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Abstract. Terrestrial ecosystems are crucial in mitigating global climate change, and Dynamic Global Vegetation Models
(DGVMs) have become essential tools for simulating these ecosystems. However, uncertainties remain in DGVM simulations
for China, highlighting the need to systematic evaluations of their dynamics across various time scales to enhance model
performance. As such, we utilize reprocessed monthly MODIS Leaf Area Index (LAI) and Contiguous Solar-induced
Fluorescence (CSIF) data as observational references to assess the long-term trends and seasonal variations of LAI and Gross
Primary Production (GPP) simulated by 14 models (CABLE-POP, CLASSIC, CLM5.0, DLEM, IBIS, ISAM, ISBA-CTRIP,
JULES, LPJ-GUESS, LPX, OCN, ORCHIDEEv3, SDGVM, and VISIT) in China from 2003 to 2019. Additionally, we
evaluate the trends and seasonal variations of simulated LAI and GPP in response to environmental and climatic factors. Our
findings indicate that: (1) While the overall trend of simulated LAI is captured, the spatial performance of simulated LAI and
GPP is poor, with underestimation in forested areas, overestimation in grasslands, and misestimation in croplands; (2) The
models misestimate the simulated LAI and GPP responses to changes in environmental factors, and their inaccuracy in
capturing anthropogenic impacts on vegetation dynamics. We indicate that the main reason for the model's misestimation is
that the model's representation of the CO, fertilization effect is inadequate, and thus fails to simulate the vegetation response
to CO, concentration. (3) Despite these issues, the models can effectively capture the seasonality of LAI and GPP in China,

largely due to their robust representation of seasonal responses to climate factors.

1 Introduction

Terrestrial ecosystems sequester approximately 30% of anthropogenic carbon emissions, playing a significant role in global
climate stabilization (Le Quéré et al., 2015). Although China covers only 6.5% of Earth's land area, it is estimated to contribute

between 10% and 31% of the global carbon sink in terrestrial ecosystems, highlighting its crucial role in climate mitigation
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(Piao et al., 2022). However, significant uncertainties remain in estimating China's carbon budget due to limited understanding
of carbon cycle mechanisms (Wang et al., 2023; Zhong et al., 2023). Developing measurable and verifiable methods for carbon
sink accounting is essential for informing China's emission reduction and sink enhancement policies. Currently, although
China's terrestrial ecosystems have effectively offset a portion of the country's fossil fuel emissions, the growth rate of carbon
sinks is significantly slowed by the increase in fossil fuel emissions (Piao et al., 2022). Additionally, China's forest ecosystems,
dominated by young and middle-aged planted forests, offer substantial potential for future carbon sequestration (Zhang et al.,
2017). Accurate estimation and prediction of carbon sinks in China's terrestrial ecosystems remain critical and challenging
tasks for the scientific community.

To date, the primary methods for assessing terrestrial ecosystem carbon sinks include the inventory method, atmospheric
inversion method, Eddy covariance method, and ecosystem process modeling method (Piao et al., 2022). However, estimating
China’s terrestrial ecosystems presents significant challenges due to strong heterogeneity of terrestrial ecosystems. The use of
different estimation methods in China often yields widely varying results (Piao et al., 2022). Even with the atmospheric
inversion method, estimates of carbon sinks in China’s terrestrial ecosystems show considerable variation, largely due to the
complex distribution of diverse ecosystem types and the uneven pattern of atmospheric CO, observation stations across the
country (Wang et al., 2020; Chen et al., 2021). Meanwhile, the inventory and Eddy covariance methods are significantly
constrained by limited spatial resolution and the availability of ground stations (Jiang et al., 2016; Piao et al., 2022). As a
subset of ecosystem process models and a crucial component of the Earth System Model (ESM), the Dynamic Global
Vegetation Model (DGVM) provided gridded carbon flux estimates and simulated the complex processes, such as ecosystem
carbon and nutrient cycling, vegetation growth-death, and natural or anthropogenic disturbance, as well as mechanisms within
the terrestrial ecosystem carbon cycle. DGVMs have therefore become essential tools for evaluating carbon sequestration in
terrestrial ecosystems on both global and regional scales. Despite their ability to overcome limitations related to spatial
resolution and predict future changes in carbon sinks (Friedlingstein et al., 2020), modeling regional carbon sequestration
capacity in China remains particularly challenging due to significant uncertainties in model structure, parameters, and driving
factors such as climate and land-use change data (Houghton, 2020). For example, Wang et al. (2022a) found that the model's
sensitivity to temperature contradicted actual observations when predicting carbon sinks in the Chinese region. Additionally,
Piao et al. (2018) noted that models often overlook or simplify the impacts of ecosystem management practices, such as forest
management and irrigated agriculture, on the carbon cycle.

The ability of the DGVMs to accurately simulate the response of vegetation and ecosystem dynamics in response to historical
climatic and ecological processes, as well as carbon and biogeochemical cycling, is crucial for predicting future ecosystem
changes. There is significant potential for improving these models by systematically comparing model outputs with relevant
observations (Prentice and Cowling, 2013). DGVMs have been tested against various metrics, including carbon and water
fluxes, photosynthetic capacity, and carbon storage at sites around the world. For instance, Kucharik et al. (2006) assessed the
plant phenology using data from three eddy covariance sites to evaluate forest CO, and water vapor exchange. Similarly,

Macbean et al. (2021) found that DGVMs underestimated net ecosystem exchange (NEE) based on their analysis of NEE data
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from 12 dryland flux sites in the southwestern United States. Medlyn et al. (2015) leveraged empirical data from the Duke and
ORNL Free-Air CO, Enrichment (FACE) experiments to refine the parameterization of CO fertilization effects in DGVMs,
significantly enhancing their capacity to simulate forest responses to elevated atmospheric CO> concentrations (eCOy).
Additionally, remotely sensed observations are widely used to evaluate model outputs on a regional scale due to the limited
number of ground-based observation sites (Piao et al., 2020; Zou et al., 2023; Zeng et al., 2018). For instance, Song et al.
(2021) observed that the peak of Leaf Area Index (LAI) occurs 1-2 months earlier than predicted by the ESM. Anav et al.
(2015) reported significant global variability in model-estimated gross primary production (GPP). Similarly, Winkler et al.
(2021) found that models failed to effectively capture the slowdown in global greening, contrasting with remotely sensed
observations. Zou et al. (2023) evaluated the annual and seasonal trend of LAI, and the effect of El Nifio on the greenness of
DGVMs in tropical rainforest regions from 2003 to 2019. These discrepancies indicate that the models struggle to accurately
represent spatially diverse characteristics due to their narrow focus on processes that govern carbon flux, primarily involving
only CO; and climate factors.

Meanwhile, accurately assessing the various responses of DGVMs and observations to both environmental and anthropogenic
factors could provide insights to improve DGVM. Wang et al. (2022a) discovered that, compared to an upscaled flux tower
dataset using satellite, DGVMSs did not accurately capture the temperature and precipitation responses in certain tropical
regions. Jiao et al. (2024) determined that the DGVMs generally overestimated the sensitivity of temperature and precipitation
in China when compared with multi-source data. Yuan et al. (2019) found that models underestimated the limiting effect of
vapor pressure deficit (VPD) on vegetation productivity. Furthermore, the models exhibit considerable ambiguity in their
simulations of vegetation responses to human activities. Many models lack observational constraints (Li et al., 2017), and
some even fail to account for land-use changes (Séférian et al., 2019). For example, Zeng et al. (2018) found that ESMs
typically underestimated shifts in land-use types due to agricultural deforestation in Southeast Asia. Song et al. (2021)
suggested that errors in the land-use and land-cover change (LULCC) dataset used as input data for many DGVMs likely led
to inaccurate estimations of vegetation biomass changes in China.

LAI and GPP are critical parameters in the carbon cycle of terrestrial ecosystems, representing vegetation canopy structure
and photosynthetic activity, respectively. These parameters are also key outputs of DGVMs (Piao et al., 2022; Zou et al., 2023).
However, the accuracy of LAI and GPP simulations by these models in China, and their responses to environmental and
anthropogenic factors, remain unclear. This uncertainty significantly hampers our systematic understanding of carbon cycling
mechanisms in China's terrestrial ecosystems. Advanced reanalyzed LAI remotely sensed datasets are available to validate
the LAI dynamics simulated by DGVMs (Zou et al., 2023; Yuan et al., 2011). However, due to substantial uncertainties in
GPP inversion models derived directly from remotely sensed data in China (Wang et al., 2024), it has been proposed that SIF
(Solar-Induced Chlorophyll Fluorescence) remotely sensed data, which directly reflects vegetative photosynthesis, could be a
more reliable substitute for large-scale GPP estimation (Li et al., 2018). However, it remains poorly documented what the
comparison between observations and models simulations, leading to significant uncertainty about the applicability of DGVM

in China. Current evaluations of DGVM applicability in China have predominantly relied on site-scale(Han et al., 2025; Zhu
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and Zeng, 2024), which lack integration with long-term spatial observational constraints to verify model systematicity.
Additionally, despite increasing utilization of remote sensing and multi-source datasets for validation, these validations remain
fragmented and inconsistently address vegetation-type-specific model output variables (Yue et al., 2024; Jiao et al., 2024).

In this context, we systematically assessed the performance of 14 DGVM models (CABLE-POP, CLASSIC, CLM5.0, DLEM,
IBIS, ISAM, ISBA-CTRIP, JULES, LPJ-GUESS, LPX, OCN, ORCHIDEEv3, SDGVM, and VISIT) in simulating the
interannual trends and seasonality of LAI and GPP across China's landmass from 2003 to 2019. Additionally, to identify model
deficiencies and provide insights for improvement, we evaluated the impacts of environmental and anthropogenic factors on
LAI and GPP simulations at both interannual and seasonal scales. The specific objective of this study is to offer guidance for
future enhancements in the simulation of vegetation LAI and GPP, ultimately reducing uncertainties in the study of carbon
sinks in China's terrestrial ecosystems. This work aims to identify priority pathways for DGVM structural improvements,
advance mechanistic understanding of China's unique carbon cycle dynamics. This study aims to identify key pathways for
improving DGVM structure and parametrization, enhance mechanistic understanding of China’s unique carbon cycle dynamics,
and provide insights into quantifying regional carbon sinks, thus supporting climate-related policy development and guiding

future regional-scale ecosystem modelling studies.

2 Materials and methods
2.1 Study area

China, located at the intersection of East and Central Asia, spans approximately 18° to 53° north latitude and 73° to 135° east
longitude. The country features a diverse topography, ranging from expansive plains and rolling hills in the east to towering
plateaus and mountain ranges in the west, with a general west-to-east elevation gradient. China's climate is complex, exhibiting
considerable spatial variability in both annual precipitation and temperature. The eastern monsoon region, characterized by
abundant rainfall and a pronounced north-south temperature gradient, supports a wide variety of plant species. In contrast, the
arid regions of western China experience minimal precipitation and sparse vegetation cover. This climatic diversity has given
rise to a wide range of vegetation types, from moist evergreen broad-leaved forests to arid desert steppes. Additionally, there
are significant regional differences in the seasonal and interannual fluctuations of these vegetation patterns.

Since the late 20th century, China has undertaken several large-scale ecological projects. These include the Three-North
Shelterbelt Project (initiated in 1978), which aims to improve the ecological conditions of northern China's arid and semi-arid
regions; the Grain for Green Program (launched in 1999), which focuses on converting farmland back to forest and grassland
in ecologically fragile areas of western and northern China; and the Natural Forest Protection Program (started in 1998), which
primarily targets the Yangtze River Basin and the upper reaches of the Yellow River. These initiatives have significantly
influenced vegetation cover and ecosystem functions across the country.

For the purposes of this study, China’s vegetation is classified into four major categories: forest, grassland, cropland, and non-

vegetated areas (Fig. S1).
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2.2 Dynamic Global Vegetation Model (DGVM)

DGVMs offer a wide range of capabilities, serving as essential tools for systematizing our understanding of the functionality
and universality of vegetation and ecosystems. The development of DGVMs has enhanced our comprehension of the empirical
relationships among functional plant traits and their interactions with the environment. These models also allow for predictions
of the impacts of climate change on ecosystems and the resulting biogeochemical feedbacks. Specifically, DGVMs can
simulate surface fluxes of CO,, water, as well as the dynamics of water and carbon reservoirs and their responses to factors
such as climate change, atmospheric composition, and land-use changes.

In this study, we employed 14 DGVM models (CABLE-POP, CLASSIC, CLM5.0, DLEM, IBIS, ISAM, ISBA-CTRIP,
JULES, LPJ-GUESS, LPX, OCN, ORCHIDEEv3, SDGVM, and VISIT), selected for their superior performance in simulating
gridded monthly LAI and GPP, to explore vegetation dynamics (Zou et al., 2023). These models were coordinated by the
Comparative Productivity in Net Biota project (Trends in the Land Carbon Cycle, TRENDY), which is part of a broader
initiative. Within the TRENDY project, all DGVMs employ uniform spin-up durations. Initialization of simulations utilizes
the 1700 baseline conditions with model-specific plant functional types (PFTs). Pre-industrial climate forcing data (1901—
1920) is recycled through model-dependent cycling or stochastic sampling until a carbon equilibrium state is achieved (Sitch
et al., 2024). Concurrently, for land-use change representation, all participating DGVMs adopt LUH2—developed to
standardize land-use forcing for models and enhanced for DGVM compatibility—as the unified land-use change dataset. All
models were subjected to scenarios: S1, S2, and S3. Additionally, they were driven by historical climate fields and land use
data from the Climate Research Unit's National Center for Environmental Prediction (CRUNCEP) dataset. In S1 simulations,
the models were influenced solely by increasing atmospheric CO, concentrations, with a constant climate based on cyclic
climate averages and variability from the early 20th century. The S2 scenario varied both atmospheric CO, concentrations and
climate, while the S3 scenario included variations in CO, concentrations, climate, and land use. For this study, the S2 scenario,
which involved varying atmospheric CO, concentrations and climate, was used to obtain simulated LAI and GPP. The
difference between the S3 and S2 simulations (S3-S2) was utilized to evaluate the models' representation of the impacts of
land use changes on LAI and GPP. In TRENDY project, all DGVMs provide monthly outputs at a standardized spatial

resolution of 0.5° x 0.5°.

2.3 Benchmark and environmental data

This study utilizes the reprocessed MODIS LAI in China from 2003 to 2019 (Yuan et al., 2011) to validate the simulated LAI
of the 14 DGVMs. The reprocessing of the observed LAI data involves filling gaps in the original MODIS LAI (MOD15A2H
and MYD15A2H) datasets, which are identified as low-quality, using a modified spatio-temporal filtering (mTSF) technique.
This is followed by a second round of processing using the TIMESAT SG filtering technique to generate the final products.
For this study, the observed LAI data were resampled into monthly gridded data with a resolution of 0.5° x 0.5°.
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To validate the simulated GPP of DGVM, we used the CSIF dataset, which is processed by a neural network as a proxy for
remotely sensed observations (Zhang et al., 2018). The CSIF dataset is derived from MODIS surface reflectance and OCO-2
SIF inversion data, trained using machine learning algorithms on daily SIF observations to produce a cloud-independent CSIF
dataset. This dataset accurately captures the seasonal dynamics of satellite-observed SIF and shows a high degree of
consistency with ecosystem GPP, making it a suitable proxy for GPP. In this study, the CSIF data were aggregated from a 4-
day period to a monthly scale, and the spatial resolution was sampled to a 0.5°x0.5° grid using mean aggregation. Meanwhile,
to enable a direct comparison of SIF and GPP values, both SIF and GPP data were normalized at both the annual and monthly
scales.

FLUXNET, established with the aim of offering a high-quality, shared dataset for land-surface model validation and
development, is a global network of micrometeorological flux measurement sites. We used the FLUXNET dataset to analyze
the seasonal response of LAI and GPP. In this study, we used monthly-scale GPP data from FLUXNET to validate the seasonal
correlation of GPP at the site scale. Due to the limited duration of consistently observed GPP at the sites in China, they are not
suitable for long-term trend validation of GPP, but can be used for seasonal validation.

We utilize the monthly CO, concentration data from the Mauna Loa Observatory in Hawaii

(https://gml.noaa.gov/ccgg/trends/data.html https://gml.noaa.gov/ccgg/trends/data.html) as a representative regional indicator
for CO; concentrations within China.

To reduce uncertainty in analyzing LAI responses to environmental factors, we employed the same dataset that drives the
DGVM. Specifically, historical temperature and precipitation data were sourced from the reanalyzed CRUNCEP dataset. We
utilized monthly data from the atmospheric stress component of CRUNCEP (https://rda.ucar.edu/datasets/ds) and standardized
the spatial resolution to 0.5° x 0.5°.

Given that the CRUNCEP dataset does not include a variable for light radiation, this study utilizes monthly-scale net solar

radiation data sourced from ERAS (https://cds.climate.copernicus.eu/cdsapp#! /search?type=dataset). The spatial resolution of

this data is sampled at 0.5°x 0.5°.

2.4 Auxiliary data

The IGBP classification scheme in MCD12Q1 of MODIS was used to categorize China into four types: forest (Tree Cover),
grassland, cropland (Crop), and non-vegetated areas (Non vegetable) (Fig. S1). The image resolution was initially resampled
to 0.5°% 0.5° using the majority rule, Evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest,
deciduous broadleaf forest, mixed forest, woody savanna, and savanna were then combined into a single category termed
forested land. Closed shrubland, open shrubland, grassland, and permanent wetland were collectively classified as grassland.
Farmland and agricultural land (natural vegetation) were grouped together as cropland. Urban and built-up land, permanent
snow and ice, and unutilized land were also categorized as non-vegetation.

We used the percent tree cover data from the Terra MODIS Vegetation Continuum Field (VCF) product dataset, which

provides subpixel-level estimates of global surface vegetation, as an indicator of actual tree cover validate the accuracy of
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models for land use change in forested land. The spatial resolution of the tree cover data was aggregated to a 0.5°% 0.5° annual
scale through mean aggregation.

This study also utilized the statistical yearbooks of each Chinese province to assess the influence of human activities on
vegetation in selected regions. For provinces predominantly characterized by grassland land-use types (Tibet, Sichuan, Qinghai,
and Inner Mongolia), the intensity of grazing was determined by counting the number of livestock enclosures reported in the
respective province's statistical yearbooks. In contrast, for provinces primarily featuring cropland land-use types (Henan,
Heilongjiang, and Jiangsu), the extent of crop cultivation was assessed by calculating the area dedicated to farming practices

as reported in the statistical yearbooks.

2.5 Analysis

The Theil-Sen Median method was employed to determine interannual trends in extensive time series, with significance testing
conducted via the Mann-Kendall (MK) test. The primary metric for evaluating model performance focused on the interannual
trends of LAI and GPP, as simulated by the DGVM model at both regional and pixel scales. To spatially evaluate the DGVM
model's performance, a t-test was executed using a running sample size of nine, based on a 3 x 3 sliding window of remotely
sensed observation images.

To elucidate the mechanisms underlying the trends in annual LAI and GPP changes, and to address the limitations of DGVMs,
we analyzed the impacts on vegetation dynamics from two perspectives: human activities and environmental drivers This study
assessed the influence of human activities on vegetation dynamics by examining variations in grazing intensity and crop
cultivation area, both sourced directly from statistical yearbooks. Grazing intensity was calculated by tallying the number of
cattle and sheep confined, then multiplying this by an empirical estimate of pasture consumption per animal. To evaluate the
response of annually observed and simulated LAI to environmental factors (atmospheric CO, concentration, precipitation,
temperature, and radiation) from 2003 to 2019, the multiple linear regression equations were primarily employed to determine

the sensitivity of these observed and simulated LAI values to environmental variables:
LAl =axCO,+bx pre+cxtem+d xrad + & (1)

where LAI and CO:; are annual average LAI and Carbon dioxide concentration, respectively; pre, tem and rad are the annual
average precipitation, temperature, and radiation, respectively; a, b, ¢ and d are regression coefficients, and ¢ is the residual
error term, which amount of influence of anthropogenic on vegetation dynamics. Both the dependent and independent variables
were normalized.

Pearson correlation coefficients were used to assess the seasonal performance of LAI and GPP for each model at both regional
and pixel scales. Multi-year averages of observed and simulated LAI and GPP, calculated from January to December, were
determined. Subsequently, their respective correlation coefficients () and significance (p) were independently calculated.

Positive correlation coefficient with a p-value less than 0.5 suggests that the model demonstrates strong seasonal cycle
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performance. Additionally, the site GPP data from FLUXNET was utilized to evaluate the seasonal performance of DGVMs
at various sites within China.

Meanwhile, the cross-correlation function (CCF) was used to analyze the correlation between monthly-scale LAI and GPP
data across all years, alongside climate factors—specifically precipitation, temperature, and radiation—that may influence the
seasonal dynamics of vegetation. CCF is a statistical tool employed to quantify the correlation between two time series, which
reflecting the correlation of one series with another at varying time lags. In the context of climate data analysis, CCF can detect
seasonal variations by identifying cyclical patterns and analyse seasonal lags. Our objective is to determine the seasonal
correlation between LAI and GPP in relation to these environmental factors and to identify any temporal delay in the
vegetation's response to seasonal climate changes. Additionally, we aimed to quantify the extent to which these environmental

factors impact vegetation growth and the subsequent lag effects they produce.

3 Result
3.1 Long-term trends in LAI and GPP in China

In general, the LAI and GPP of all models exhibit an upward trend, aligning with the direction of remotely sensed observation
(Fig. 1). Regarding the spatial distribution of the observed LAI (Fig. S2), most of area experienced an increase in LAI from
2003 to 2019, with 60.31% of the area showing a significant upward trend and a total of 88.11% of the area exhibiting some
level of increase. The regions with significant increases were primarily located in areas dominated by forested and cultivated
land use types. The increasing trend of observed LAI is 0.012 m?m 2y, which aligns with the trend simulated by the MME
(0.0094 £ 0.0058 m’m2yr'), suggesting that the simulated LAI effectively captures the overall interannual trend of LAI
However, the normalized interannual trend of the observed CSIF is 0.16, which exceeds the normalized GPP trend simulated
by the MME (0.086 + 0.021), indicating that the models may underestimate the actual GPP interannual trend. The spatial
distribution pattern of the observed CSIF data closely mirrors that of the observed LAI (Fig. S3), with most areas displaying

an increasing trend—66.4% of the area showing a significant increase, and a total of 93.22% of the area showing some increase.
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Fig.1. Overall annual average LAI and GPP trends in China during 2003-2019. (a) Annual trends in observed and simulated LAI;
(b) Annual trends in observed and simulated GPP. The asterisk (*) indicated the significant trend (p<0.05). The error line for MME
is the standard deviation of the 14 modeled trends.

Spatially, the comparison between simulated and observed LAI reveals that all models exhibit both overestimations and
underestimations across most regions of China (Fig. 2). In the MME (Fig. 2a), only about one-third of the area demonstrates
strong performance in simulating LAI trends. The normalized trend comparisons between simulated GPP and observed CSIF
mirrors the performance observed with LAI (Fig. 3). However, most models tend to underestimate GPP over a larger area than
they do LAI. Although the DLEM model outperforms other models in simulating long-term GPP trends, its accuracy remains
constrained below 50% relative to observational benchmarks (Fig. 3¢). Notably, the MME underestimates GPP in more than

50% of the area (Fig. 3a).
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Fig.2. Evaluation of the LAI trend performance of the DGVMs from 2003 to 2019 in China. A paired t-test with a sample size of 9
was conducted using a 3 X 3 sliding window to determine whether the model simulated a trend that was not significantly different
from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than the
observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', respectively.
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the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', respectively.
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Combining the results from Figures 2 and 3, we observed that the regions where the models overestimate or underestimate
LAI and GPP display similar overall distribution patterns. These patterns closely correspond with the spatial distribution of
vegetation and land use types in China. To enhance the accuracy and relevance of our analysis, we classified the study area
based on these land use types. As shown in Fig. S4, the overall simulated LAI and GPP trends in forested land were generally
underestimated. The LAI trend for MME in forested land was 0.015+ 0.011 m?m~yr, and the normalized trend of GPP was
0.13+ 0.025. These values are significantly lower than the trend value of observed LAI in forested land (0.027 m’m~?yr!), and
the normalized trend of observed CSIF (0.16). In contrast, the trends of observed LAI in grassland and cropland were 0.0047
m?’m2yr! and 0.086 m’m~yr, respectively, which falls within the margin of error of the multi-model trend. The LAI trend
values for the models in grassland and cropland were 0.0088 £ 0.0066 m’m~yr-! and 0.011 + 0.0072 m’m?yr’, respectively.
The normalized trend of observed CSIF in grassland and cropland were 0.086 and 0.13, respectively. In grassland, the
normalized MME's GPP was 0.091 £ 0.026, which includes the trend of observed CSIF within its error margin. However, the
normalized post-trend value of GPP for MME in cropland (0.093 £ 0.030) was relatively low.

Upon calculating the percentage of area misestimated for forest land, grassland, and cropland respectively (Fig. S5), distinct
patterns of misestimation became evident across different land use types. The models underestimated the LAI trend in forest
land by up to 71.26% of the area, with overestimation occurring in less than 10% of the area. Conversely, for grassland, the
models overestimated the LAI trend in 60.80% of the area, with underestimation occurring in less than 10%. In cropland, the
models overestimated the LAI trend for 20.90% of the area and underestimated it for 41.80%. Overall, the models

predominantly underestimated the LAI trend in forest land, displayed varying degrees of misestimation in cropland.

3.2 Long-term responses of LAI and GPP to environmental factors

The variation in the impact of environmental factors on vegetation LAI can be understood as a combination of the trends in
these factors and their sensitivity to LAI (Fig. 4). Among these factors, the sensitivity of LAI to CO: concentrations—both
observed and simulated data—was significantly higher compared to other environmental variables. The annual normalized
trend increase in CO, concentration was 0.20, markedly surpassing that of precipitation (0.035), temperature (0.048), and light
radiation (-0.036) (Figs. 4, S6-S8). Thus, when considering both trends and sensitivities, CO concentration stands out as the

most dominant environmental factor driving changes in both observed and most simulated LAI.
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Fig. 4. The long-term response of observed and simulated annual mean LAI to CO:, precipitation, temperature, and radiation over
different land use types during 2003-2019 in China. (a-d) The sensitivity of response of annual mean observed and simulated LAI to
the four environmental factors, respectively. The asterisk (*) indicated the significant sensitivity (p<0.05) for environmental factors;
(e) The annual mean normalized trends of the four environmental factors. The asterisk (*) indicated the significant trend(p<0.05)

for environmental factors.
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The study identified CO, concentration as the most significant environmental factor influencing changes in both observed and
simulated LAI. A spatial comparison was conducted to assess the impact of CO: concentration on simulated LAI changes
versus those observed in observed LAI (Fig. 5). The results indicated that in most models, the influence of CO: concentration
on LAI changes deviated significantly from actual observations. Even the best-performing model, CLMS5, accurately accounted
for less than 40% of the area with accurately observed LAI changes, with large areas showing either overestimation or
underestimation. These misestimated areas displayed a consistent pattern in their spatial distribution, mirroring the spatial
trends observed in the model's overall LAI trend performance (Fig. 2), where significant overestimation occurred in grasslands.
Regarding spatial differences in the sensitivity of observed and simulated LAI to precipitation, temperature, and radiation
effects (Figs. S9-S11), the models still exhibited substantial areas of underestimated and overestimated misestimation for these
three environmental factors. However, the proportion of well-performing models increased compared to the influenced by CO2
concentration. Notably, the spatial distribution of simulated LAI changes in response to CO, concentration closely resembled

the spatial distribution of actual LAI changes (Fig. 2 and Fig. 5).
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Fig. 5. Spatial distribution of sensitivity differences between the effects of CO2 concentration on observed and simulated LAI in
China. A paired t-tests with a sample size of 9 were conducted using a 3 X 3 sliding window to determine whether the effect of CO2
concentration on the amount of simulated LAI change was not significantly different from the effect on the amount of observed LAI
change (Good), was significantly smaller than the observed data (Underestimate), or was significantly larger than the observed data
(Overestimate). U, G, and O represent 'Underestimate’, 'Good', and 'Overestimate', respectively.
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3.3 Seasonal variations in LAI and GPP in China

Site-scale seasonal performance was validated using data from five FLUXNET sites in China, comparing simulated GPP with
observed CSIF (Fig. S12). the results in Fig. S12 demonstrate that a significant portion of the simulated GPP and CSIF data
exhibits strong seasonality across the different sites, closely aligning with the seasonal patterns observed in the GPP data from
the FLUXNET sites. The seasonal correlations between the FLUXNET sites and the simulated GPP and CSIF exceeded the
significance threshold.

The overall seasonal correlations between simulated LAI and GPP indicates that most models performed well in terms of
seasonal accuracy in vegetated areas (Fig. 6). With a few exceptions, such as the DLEM model, most models demonstrated
that seasonal correlations with observed LAI exceeded the threshold, indicating significant seasonal performance. Additionally,
all models showed exceptionally high seasonal correlations between GPP and CSIF, surpassing the threshold. In summary, the

models effectively capture the seasonal performance of both LAI and GPP, whether considered globally or across different

land use types.
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Fig. 6. The overall seasonal correlation between observed and simulated and LAI in China. (a) The seasonal correlation of simulated
LAI with observed LAI over different land use types; (b) The seasonal correlation of simulated GPP with observed CSIF over
different land use types. The red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The
values over the red line indicated that the model can capture the seasonality of MODIS LAI or CSIF in phase.

Spatially, most areas exhibited good to very good seasonal performance for LAI and GPP across most models (Fig. 7 and 8).
Specifically, the percentage of areas with good seasonal performance for LAI in MME was 95.60%, while for GPP it was
88.58%. When analyzing land use type classification in China, regions exhibiting weak seasonal performance (i.e., p > 0.05)
in LAI and GPP were predominantly found in non-vegetated areas. Therefore, among vegetated regions, the seasonal accuracy

of simulated LAI and GPP across China is remarkably high.
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Fig. 7. Spatial distribution pearson correlations of the seasonality of observed and simulated LAI during 2003-2019 in China. Pearson
correlations were using a 3 x 3 sliding window to determine whether simulated seasonal LAI was highly significantly correlated
(p<0.01) with observed data (Very Good), significantly correlated (p<0.05) with observed data (Good), or not significantly correlated
(p>0.05) with observed data (Bad). B, G, and VG represent 'Bad’, 'Good', and 'Very Good', respectively.
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correlated (p<0.01) with observed data (Very Good), significantly correlated (p<0.05) with observed data (Good), or not significantly
correlated (p>0.05) with observed data (Bad). B, G, and VG represent 'Bad’, 'Good', and 'Very Good', respectively.

3.4 Seasonal responses of LAI and GPP to climate factors

The CCF analysis revealed statistically significant correlations between observed and simulated LAI and key climatic
variables—precipitation, temperature, and solar radiation (Fig. 9-11). Similarly, the CCF correlations with all simulated GPP
are also very high, except for the DLEM. The correlation coefficients of these models with climate factors all surpass the
threshold of significance. Specifically, the CCF seasonal correlations of observed and simulated LAI and GPP with
precipitation and temperature slightly surpassed those with radiation. Additionally, the lagged effects of precipitation and
temperature were not as pronounced as radiation on LAI and GPP growth promotion. Specifically, the CCF correlations of
observed LAI with precipitation and temperature were 0.96, and 0.95, as the correlations of observed CSIF were 0.95 and 0.94,
respectively. These values were marginally higher than the CCF correlations of observed LAI and CSIF with radiation, at 0.90
and 0.89. In contrast, the CCF correlations of simulated LAI for MME with precipitation, temperature, and radiation were 0.94,
0.97, and 0.94, which of simulated GPP with the three climate factors were 0.95, 0.99, and 0.96, respectively. This implies
that the simulated LAI and GPP may overestimate the seasonal response to climatic factors. However, in non-vegetated areas,
the CCF correlations of observed CSIF with all three environmental factors were lower, with coefficients of 0.76, 0.70, and
0.65 for precipitation, radiation, and temperature, respectively. Nonetheless the CCF correlations of the simulated GPP with
the three climate factors remained very high for the MME, showing coefficients of 0.88, 0.94, and 0.95 for precipitation,
radiation, and temperature respectively. Although the high CCF intercorrelations between seasonal simulated LAI and climate
factors are evident, the models generally captured the lagged effects of these factors on LAI for periods 1-2 months longer
than observed in remotely sensed data, except for radiation. This time lag is more pronounced in the simulated LAI response

compared to actual observations, particularly when compared to the simulated GPP response.
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Fig. 9. The overall CCF of observed and simulated data with precipitation. (a-b) The maximum CCF correlation between observed
and simulated LAI and GPP and precipitation; (c-d) The lags between observed and simulated data corresponding to precipitation.
The red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line
indicated that the LAI or GPP can capture the seasonality of the climate factor in phase.
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Fig. 10. The overall CCF of observed and simulated data with radiation. (a-b) The maximum CCF correlation between observed
and simulated LAI and GPP and radiation; (c-d) The lags between observed and simulated data corresponding to radiation. The
red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line indicated
that the LAI or GPP can capture the seasonality of the climate factor in phase.
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Fig. 11. The overall CCF of observed and simulated data with temperature. (a-b) The maximum CCF correlation between observed
and simulated LAI and GPP and temperature; (c-d) The lags between observed and simulated data corresponding to temperature.
The red line indicates the correlation coefficient corresponding to the significance level (p = 0.05). The values over the red line
indicated that the LAI or GPP can capture the seasonality of the climate factor in phase.

4 Discussion

In this study, our findings revealed discrepancies in simulating trends in LAI and GPP, highlighting the limitations of DGVMs
in China. Specifically, the models tended to underestimate LAI and GPP in forested areas, overestimate them in grassland
regions, and exhibit inaccuracies in agricultural zones. A likely contributing factor to these discrepancies is the models'
overestimation of the sensitivity of LAI and GPP to elevated CO; concentrations in China. Despite these challenges, the models
demonstrated a solid capacity to capture the seasonal variations of LAI and GPP. This ability is likely due to their effective

representation of vegetation responses to seasonal climatic factors. Numerous studies have shown that vegetation dynamics
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are shaped by a complex interaction of factors, with human activities and climate change playing significant roles (Li et al.,
2021; Liu et al., 2022; Ge et al., 2021). The capacity of these models to accurately simulate the effects of both natural and

human influences on vegetation dynamics is critical to their overall effectiveness.

4.1 The environmental drivers of long-term changes on vegetation dynamics and photosynthetic capacity

Increasing concentrations of CO., climate change, nitrogen deposition, and land use collectively shape long-term vegetation
greening trends (Piao et al., 2013; Li et al., 2024). Our study indicates a significant misestimation of trends in simulated LAI
and GPP at both pixel and regional scales in China (Fig.1-3). Overall, the observed LAI trends demonstrate reasonable
consistency with model simulations within uncertainty bounds (Fig. 1a), indicating that current DGVM frameworks can
effectively capture the overall trendy of vegetation dynamics. However, the overall agreement contrasts with substantial spatial
discrepancies in trend misestimation, as evidenced by pronounced spatial misestimations in China (Fig. 2). The primary reason
for these inaccuracies in simulated LAI and GPP trends at pixel scale appears to be the limited ability of DGVMs to capture
vegetation responses to elevated CO: concentrations (Fig.4-5). This aligns with previous findings that underscore the
significant role of CO: fertilization in global vegetation changes (Zhu et al., 2016; Piao et al., 2020). Differences between
observed and simulated LAI trends reveal a spatial pattern similar to those seen in the disparities between observed and
simulated LAI responses to CO: concentration, indicating that misestimation of simulated LAI trends likely stems from the
model’s inadequate representation of LAI response to CO: variations (Fig.2, Fig.5). Besides, the model’s representation of
LAI response to climate change appears to have a minor effect on trend accuracy, which is less critical than the response to
CO: (Fig. 4-5, Fig. S9-S11). On the other hand, the spatial patterns of dominant environmental and anthropogenic drivers
affecting observed LAI responses differ markedly from those affecting simulated responses (Fig. S13). In particular, the areas
where dominant drivers in the model diverge from actual drivers are prominent in southeastern and south-central forested
regions, northern and western grasslands, and northern crop areas in China (Fig. S13 a, b). For example, in south-central and
southeastern forests, the model suggests that temperature is the primary driver of LAI trends, whereas CO: and anthropogenic
factors are the actual dominant influences. Conversely, in northern and western grasslands, the model emphasizes CO-
dominance, while precipitation is, in reality, the primary driver. These discrepancies partly explain the model’s
underestimation of LAI response to CO: in southern forested areas and its overestimation in northern grasslands (Fig. 5).
Parameterization and model structure are fundamental for ecosystem models to generate realistic projections, playing a critical
role in their accuracy (Luo et al., 2016). On the one hand, due to the complexity of physiological processes and environmental
interactions in ecosystems, model accuracy is highly sensitive to parameterization. However, DGVMs often simplify these
interactions, using empirical functions to model leaf-level photosynthetic processes—such as CO: partial pressure,
carboxylation, and electron transport (Reich et al., 2014; Wang et al., 2017). This approach can result in modeled stomatal
conductance responses to environmental factors that deviate from observed reality, particularly during the light reaction phase
(Buckley, 2017; Mcdermid et al., 2021). Simulating stomatal conductance under varying conditions (temperature, moisture,

vapor pressure, and light radiation) on a global scale is challenging, as models typically rely on a single temperature response
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curve, which fails to capture ecosystem variability (Powell et al., 2013; Trugman et al., 2018; Lin et al., 2015). Furthermore,
the species-specific sensitivity of stomatal conductance to CO: is often overlooked, limiting the model's ability to reflect
diverse physiological responses (Buckley, 2017). DGVMs generally employ PFTs to simulate vegetation responses to
environmental changes (Rogers et al., 2017), but PFTs simplify plant functional and adaptive traits, reducing the accuracy of
physiological responses under climate change (Rogers et al., 2014). Given substantial interspecies differences in
photosynthetic and water-use efficiencies, a single PFT approach is insufficient to represent the varied responses of diverse
plant types to environmental shifts (Rezende et al., 2016; Rogers et al., 2014).

On the other hand, model behavior is also shaped by equations representing real-world processes, which affect the model's
capacity to simulate system functions accurately (Luo et al., 2016). Studies show that current models fail to capture nitrogen
and phosphorus limitations on CO- fertilization effects (Terrer et al., 2019). Nutrient limitations, particularly of nitrogen and
phosphorus, can lead to reduced Rubisco—an essential, nitrogen-rich enzyme in photosynthesis—which, in turn, down-
regulates photosynthetic capacity and decreases CO- assimilation by vegetation (Ainsworth and Rogers, 2007; Long et al.,
2004; Terrer et al., 2016; 2018). DGVM assumptions of C-N and C-P coupling are thus inadequate. While plants employ
various symbiotic strategies to mitigate nitrogen limitation, DGVMs often overlook these mechanisms (Sulman et al., 2019).
Additionally, evidence from phosphorus-limited ecosystems suggests that elevated CO. may aid plants in acquiring or
mineralizing phosphorus (Nazeri et al., 2013). However, models generally assume a relatively closed phosphorus cycle, and
the fundamental dynamics of vegetation under phosphorus limitation remain poorly understood, introducing uncertainty in C-

P coupling (Medlyn et al., 2016).

4.2 Impacts of human activities on vegetation dynamics

While linear models are useful for analyzing the contribution of environmental factors to long-term vegetation trends,
determining the impact of human activities on vegetation dynamics remains a subject of debate in previous studies (Ge et al.,
2021; Liu et al., 2022). This uncertainty arises from the complexity of human activities and the diverse conditions across
different study areas (Liang et al., 2023). In China, specific human activities, such as enhancing the productivity of cropland
and implementing reforestation policies, have been shown to significantly enhance vegetation growth (Zhang et al., 2000).
Conversely, urbanization and other similar human activities have been found to have a considerable negative effect on
vegetation growth (Wang et al., 2022b; Lin et al., 2019; Jiang et al., 2022). To quantify the effects of land use changes driven
by human activities, two sets of scenarios were applied in DGVMs, which the S3 scenario applies historical changes in land
use, and the other S2 scenario a time-invariant pre-industrial land cover distribution. By difference of the two scenarios, the
dynamic evolution of vegetation in response to land use change can be quantified (Friedlingstein et al., 2022a).

In this study, we analyzed the trends of grazing intensity and crop acreage in provinces predominantly characterized by
grassland and cropland. This analysis was conducted by examining the number of livestock and crop acreage from the
respective provinces' statistical yearbooks. Additionally, tree cover data are utilized to represent actual regional trends in

forested land, allowing us to assess the model's ability to capture the effects of human activities on LAI. The S3-S2 scenario
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was employed to evaluate the influence of land use change on vegetation LAI and GPP as perceived by the DGVM model
(Fig. S14). Overall, the model did not show a significant effect of land use change on LAI in forested land and grassland areas
within the MME. Spatially, most simulated LAI and GPP trends exhibited similar patterns under the S3-S2 scenario (Fig. S15
and Fig. S16), with most of the area showing insignificant changes (72.47% and 87.31% of the area showed insignificant
changes in LAI and GPP, respectively). In terms of tree cover change data (Fig. S17), there was a significant increase in tree
cover in the southern and northeastern regions of China, with 80.60% of the area experiencing growth, and 31.54% showing
significant growth. Across different land use types all land use types showed an increase in tree cover, with particularly growth
observed in overall, forested land, and cropland, particularly in forested land where the annual growth rate reached 0.417(Fig.
S17). Data on grazing intensity and cropped area were obtained from statistical yearbook for grassland and cropland,
respectively, and trends in grazing intensity or cropped area were compared with trends in normalized LAI from the model's
S3-S2 scenario (Fig. S18). The results indicated that the model's representation of LAI changes due to land use change was
inadequate in several provinces dominated by cropland and grassland. For instance, the model's normalized LAI trend does
not accurately reflect the actual anthropogenic changes on vegetation LAI in IM province, where the changes were insignificant.
In Qinghai (QH), Tibet (TI), Sichuan (SC), Heilongjiang (HLJ), and Hunan (HN), the direction of the LAI trend in the model's
S3-S2 scenario contradicts the direction of anthropogenic effects on vegetation LAI. Consequently, the model fails to
adequately capture the intensity or direction of anthropogenic impacts on vegetation LAIL.

Although DGVMs can dynamically adjust to imposed land use change, there are substantial limitations for models to response
to land-use changes, which struggle to ensure the quality of input data and incorporate land management practices and
accurately simulate ecosystem responses to change. In TRENDY project, most of DGVMs use the HYDE and LUH2 database
for LULCC data input variables (Klein Goldewijk et al., 2017; Hurtt et al., 2020; Sitch et al., 2024). However, while these
LULCC datasets are common across models, their implementation varies according to the land-use processes and
functionalities inherent to individual DGVMs. In this study, we employ Table 1 to describe differences in the performance of
individual DGVMs, which adapted from Sitch et al. (2024). Meanwhile, the historical land use estimates within the datasets
exhibit regional variations and limitations of spatial resolution accuracy, which may result in inaccurate simulations of
responses to land use changes due to discrepancies in the data (Prestele et al., 2016). The globally applicable gridded dataset
necessitates simplifications of patterns and historical trends in deforestation, cropland, and pasture management, yet these
simplifications inherently introduce uncertainties (Prestele et al., 2016; Arneth et al., 2017). These limitations may contribute
to the model's inadequate representation of anthropogenic factors affecting regional vegetation LAI and GPP trends in China,
as the models struggle to accurately capture the impacts of human activities on forested land, grassland, and cropland.

Table 1 DGVMs and their main processes relevant to LULCC emissions

) Shifting  Cultivation/
Model Fire Wood Harvest ) o Crop harvest
Subgrid transitions

CABLE N Y Y Y
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CLASSIC Y N N Y

CLM5.0 Y Y Y Y
DLEM N Y N Y
IBIS Y Y N Y
ISAM N Y N Y
ISBA Y Y Y Y
JULES Y N N Y
LPJ-GUESS Y Y Y Y
LPX Y Y N Y
OCN N Y N Y
ORCHIDEEv3 N Y N Y
SDGVM Y N N Y
VISIT Y Y Y Y

4.3 Challenges of individual DGVMs for plant physiology

Our analysis highlights several critical limitations in the current DGVMs regarding their ability to accurately represent
vegetation responses to environmental drivers and anthropogenic changes. These limitations arise primarily from differences
in how individual DGVMs parameterize and simulate critical ecological and physiological processes. For example, Teckentrup
et al. (2021) demonstrated significant divergences among DGVMSs, particularly in their approaches to modelling responses to

elevated atmospheric CO: concentrations and nutrient cycle. Among these physiological processes, plant carbon assimilation
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mechanisms such as stomatal conductance and maximum carboxylation velocity (Vemax) play pivotal roles. Previous studies
found that stomatal functioning and Vmax are related to elevated atmospheric CO» and photosynthesis acclimation, potentially
impacting the estimation of vegetation dynamics in DGVMs (Rezende et al., 2016). Many DGVMs currently simplify or
inadequately represent these physiological processes. For instance, several DGVMs estimate Vemax at the canopy scale rather
than the physiologically more appropriate leaf scale, leading to systematic underestimations. Furthermore, nutrient cycling
modules integrated into DGVMs often reduce the sensitivity of vegetation growth to elevated CO2 concentrations (Smith et
al., 2014; Zaehle, 2013; Meyerholt et al., 2020). Collectively, these simplifications constitute structural deficiencies that
substantially affect DGVM accuracy. To elucidate mechanistic discrepancies in vegetation trend simulations, we synthesize
findings from prior studies to summarize the operational frameworks of 14 models across six critical parameters: the presence
of stomatal conductance, Vemax-related leaf nitrogen content, dynamic natural PFT coverage and nutrient cycle (Teckentrup et
al., 2021; Rezende et al., 2016; Lian et al., 2021; Friedlingstein et al., 2022b; Sitch et al., 2024). A systematic comparison of
these parameterizations is presented in Table 2.

Table 2 DGVMs and their main processes of plant physiology

Vemax-related  leaf  nitrogen Dynamic natural PFT

Model Stomatal conductance N cycle P cycle
content coverage
CABLE - Coupled with leaf N-P ratio N Y N
CLASSIC Ball et al. (1987) Leaf N content determines Vemax Y N N
CLMS5.0 Medlyn et al. (2012) Leaf N optimization model Y Y -
DLEM - - N Y N
IBIS Collatz et al. (1991) - Y N N
ISAM - - N Y N
ISBA - - Y Y N
JULES Collatz et al. (1991) Linearly related to leaf N Y Y N

Vemax varies with foliage N
Haxeltine and Prentice
LPJ-GUESS concentration and specific leaf Y Y N
(1996)
area
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LPX Ball et al. (1987) Vemax related to leaf N Y Y N

OCN Ball et al. (1987) Leaf N content determines Vemax N Y N
ORCHIDEEv3 Ball et al. (1987) Vemax 18 prescribed N Y N
SDGVM Ball et al. (1987) Leaf N content determines Vemax Y Y N
VISIT - - Y N N

Our results clearly indicate that no single DGVM among the evaluated 14 consistently performs well across all aspects of
vegetation dynamics (e.g., trend vs. seasonal variations, LAI vs. GPP) throughout China (Fig 2-3, Fig 7-8). For example, while
DLEM performs relatively better in capturing regional GPP trends in certain locations, its successful performance is spatially
limited (covering less than 50% of the study area) and remains poor in capturing LAI trends (Fig 2e, Fig 3e). Similar
discrepancies exist for other models regarding their ability to simulate different vegetation variables. Thus, we emphasize the
effectiveness and importance of utilizing MME approaches, which collectively capture model strengths and weaknesses,

thereby providing more robust and comprehensive assessments.

4.4 Climatic factor influencing the seasonal performance of the DGVM

In contrast to the vegetation trend, the models simulate the seasonal cycle of LAI and GPP excellently both overall and spatially
(Fig. 6-8). The simulated GPP also demonstrates high seasonal cycle correlations with observed GPP in sites (Fig. S12).
Seasonal variations in precipitation, radiation, and temperature play a crucial role in influencing the seasonal dynamics of
vegetation (Hou et al., 2022; Duan et al., 2022; Wu et al., 2015). While temperature is often considered the primary factor
controlling plant phenology, the complex interactions between temperature and other climatic factors cannot be overlooked
(Flynn and Wolkovich, 2018). Radiation works in concert with temperature to regulate the timing of defoliation, meet
vegetation growth thresholds, and influence phenological events (Flynn and Wolkovich, 2018; Chuine, 2010), while
precipitation affects plant phenology primarily through its indirect influence on the thermal requirements of these events (Fu
etal., 2014). The findings that observed LAI and CSIF exhibit similar seasonal fluctuations in response to the three key climate
factors suggest that the model may effectively capture the response to seasonality of vegetation in China (Fig. S19-Fig. S20).
In this paper, we verified the seasonal cyclic correlation of simulated LAI and GPP with climate factors through CCF (Fig. 9-
11), and demonstrated that the simulated LAI and GPP equipped with realistic seasonal cycles due to the simulated vegetation's
ability to respond to cyclic climatic variations affecting its seasonality. Given that the Farquhar model and its variants, which

underpin the photosynthesis module of the DGVM, provide a detailed and unified understanding of the photosynthesis
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(Farquhar et al., 1980), DGVMs are capable of reasonably simulate dynamics of photosynthesis and vegetation change (Zhao
et al., 2022). To further improve simulation accuracy, researchers have developed more mechanistic models that account for
vegetation growth influenced by seasonal climate variations (Piao et al., 2019).

Moreover, we observed that the simulated LAI response to seasonal climate factors typically lags behind simulated GPP
response, which aligns with the analysis by Zhao et al. (2022). This discrepancy arises because the model simulates carbon
allocation to canopy structure in response to seasonal climate changes more slowly than what occurs in reality (Du et al., 2020).
As with the above research, studies on peak seasonal values and phenological greening dynamics hold significant research

importance, and future work will strengthen research efforts on this thematic area.

4.5 Uncertainties of the observed LAI in China

Remotely sensed observation used in the study might be compromised by various factors such as atmospheric disturbances
and sensor errors, leading to noise, blurring, and distortion. Even with the use of the latest reprocessed MODIS LAI data and
advanced spatio-temporal filtering techniques, it is impossible to completely eliminate the potential impacts of cloud cover,
aerosol pollution, and sensor degradation (Yuan et al., 2011; Zou et al., 2023). These limitations mean that satellite-based
estimates may inherently underpredict values, requiring careful consideration when comparing model data to ensure
appropriate metrics and accurate site-based comparisons for model evaluation (De Kauwe et al., 2016). The quality of the
MODIS LAI data used in this study is particularly low in non-vegetated areas, but significantly better in vegetated regions
(Fig. S21). Additionally, in northern China, pixel quality is severely affected from December to February due to snow
accumulation and other factors. Consequently, the pixel quality of the remotely sensed observation themselves represents the

primary source of uncertainty in the experiments conducted in this study.

5. Conclusion

This study evaluated the long-term trends and seasonality performance in LAI and GPP in DGVMs in China from 2003 to
2019. Overall, DGVMs struggled to accurately capture the trends of simulated LAI and GPP in the region, though they
effectively captured their seasonality. While the overall trend of simulated LAI was reasonably represented, the trend of
simulated GPP was not. Spatially, both simulated LAI and GPP trends exhibited similar inaccuracies, with notable
misestimations. The distribution of these over- and underestimations in simulated LAI trends was closely linked to land use
type: the models tended to underestimate LAI and GPP trends in forested areas, overestimate them in grasslands, and
misestimate them in croplands. Despite these issues, the seasonal variations of simulated LAI and GPP were consistent with
both measurements and remotely sensed observations, demonstrating a strong alignment in capturing seasonal fluctuations.

To elucidate the reasons for the inability of DGVMs to simulate LAI trends accurately and the good performance in seasonal
variations of simulated LAI and GPP, we analyzed the model's shortcomings in responding to environmental and

anthropogenic changes, as well as its correlation with seasonal climate factors and lagged effects. The findings indicate that:
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(1) With regard to environmental factors, the simulated LAI and GPP exhibited an inadequate sensitivity in response to changes
in environmental conditions, particularly to CO- concentrations. Furthermore, the failure to capture the impacts of human
activities on vegetation dynamics is likely due to limitations in input land-use data and the oversimplified representation of
land management and land-use change in DGVMs. Overall, the insufficient response of the simulated LAI and GPP to CO-
fertilization effects is the primary factor contributing to the model's misestimation of LAI and GPP trends in China. (2) The
accurate capture of seasonal variations in simulated LAI and GPP in response to climate factors strongly supports the reliability

of DGVMs in modeling seasonal fluctuations in China.
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