 

Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., and 

Arneth, A.: Global carbon budget 2014, Earth System Science Data, 7, 47-85, https://doi.org/10.5194/essd-7-47-2015, 2015. 

Li, P., Wang, J., Liu, M., Xue, Z., Bagherzadeh, A., and Liu, M.: Spatio-temporal variation characteristics of NDVI and its 610 

response to climate on the Loess Plateau from 1985 to 2015, Catena, 203, 105331, 

https://doi.org/10.1016/j.catena.2021.105331, 2021. 

Li, W., Ciais, P., Peng, S., Yue, C., Wang, Y., Thurner, M., Saatchi, S. S., Arneth, A., Avitabile, V., and Carvalhais, N.: 

Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations, 

Biogeosciences, 14, 5053-5067, https://doi.org/10.5194/bg-14-5053-2017, 2017. 615 

Li, X., Xiao, J., and He, B.: Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity 

estimated from flux towers in temperate forests, Remote Sensing of Environment, 204, 659-671, 

https://doi.org/10.1016/j.rse.2017.09.034, 2018. 

Li, X., Wang, K., Huntingford, C., Zhu, Z., Peñuelas, J., Myneni, R. B., and Piao, S.: Vegetation greenness in 2023, Nature 

Reviews Earth & Environment, 5, 241-243, https://doi.org/10.1038/s43017-024-00543-z, 2024. 620 

Liang, W., Quan, Q., Wu, B., and Mo, S.: Response of vegetation dynamics in the three-north region of China to climate and 

human activities from 1982 to 2018, Sustainability, 15, 3073, https://doi.org/10.3390/su15043073, 2023. 

Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., Eamus, D., De Dios, V. R., Mitchell, P., and 

Ellsworth, D. S.: Optimal stomatal behaviour around the world, Nature Climate Change, 5, 459-464, 

https://doi.org/10.1038/nclimate2550, 2015. 625 

Lin, Y., Qiu, R., Yao, J., Hu, X., and Lin, J.: The effects of urbanization on China's forest loss from 2000 to 2012: Evidence 

from a panel analysis, Journal of Cleaner Production, 214, 270-278, https://doi.org/10.1016/j.jclepro.2018.12.317, 2019. 

Liu, Y., Liu, H., Chen, Y., Gang, C., and Shen, Y.: Quantifying the contributions of climate change and human activities to 

vegetation dynamic in China based on multiple indices, Science of The Total Environment, 838, 156553, 

https://doi.org/10.1016/j.scitotenv.2022.156553, 2022. 630 

Long, S. P., Ainsworth, E. A., Rogers, A., and Ort, D. R.: Rising atmospheric carbon dioxide: plants FACE the future, Annu. 

Rev. Plant Biol., 55, 591-628, https://doi.org/10.1146/annurev.arplant.55.031903.141610, 2004. 

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., 

Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., 

Jones, C. D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra, C. A., Smith, 635 

M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., 

Xia, J., Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of soil carbon dynamics by Earth system models, 

Global Biogeochemical Cycles, 30, 40-56, https://doi.org/10.1002/2015GB005239, 2016. 

MacBean, N., Scott, R. L., Biederman, J. A., Peylin, P., Kolb, T., Litvak, M. E., Krishnan, P., Meyers, T. P., Arora, V. K., 

and Bastrikov, V.: Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in 640 

dryland ecosystems, Environmental Research Letters, 16, 094023, https://doi.org/10.1088/1748-9326/ac1a38, 2021. 

McDermid, S. S., Cook, B. I., De Kauwe, M. G., Mankin, J., Smerdon, J. E., Williams, A. P., Seager, R., Puma, M. J., 

Aleinov, I., and Kelley, M.: Disentangling the regional climate impacts of competing vegetation responses to elevated 

https://doi.org/10.5194/esd-2024-44
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



30 

 

atmospheric CO2, Journal of Geophysical Research: Atmospheres, 126, e2020JD034108, 

https://doi.org/10.1029/2020JD034108, 2021. 645 

Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K., Mishurov, M., Pak, B., Smith, B., 

and Wang, Y. P.: Using models to guide field experiments: A priori predictions for the CO 2 response of a nutrient‐and 

water‐limited native Eucalypt woodland, Global Change Biology, 22, 2834-2851, https://doi.org/10.1111/gcb.13268, 2016. 

Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., 

and Parton, W.: Using ecosystem experiments to improve vegetation models, Nature Climate Change, 5, 528-534, 650 

https://doi.org/10.1038/nclimate2621, 2015. 

Nazeri, N. K., Lambers, H., Tibbett, M., and Ryan, M. H.: Do arbuscular mycorrhizas or heterotrophic soil microbes 

contribute toward plant acquisition of a pulse of mineral phosphate?, Plant and Soil, 373, 699-710, 

https://doi.org/10.1007/s11104-013-1838-2, 2013. 

Piao, S., He, Y., Wang, X., and Chen, F.: Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and 655 

prospects, Science China Earth Sciences, 65, 641-651, https://doi.org/10.1007/s11430-021-9892-6, 2022. 

Piao, S., Huang, M., Liu, Z., Wang, X., Ciais, P., Canadell, J. G., Wang, K., Bastos, A., Friedlingstein, P., and Houghton, R. 

A.: Lower land-use emissions responsible for increased net land carbon sink during the slow warming period, Nature 

Geoscience, 11, 739-743, https://doi.org/10.1038/s41561-018-0204-7, 2018. 

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., and Zhu, X.: Plant phenology and 660 

global climate change: Current progresses and challenges, Global change biology, 25, 1922-1940, 

https://doi.org/10.1111/gcb.14619, 2019. 

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., Canadell, J. G., and Cong, N.: 

Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends, Global change 

biology, 19, 2117-2132, https://doi.org/10.1111/gcb.12187, 2013. 665 

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., and Tømmervik, H.: 

Characteristics, drivers and feedbacks of global greening, Nature Reviews Earth & Environment, 1, 14-27, 

https://doi.org/10.1038/s43017-019-0001-x, 2020. 

Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M., Rowland, L., Almeida, S., Brando, P. M., 

da Costa, A. C. L., and Costa, M. H.: Confronting model predictions of carbon fluxes with measurements of Amazon forests 670 

subjected to experimental drought, New Phytologist, 200, 350-365, https://doi.org/10.1111/nph.12390, 2013. 

Prentice, I. C. and Cowling, S. A.: Dynamic global vegetation models, in: Encyclopedia of biodiversity, Elsevier, 670-689, 

https://doi.org/10.1016/B978-0-12-384719-5.00412-3, 2013. 

Prestele, R., Alexander, P., Rounsevell, M. D., Arneth, A., Calvin, K., Doelman, J., Eitelberg, D. A., Engström, K., Fujimori, 

S., and Hasegawa, T.: Hotspots of uncertainty in land‐use and land‐cover change projections: a global‐scale model 675 

comparison, Global change biology, 22, 3967-3983, https://doi.org/10.1111/gcb.13337, 2016. 

Reich, P. B., Hobbie, S. E., and Lee, T. D.: Plant growth enhancement by elevated CO2 eliminated by joint water and 

nitrogen limitation, Nature Geoscience, 7, 920-924, https://doi.org/10.1038/ngeo2284, 2014. 

Rezende, L., Arenque, B., Aidar, S. d. T., Moura, M., Von Randow, C., Tourigny, E., Menezes, R., and Ometto, J.: 

Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated 680 

atmospheric CO 2, International journal of biometeorology, 60, 945-955, https://doi.org/10.1007/s00484-015-1087-6, 2016. 

Rogers, A., Medlyn, B. E., and Dukes, J. S.: Improving representation of photosynthesis in Earth System Models, New 

Phytologist, 204, 12-14, https://doi.org/10.1111/nph.12972, 2014. 

Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., Von Caemmerer, S., Dietze, M. C., Kattge, J., Leakey, A. D., Mercado, 

L. M., and Niinemets, Ü.: A roadmap for improving the representation of photosynthesis in Earth system models, New 685 

Phytologist, 213, 22-42, https://doi.org/10.1111/nph.14283, 2017. 

Séférian, R., Nabat, P., Michou, M., Saint‐Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., and 

Chevallier, M.: Evaluation of CNRM Earth system model, CNRM‐ESM2‐1: Role of Earth system processes in present‐day 

and future climate, Journal of Advances in Modeling Earth Systems, 11, 4182-4227, https://doi.org/10.1029/2019MS001791, 

2019. 690 

Song, X., Wang, D.-Y., Li, F., and Zeng, X.-D.: Evaluating the performance of CMIP6 Earth system models in simulating 

global vegetation structure and distribution, Advances in Climate Change Research, 12, 584-595, 

https://doi.org/10.1016/j.accre.2021.06.008, 2021. 

https://doi.org/10.5194/esd-2024-44
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



31 

 

Sulman, B. N., Shevliakova, E., Brzostek, E. R., Kivlin, S. N., Malyshev, S., Menge, D. N., and Zhang, X.: Diverse 

mycorrhizal associations enhance terrestrial C storage in a global model, Global Biogeochemical Cycles, 33, 501-523, 695 

https://doi.org/10.1029/2018GB005973, 2019. 

Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., and Prentice, I. C.: Mycorrhizal association as a primary control of the 

CO2 fertilization effect, Science, 353, 72-74, https://doi.org/10.1126/science.aaf4610, 2016. 

Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., Finzi, A. C., and Prentice, I. C.: Ecosystem 

responses to elevated CO 2 governed by plant–soil interactions and the cost of nitrogen acquisition, New phytologist, 217, 700 

507-522, https://doi.org/10.1111/nph.14872, 2018. 

Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., and 

Hungate, B. A.: Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass, Nature Climate Change, 9, 

684-689, https://doi.org/10.1038/s41558-019-0545-2, 2019. 

Trugman, A., Medvigy, D., Mankin, J., and Anderegg, W.: Soil moisture stress as a major driver of carbon cycle uncertainty, 705 

Geophysical Research Letters, 45, 6495-6503, https://doi.org/10.1029/2018GL078131, 2018. 

Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J., Cornwell, W. K., Evans, B. J., and Peng, C.: Towards a 

universal model for carbon dioxide uptake by plants, Nature plants, 3, 734-741, https://doi.org/10.1038/s41477-017-0006-8, 

2017. 

Wang, J., Feng, L., Palmer, P. I., Liu, Y., Fang, S., Bösch, H., O’Dell, C. W., Tang, X., Yang, D., and Liu, L.: Large Chinese 710 

land carbon sink estimated from atmospheric carbon dioxide data, Nature, 586, 720-723, https://doi.org/10.1038/s41586-

020-2849-9, 2020. 

Wang, K., Bastos, A., Ciais, P., Wang, X., Rödenbeck, C., Gentine, P., Chevallier, F. d. r., Humphrey, V. W., Huntingford, 

C., and O’Sullivan, M.: Regional and seasonal partitioning of water and temperature controls on global land carbon uptake 

variability, Nature Communications, 13, 3469, https://doi.org/10.1038/s41467-022-31175-w, 2022a. 715 

Wang, T., Zhang, Y., Yue, C., Wang, Y., Wang, X., Lyu, G., Wei, J., Yang, H., and Piao, S.: Progress and challenges in 

remotely sensed terrestrial carbon fluxes, Geo-spatial Information Science, 1-21, 

https://doi.org/10.1080/10095020.2024.2336599, 2024. 

Wang, Y., Zhang, Z., and Chen, X.: The dominant driving force of Forest change in the Yangtze River basin, China: climate 

variation or anthropogenic activities?, Forests, 13, 82, https://doi.org/10.3390/f13010082, 2022b. 720 

Wang, Y., Tian, X., Duan, M., Zhu, D., Liu, D., Zhang, H., Zhou, M., Zhao, M., Jin, Z., and Ding, J.: Optimal design of 

surface CO2 observation network to constrain China’s land carbon sink, Science Bulletin, 68, 1678-1686, 

https://doi.org/10.1016/j.scib.2023.07.010, 2023. 

Winkler, A. J., Myneni, R. B., Hannart, A., Sitch, S., Haverd, V., Lombardozzi, D., Arora, V. K., Pongratz, J., Nabel, J. E., 

and Goll, D. S.: Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO 2, Biogeosciences, 725 

18, 4985-5010, https://doi.org/10.5194/bg-18-4985-2021, 2021. 

Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., and Zhao, W.: Time‐lag effects of global vegetation responses to 

climate change, Global change biology, 21, 3520-3531, https://doi.org/10.1111/gcb.12945, 2015. 

Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Reprocessing the MODIS Leaf Area Index products for land surface 

and climate modelling, Remote Sensing of Environment, 115, 1171-1187, https://doi.org/10.1016/j.rse.2011.01.001, 2011. 730 

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., and Hu, Z.: Increased 

atmospheric vapor pressure deficit reduces global vegetation growth, Science advances, 5, eaax1396, 

https://doi.org/10.1126/sciadv.aax1396, 2019. 

Zeng, Z., Estes, L., Ziegler, A. D., Chen, A., Searchinger, T., Hua, F., Guan, K., Jintrawet, A., and F. Wood, E.: Highland 

cropland expansion and forest loss in Southeast Asia in the twenty-first century, Nature Geoscience, 11, 556-562, 735 

https://doi.org/10.1038/s41561-018-0166-9, 2018. 

Zhang, P., Shao, G., Zhao, G., Le Master, D. C., Parker, G. R., Dunning Jr, J. B., and Li, Q.: China's forest policy for the 

21st century, Science, 288, 2135-2136, https://doi.org/10.1126/science.288.5474.2135, 2000. 

Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S., and Gentine, P.: A global spatially contiguous solar-induced 

fluorescence (CSIF) dataset using neural networks, Biogeosciences, 15, 5779-5800, https://doi.org/10.5194/bg-15-5779-740 

2018, 2018. 

Zhang, Y., Yao, Y., Wang, X., Liu, Y., and Piao, S.: Mapping spatial distribution of forest age in China, Earth and Space 

Science, 4, 108-116, https://doi.org/10.1002/2016EA000177, 2017. 

https://doi.org/10.5194/esd-2024-44
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



32 

 

Zhao, Q., Zhu, Z., Zeng, H., Myneni, R. B., Zhang, Y., Peñuelas, J., and Piao, S.: Seasonal peak photosynthesis is hindered 

by late canopy development in northern ecosystems, Nature Plants, 8, 1484-1492, https://doi.org/10.1038/s41477-022-745 

01278-9, 2022. 

Zhong, J., Zhang, X., Guo, L., Wang, D., Miao, C., and Zhang, X.: Ongoing CO2 monitoring verify CO2 emissions and 

sinks in China during 2018–2021, Science Bulletin, 68, 2467-2476, https://doi.org/10.1016/j.scib.2023.08.039, 2023. 

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., and Arneth, A.: 

Greening of the Earth and its drivers, Nature climate change, 6, 791-795, https://doi.org/10.1038/nclimate3004, 2016. 750 

Zou, L., Stan, K., Cao, S., and Zhu, Z.: Dynamic global vegetation models may not capture the dynamics of the leaf area 

index in the tropical rainforests: A data-model intercomparison, Agricultural and Forest Meteorology, 339, 109562, 

https://doi.org/10.1016/j.agrformet.2023.109562, 2023. 

 

https://doi.org/10.5194/esd-2024-44
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.


