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Abstract. The dominant periodicity of the late Pleistocene glacial cycles is roughly 100 kyr, rather than other major astro-

nomical periods such as 19, 23, 41, and 400 kyr. Various models explain this fact through distinct dynamical mechanisms,

including synchronization of self-sustained oscillations and resonance in mono- or multi-stable systems. However, the variety

of proposed models and dynamical mechanisms could obscure the essential factor for realizing the 100-kyr periodicity. We

propose the hypothesis that the ice-sheet climate system responds to astronomical forcing at the ∼100-kyr periodicity because5

the intrinsic timescale of the system is closer to 100 kyr than to other major astronomical periods. We support this idea with

analyses and sensitivity studies of several simple ice age models with contrasting mechanisms.

1 Introduction

Glacial-interglacial cycles are a pronounced mode of climate variability in the Pleistocene, accompanied by large changes in

temperatures (Clark et al., 2024; Jouzel et al., 2007), global ice volume (Rohling et al., 2022) and greenhouse gas concentrations10

(Bereiter et al., 2015; Lüthi et al., 2008). Changes in global ice volume are recorded, e.g., in the oxygen isotope ratio δ18O of

benthic foraminifera in marine sediments (Lisiecki and Raymo, 2005) (Fig. 1d), where higher δ18O values indicate larger ice

volume and lower deep-ocean temperatures. The dominant periodicity of the late Pleistocene glacial cycles is roughly 100 kyr,

as shown in its power spectral density (PSD) (Fig. 1f; see Appendix A for the PSD method).

Summer insolation in the high Northern latitudes (Fig. 1c) is supposed to be a major driver (Milankovitch, 1941; Roe, 2006)15

or a pacemaker (Hays et al., 1976) of the glacial cycles. It fluctuates due to long-term variations in the astronomical parameters:

climatic precession esinϖ (and co-precession ecosϖ) with 19, 22.4 and 23.7-kyr dominant periodicities (Fig. 1b, green),

obliquity ε with 41-kyr periodicity (Fig. 1a), and eccentricity e with 95, 124 and 405-kyr periodicities (Fig. 1b, magenta)

(Laskar et al., 2004; Berger, 1978), where the periodicities of eccentricity are linked with those of climatic precession by

relations of combination tones such as 1/95≃ 1/23.7−1/19 (Berger et al., 2005). These astronomical periodicities are in fact20

imprinted in the PSDs of the δ18O records, as shown in Fig. 1f (Hays et al., 1976).

However, despite the dominant average periodicity of the late Pleistocene glacial cycles being ∼100 kyr, the boreal summer

insolation has only negligible power at this frequency. This discrepancy is known as the 100-kyr problem. Instead, boreal
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Figure 1. Time series and power spectral densities (PSD) of the astronomical forcing (Laskar et al., 2004) and glacial cycles over the last

1 Myr. (a) Obliquity. (b) Climatic precession (green) and eccentricity (magenta). (c) Summer solstice insolation at 65◦N. (d) Benthic δ18O

stack records representing glacial-interglacial cycles. The so-called LR04 record with orbital tuning (black) (Lisiecki and Raymo, 2005), the

LR04 record without orbital tuning (red) (Lisiecki, 2010), and the record without orbital tuning (blue) (Huybers, 2007). Note that the vertical

axis is reversed so that larger δ18O values, corresponding to colder conditions, are lower. (e) PSD of the eccentricity (magenta) and the PSD

of the summer solstice insolation F65N (orange). (f) PSDs from each benthic δ18O record in panel e. The dashed vertical lines in (e,f) indicate

major astronomical periodicities (Laskar et al., 2004).
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summer insolation exhibits strong power in the 19–23.7 kyr precession band and the 41 kyr obliquity band (Fig. 1e, orange).

Henceforth, the ∼100 glacial cycles have been explained as a response to four-to-five precession cycles (Ridgwell et al.,25

1999; Cheng et al., 2009; Hobart et al., 2023), a response to two-to-three obliquity cycles (Huybers and Wunsch, 2005) or

a combination thereof (Huybers, 2011; Tzedakis et al., 2017; Ryd and Kantz, 2024). Note that a single response to four-or-

five precession cycles generally coincides with a one-to-one response to ∼100-kyr eccentricity cycles, since a deglaciation in

response to climatic precession esinϖ tends to occur near the rising limb of eccentricity e (Raymo, 1997). Thus, eccentricity

seem to impact the pace of glacial cycles via the modulation of climatic precession.30

Synchronization and nonlinear resonance are two major dynamical mechanisms that result in a system’s response tightly

coupled with external forcing. Given their ubiquity in nature, these mechanisms are often invoked to explain the occurrence of

∼100-kyr cycles in terms of nonlinear dynamics. In synchronization (a.k.a. frequency-entrainment, phase-locking or frequency-

locking)1, the system is assumed to exhibit self-sustained oscillations in the absence of forcing, and the frequency of the under-

lying oscillations is adjusted to match one of frequencies of external forcing, its harmonics, subharmonics, or a combination of35

these (Pikovsky et al., 2003). Many ice age models generate ∼100-kyr cycles through the synchronization mechanism (Saltz-

man et al., 1984; Gildor and Tziperman, 2000; Ashkenazy and Tziperman, 2004; De Saedeleer et al., 2013; Crucifix, 2013;

Ashwin and Ditlevsen, 2015; Mitsui et al., 2015; Nyman and Ditlevsen, 2019; Mitsui et al., 2023; Koepnick and Tziperman,

2024). Synchronization occurs more easily when the frequency of external forcing is closer to the natural frequency of the

system’s underlying self-sustained oscillations (Pikovsky et al., 2003). Thus if the ∼100-kyr cycles are realized via synchro-40

nization, it suggests the existence of underlying self-sustained oscillations at ∼100-kyr timescale.

Resonance, on the other hand, refers to an enhanced output response that occurs when a system’s natural frequency of

oscillation matches the frequency of external forcing (Ditlevsen et al., 2020; Hagelberg et al., 1991). This term has been

generalized to include a broader range of processes that involve the enhancement, suppression, or optimization of a system’s

response through the variation, perturbation, or modulation of any system property (Vincent et al., 2021; Rajasekar and Sanjuan,45

2016). In the nonlinear resonance mechanism of ∼100-kyr ice age cycles, the underlying system is commonly assumed to be

either mono- or multi-stable, and the system’s response to 19–23.7kyr and 41-kyr forcings is nonlinearly amplified at ∼100-

kyr timescale (Ryd and Kantz, 2024), for example, at the combination tone 1/95 = 1/19− 1/23.7 kyr−1 (Le Treut and Ghil,

1983). Many studies, however, use the terms of nonlinear response (Ganopolski, 2024; Ashkenazy and Tziperman, 2004) or

nonlinear amplification (Verbitsky et al., 2018), to refer to cases compatible with the generalized notion of resonance. Other50

types of resonance are also proposed to explain the ∼100-kyr cycles: stochastic resonance (Benzi et al., 1982; Nicolis, 1981),

coherence resonance (Pelletier, 2003; Bosio et al., 2022) and vibrational resonance (Ryd and Kantz, 2024).

Despite such differences in dynamical mechanisms and underlying system types, several ice age models with distinct ap-

proaches successfully simulate proxy records with similar accuracy, reproducing the∼100-kyr cycles. This raises an important

1In this study, we follow the definition of synchronization from Pikovsky et al. (2003), where the terms frequency entrainment, phase locking, and

frequency locking are considered synonymous with synchronization, assuming the prior existence of a underlying self-sustained oscillations that is being

“locked”: Pikovsky et al. (2003) explicitly distinguishes these notions from resonance or nonlinear response. In many studies of glacial cycles, however, the

term “phase-locking” is used to describe both synchronization and nonlinear response, regardless of the existence of underlying self-sustained oscillations.
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question: if models with different mechanisms can reproduce the glacial cycles, what is the key factor that enables the ∼100-55

kyr cycles, regardless of the specific mechanism? To address this question, we examine three previously proposed ice age

models, each representing a different mechanism and underlying system type: one based on synchronization, one on resonance

in a mono-stable system, and one on resonance in a multi-stable system with thresholds. Through simulations changing the

model’s internal timescale and the amplitude of the forcing, we elucidate that the key to enabling the 100-kyr cycles is the

proximity of the intrinsic timescale of the underlying climate system to the ∼100-kyr periodicity of eccentricity cycles. Our60

results suggest that∼100-kyr periodicity occurs because of the timescale matching between an astronomical timescale and one

of the Earth system’s intrinsic timescales.

Until now, we have referred to the dominant periodicity of the late Pleistocene glacial cycles as ∼100 kyr. Examining the

PSDs of the benthic δ18O stack records over the last 1 Myr (Lisiecki and Raymo, 2005), the ∼100-kyr spectral peak actually

aligns with the 95-kyr eccentricity peak, and it is indeed distinct from other potential eccentricity peaks such as 124 kyr (Fig. 1e,65

f). Concerns could be raised about using a tuned record for such an assessment, but the same conclusion is also drawn from

two other records that are free from orbital tuning (Lisiecki, 2010; Huybers, 2007). Thus, in this study, the 95-kyr periodicity

is assumed as the strongest mode over the last 1 Myr (Clark et al. (2024) and Rial (1999) also specifically consider the 95-kyr

periodicity). This strong imprint of the 95-kyr eccentricity periodicity (i.e., the combination tone of the climatic precession

periodicities 23.7 kyr and 19 kyr) is consistent with recent studies suggesting that the timings of deglaciations are more-tightly70

coupled with multiple climatic precession cycles than multiple obliquity cycles with 82 or 123 kyr (Hobart et al., 2023; Cheng

et al., 2016; Abe-Ouchi et al., 2013).

The remainder of this article is organized as follows. In Section 2 we present the three simple models of ice age cycles with

different mechanisms for generating ∼100-kyr cycles. In Section 3 the three models are analyzed to elucidate the differences

and commonality in the three mechanisms. Section 4 is devoted to the discussion. In Section 5, we conclude the article.75

2 Models for glacial cycles

2.1 Self-sustained oscillator (SO) model representing the synchronization mechanism

A paradigmatic dynamical system featuring self-sustained oscillations is the oscillator of Van der Pol (1926). Crucifix and

colleagues have used the forced van der Pol oscillator as a mathematical model to investigate ice age dynamics (Crucifix, 2012;

De Saedeleer et al., 2013; Crucifix, 2013). We consider a generalized version of the model:80

ẋ = y + κx− µ

3
x3 (1)

ẏ = −αx−βx3− θ− (ν + ρx)I(t)− ηI2(t) (2)

with y = δ18O−δ−4, linking the variable y with the ice volume proxy δ18O with an offset δ+4. Variable x abstractly represents

the ‘climate’ state that determines whether the system is in the glaciation or the deglaciation phase, in combination with the

insolation. It could represent the oceanic state (De Saedeleer et al., 2013), the carbon cycle, dust concentrations, or their mixed85

effect. Variable I(t) is the standardized summer solstice insolation anomaly at 65◦N, and the model’s parameters are written

4
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in Greek. The nonlinear term ηI2(t) is included to take into account the lower sensitivity of the ice volume in the cold period

(Paillard, 1998). Equations (1) and (2) contain not only the van der Pol equation, but also the equation of Duffing (1918) due to

the cubic term βx3, and the Hill equation (Magnus and Winkler, 2004) due to the multiplicative force ρxI(t) (see Appendix B

for details). Thus, it is expected to have greater flexibility to accommodate complex nonlinear oscillations than the original90

forced van der Pol equation.

The parameters in Eqs (1)–(2) and δ are tuned to minimize the mean squared errors between the simulated and observed

δ18O records over the last 1 Myr (see Appendix B). The model reproduces the record of glacial cycles quite well (Fig. 2b, pink;

R = 0.88) including the 95-kyr periodicity (Fig. S2c). For zero insolation anomaly I(t) = 0, the underlying system possesses

self-sustained oscillations with a periodicity of 91.7 kyr (Fig. 2b, sky blue). Such self-sustained oscillations occur over a95

range of insolation anomaly −0.66 < I < 0.075. The oscillation period varies moderately over the range −0.66 < I < 0.075

with a mean of about 90 kyr (Fig. S1). The internal oscillations capture the slow build up and the rapid disintegration of ice

sheets. Under the astronomical forcing, the frequency entrainment occurs principally at 1/95 kyr−1 near the natural frequency.

Equations (1)–(2) are hereafter called the Self-sustained Oscillator (SO) model.
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Figure 2. Forced and unforced simulations of glacial cycles over the last 1 Myr: (a) Standardized summer solstice insolation at 65◦N. (b)

SO model with forcing (pink) and without forcing (light blue). (c) VCV18 model with forcing (violet) and without forcing (light blue). (d)

G24-3 model with forcing (green) and without forcing (light blue). See Appendices A–C for the simulation settings of each model. For all

three models, the corresponding scaled versions of the paleoclimatic record are shown by the black dashed line.
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2.2 Verbitsky-Crucifix-Volobuev model representing the resonance mechanism in monostable system100

Verbitsky et al. (2018) introduced a simple model of ice age cycles deduced from a scaling analysis of the governing physical

laws (hereafter VCV18 model). The equations for the glaciation area (S), the basal temperature (θ) and the ocean temperature

(ω) are given by

Ṡ =
4
5
ζ−1S3/4(a− εI(t)−κω− cθ)

θ̇ = ζ−1S−1/4(a− εI(t)−κω){αω + β[S−S0]− θ}105

ω̇ = γ1− γ2[S−S0]− γ3ω

where I(t) is the standardized summer solstice insolation at 65◦N. The ice volume is given as V = ζS5/4. See Table 1 in

Verbitsky et al. (2018) for the parameter values. Since the system becomes numerically unstable near S = 0, we reset the S

value to 10−4 if it falls below 10−4. The VCV18 model can roughly simulate changes in sea level as shown in Fig. 2c (violet).

Although the simulated sea level does not capture the amplitude and timing of all deglaciations (specifically, the last one), the110

model exhibits prominent ∼100-kyr power consistently with the record (Fig. S3c). In the absence of forcing (I(t)≡ 0), it has

a stable equilibrium whose Jacobian matrix has one real negative eigenvalue and a pair of complex conjugate negative real part

eigenvalues. The latter defines the eigenfrequency (i.e., the natural frequency) of the damped oscillations. With the standard

parameters, the natural periodicity of the damped oscillations is 95-kyr.

Although the astronomical forcing has major powers at ∼20-kyr and 41-kyr bands, the dominant power of the response115

concentrates near∼100-kyr. Since the system does not exhibit self-sustained oscillations, the appearance of∼100-kyr cycles in

the VCV18 model can be qualified as a phenomenon of synchronization. Instead, it must be related to a nonlinear amplification

of the response (Verbitsky et al., 2018), i.e., nonlinear resonance, as shown in Section 3.

2.3 Ganopolski model representing the resonance mechanism in multistable systems

Ganopolski (2024) discusses three simple models of ice age cycles in his Generalized Milankovitch Theory (hereafter G24-120

1,2,3). The G24-3 model is a model derived from ice age simulations using the Earth system model of intermediate complexity

CLIMBER-2 (Calov and Ganopolski, 2005; Ganopolski and Calov, 2011; Willeit et al., 2019). The change in ice volume v is

defined in the glaciation- and deglaciation-regimes, respectively, as:

v̇ =





Ve− v

t1
if k = 1 (glaciation regime)

−vc

t2
if k = 2 (deglaciation regime)

where t1 = 30 kyr and t2 = 10 kyr are relaxation timescales in each regime estimated from CLIMBER-2 experiments (Calov125

and Ganopolski, 2005). The term Ve represents either of two stable equilibria depending on the 65◦N summer solstice insolation

anomaly f(t) relative its mean over the last 1 Myr and the state v:

Ve(f) =





Vg(f) if f < f1, or f1 < f < f2 and v > Vu(f)

Vi if f > f2, or f1 < f < f2 and v < Vu(f)

7
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where Vg(f) = 1 +
√

f2−f
f2−f1

is the glacial equilibrium, Vi = 0 is the interglacial equilibrium, f1 ≤ f ≤ f2 is the range of

multiple equilibria and Vu(f) = 1−
√

f2−f
f2−f1

is the unstable equilibrium separating glacial and interglacial basins (see Fig. 4130

in Ganopolski (2024)). The transition from the glaciation regime (k = 1) to the deglaciation regime (k = 2) occurs if three

conditions are met: v > vc, f > 0 and ḟ > 0, where vc(= 1.4) is the critical ice volume, above which the ice sheets are likely

to collapse. The transition from the deglaciation regime (k = 2) to the glaciation regime (k = 1) occurs if f drops below f1.

Since v should not be negative, we reset v to 0 if it becomes negative during numerical integrations.

The G24-3 model simulates the glacial cycles well (R = 0.82 over 1 Myr) and has two stable equilibria for f = 0 (Fig. 2d).135

By construction, the G24-3 model does not produce self-sustained oscillations for constant insolation because its regime tran-

sitions require threshold crossings in insolation. Ganopolski (2024) mentions that the characteristic timescales of the model are

t1 = 30 kyr and t2 = 10 kyr, and the model has no intrinsic timescale close to 100 kyr. However, the intrinsic timescale of the

G24-3 model may be considered much longer than the relaxation times t1 = 30 kyr and t2 = 10 kyr. First, assuming the average

insolation f = 0, the time in which the ice volume increases from v = 0 to the critical ice volume vc is t1 ln Vg(0)
Vg(0)−vc

≈ 51.5 kyr.140

Even after the ice volume exceeds vc, the ice sheets continue to grow until the insolation anomaly f changes from negative to

positive. While this extra waiting time varies depending on the phase of the precession cycles, half of the precession period,

approximately 10 kyr, is a reasonable expected value. Adding this value on top of 51.5 kyr, the total period from glacial in-

ception to the onset of deglaciation is estimated as 61.5 kyr. Second, the time it takes for the ice to melt is about t2 = 10 kyr.

After this period of deglaciation, which usually continues during f > 0, the system waits for glacial inception triggered by the145

drop in f below f1 =−16 Wm−2. This waiting time is roughly 1/4 precession cycle, i.e., ∼5 kyr. The sum of the glaciation

timescale and the deglaciation timescale for G24-3 model is t1 ln Vg(0)
Vg(0)−1.5 + t2 = 61.5 kyr, while the timescale to complete a

cycle including the extra waiting times is t1 ln Vg(0)
Vg(0)−1.5 +t2+15 = 76.5 kyr. This timescale is closer to the 95-kyr eccentricity

periodicity than other fundamental astronomical periods.

3 Sensitivity experiments150

We conduct sensitivity experiments for the models described in Section 2 to demonstrate that the intrinsic timescale close to

∼100 kyr is the key to allowing ∼100 kyr periodicity for all of the three different types of models.

3.1 Responses to the astronomical forcing

First, we show that the three models exhibit different responses to astronomical forcing. The models are run with a scaled

insolation forcing: Ĩ(t) = AI(t) in the SO model and the VCV18 model, and f̃(t) = Af(t) in the G24-3 model. The original155

simulations correspond to A = 1. The changes in the PSD for varying A in steps of 0.02 are shown in Fig. 3. Specific timeseries

and PSDs for A = 0, 0.5, 1, 1.5 and 2 are shown in Figs S2, S3 and S4.
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Figure 3. Power spectral density (PSD) for different amplitudes A of the astronomical forcing: (a) SO model. (b) VCV18 model. (c) G24-3

model. The PSDs are obtained from simulations over the last 1 Myr. The magenta dashed lines indicate the major astronomical frequencies

(the numbers show the corresponding periods). The precession band, 19–23 kyr, is not shown since its power is comparatively minor.

In the SO model, as shown in Fig. 3a, the PSD has its maximum at 91.7 kyr for zero forcing amplitude, A = 0, correspond-

ing to self-sustained oscillations. For small A≤ 0.84, frequency-locking to a major astronomical periodicity is not achieved

(Fig. S2a, b). The frequency-locking to 82-kyr double obliquity periodicity is realized for a very narrow range 0.86≤A≤ 0.88.160

The frequency locking at 95 kyr is achieved for a wide range of 0.90≤A≤ 1.52. For larger A, the principal periodicity shifts

toward the larger side, exhibiting frequency lockings to 124 kyr or 405 kyr.

In the VCV18 model shown in Fig. 3b, the total power is quite small for low A since the underlying dynamics is a damped

oscillation. For A less than half of the original value, the PSD has a maximum at 41 kyr, although it is too small to be clearly

seen in Fig. 3b. This is simply the linear response to the 41-kyr obliquity cycles. A large power appears at the 95-kyr eccentricity165
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periodicity as A increases to more than 0.5. This resonance with 95-kyr eccentricity cycles is actually a nonlinear resonance to

the combination tone between 19 and 23.7-kyr precession cycles. The nonlinear resonance is found near the system’s natural

periodicity of 95 kyr. This is consistent with the notion that the resonance typically occurs if the frequency of external forcing

matches the natural frequency of the system.

In the G24-3 model shown in Fig. 3c, the power is zero for low forcing amplitude A≤ 0.36 because glacial inception cannot170

be triggered. Glacial inception is possible for A≥ 0.38. The main peak is located at 405 kyr for 0.38≤A≤ 0.42, at 124 kyr

for 0.44≤A≤ 0.54, and at 95 kyr for the wide range of 0.56≤A≤ 1.42. This occurs because the frequency of threshold

crossing increases as A increases. The principal periodicity remains close to 100 kyr for larger A(≥ 1.44), but it is different

from any major astronomical period.

3.2 Intrinsic timescales and responses175

Next, we investigate the relationship between the principal periodicity of the output and the intrinsic timescale of the model. For

this purpose, we introduce a parameter r that modulates the timescale of the model, following previous studies (De Saedeleer

et al., 2013; Crucifix, 2013). Each dynamical equation is scaled as r dX
dt = r.h.s. The larger r, the slower the temporal vari-

ation of the model variables. In the SO model, the period of self-sustained oscillations (originally T0 = 91.7 kyr) is scaled

as rT0 Similarly in the VCV18 model, the natural period of the damped oscillations (originally T0 = 95 kyr) becomes rT0.180

In the G24-3 model, the intrinsic timescale for the glaciation and deglaciation is scaled as Tint = r
(
t1 ln Vg(0)

Vg(0)−vc
+ t2

)
=

61.5r kyr. Adding the extra waiting times until the astronomical conditions are met, the timescale for forming a cycle is

Tcyc = r
(
t1 ln Vg(0)

Vg(0)−vc
+ t2

)
+ 15 = 61.5r + 15 kyr. The tempo of orbital forcing remains unchanged.

We run each model by varying (r,A) ∈ [0.5,1.5]× [0,2] and measure the principal period of the simulated ice age cycles

from the PSD S(f) as TP = 1/argmaxfS(f). We judge that the measured principal period TP is virtually identical to one185

of the major astronomical periods, TA, if |TP −TA|< ϵTA, where TA = 19, 22.4, 23.7, 41, 82, 95, 124 or 405 kyr (note that

82 kyr corresponds to twice the obliquity cycle). The parameter ϵ is set to be small, specifically ϵ = 0.028 for the SO model and

ϵ = 0.04 for the VCV18 and G24-3 models. Only for the case ϵ = 0.04, some TP can satisfy the condition |TP −TA|< ϵTA for

both PA = 22.5 kyr and PA = 23.7 kyr simultaneously; in such a case, we choose the closer one to be the simulated principal

period. The results are shown in Fig. 4, as will be explained later.190

We also calculate a measure of resonance, specifically the response amplitude of signal x(t) at a given frequency fA (i.e., pe-

riodicity TA = 1/fA): Q =
√

Q2
s + Q2

c , Qs = 2
nTA

∫ 0

−nTA
x(t)sin(2πt/TA)dt, Qc = 2

nTA

∫ 0

−nTA
x(t)cos(2πt/TA)dt, where

n is chosen so that the integration interval spans at most the last 1000 kyr, that is n = ⌊1000/TA⌋. Since the parameter Q is

related to the PSD as S(f)∝Q2(f), the resonance can also be quantified by the PSD S(f). However, here we employ Q as

it is a widely accepted measure of resonance (Ryd and Kantz, 2024; Rajasekar and Sanjuan, 2016). The results are shown in195

Fig. 5.

10

https://doi.org/10.5194/esd-2024-39
Preprint. Discussion started: 6 December 2024
c© Author(s) 2024. CC BY 4.0 License.



0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

F
o
rc

in
g
 a

m
p

lit
u

d
e
 A

405 kyr

124 kyr

95 kyr

82 kyr

41 kyr

23.7 kyr

22.4 kyr

18.9 kyr

Timescale control parameter r

(a) SO model

23.7 41 95 124
Internal period rT0 (kyr)

0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

F
o
rc

in
g
 a

m
p

lit
u

d
e
 A

82 kyr

41 kyr

23.7 kyr

405 kyr

124 kyr

95 kyr

Timescale control parameter r

(b) VCV18 model

23.7 41 95 124
Natural period rT0 (kyr)

0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

F
o
rc

in
g
 a

m
p
lit

u
d
e
 A

405 kyr

124 kyr

95 kyr

82 kyr

41 kyr

23.7 kyr

22.4 kyr

Timescale control parameter r

(c) G24−3 model

41 76 95 124
Timescale for forming a cycle (kyr)

Figure 4. Regime diagram in A–r space. (a) SO model (synchronization mechanism). (b) VCV18 model (nonlinear resonance mechanism

in a damped oscillatory system). (c) G24-3 model (nonlinear resonance mechanism in a bistable system with thresholds). The principal

period of the simulated dynamics is shown by the symbols in the legend. The most realistic simulations are obtained at A = 1 and r = 1

(black diamond). A is the forcing amplitude. r is the parameter controlling the timescale of the underlying system. rT0 is the scaled intrinsic

timescale of each model.

In the SO model shown in Fig. 4a, we find regions in which the principal period is one of the major astronomical periods.

Each region comes from a point on the horizontal axis, at which the scaled internal period rT0 is equal to a major astronomical

period. These regions are similar to the so-called Arnold tongues in periodically forced systems. Within an Arnold tongue, the

mean oscillation frequency, defined as the number of cycles over a large time interval, is locked to a forcing frequency or its200

simple rational multiple (Pikovsky et al., 2003). However, strictly speaking the regions in Fig. 4a should not be called Arnold

tongues, because the principal frequency at the maximal PSD peak does not necessarily coincide with the mean oscillation

frequency. We chose to call them quasi-Arnold tongues in Fig. 4a. Since they require only the matching between the principal
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frequency and a major astronomical frequency, the quasi-Arnold tongue is a looser concept than the Arnold tongue. The quasi-

Arnold tongue corresponding to the 95-kyr periodicity is narrow and vertical (Fig. 4a). Thus, in the SO model, the 95-kyr205

principal periodicity is indeed diagnosed as the system’s internal frequency.

The VCV18 model does not have quasi-Arnold-tongues that touch the horizontal axis at a single point (Fig. 4b). For small

but nonzero values of A, the principal period is 23.7 kyr if the scaled natural period rT0 is less than roughly 41 kyr, and it is

41 kyr for rT0 ≳ 41 kyr (0.2 ≲ r ≤ 2). These are linear responses to the 23-kyr precession component as well as to the 41-kyr

obliquity component in the insolation forcing, respectively. For the forcing amplitude A roughly above 0.5, the principal period210

changes from 41 to 95 kyr for r near 1. This region with the 95-kyr periodicity is sandwiched by the 41-kyr region and the

124-kyr region (Fig. 4b). This is a nonlinear resonance tongue, where the response amplitude with a 95-kyr periodicity is

maximized. This is confirmed by the maximum in the parameter Q95 corresponding to 95-kyr periodicity, calculated for the

realistic forcing amplitude A = 1 (Fig. 5b). The nonlinear resonance tongue corresponding to 95-kyr cycles is inclined towards

the larger side of rT0 as A increases (Fig. 4b). This shift of natural periodicity rT0 that gives the maximum amplitude (in215

other words, the shift of the resonance frequency) is a characteristic of nonlinear resonance (Rajasekar and Sanjuan, 2016;

Marchionne et al., 2018). For the realistic forcing amplitude A = 1, the 95-kyr glacial cycles are obtained for a limited range of

natural periodicities, 83 ≲ rT0 ≲ 118 kyr. The closeness between the internal periodicity and the 95-kyr eccentricity periodicity

appears here to be key to enabling the 95-kyr dynamics also in the VCV18 model.
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Figure 5. Q spectrum as a function of the timescale control parameter r. (a) SO model (synchronization mechanism). (b) VCV18 model

(nonlinear resonance mechanism in a damped oscillatory system). (c) G24-3 model (nonlinear resonance mechanism in a bistable system

with thresholds). The most realistic simulations are obtained at r = 1, where Q95 for the 95-kyr periodicity is maximal. rT0 is the scaled

intrinsic timescale of each model.

In the G24-3 model, as shown in Fig. 4c, 124-kyr glacial cycles as well as 405-kyr cycles occur for a wide range of r, i.e.,220

virtually regardless of the intrinsic timescale rT0. The 95-kyr cycles also occur for a wide range of intrinsic timescales rT0 if

A is around 0.6. However, the range of rT0 giving the 95-kyr cycles is limited to 66 ≲ rT0 ≲ 90 kyr at the realistic forcing

amplitude A = 1. Thus, also in the G24-3 model, the intrinsic timescale is key to having the 95-kyr cycles. We calculate the Q

parameters also for this model (Fig. 5c). Among others, Q95 corresponding to 95-kyr periodicity takes a maximum near r = 1.

This manifests that the 95-kyr cycles in the G24-3 model are generated via nonlinear resonance.225
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4 Discussion

We have shown that three models for the late Pleistocene ice age cycles, representing the three major types of proposed

mechanisms, produce ∼100-kyr cycles because they have intrinsic timescales close to ∼100-kyr. This aspect is ubiquitous

across various ice age models. In fact, many models simulating 100-kyr cycles have intrinsic timescales close to ∼100 kyr as

shown in Table 1. We highlight a few examples below.230

Parrenin and Paillard (2012) simulate the last 1-Myr glacial cycles particularly well using a simple model that alternates

between glaciation and deglaciation regimes when astronomical parameters and ice volume exceed certain thresholds. In the

model, the inherent time until the ice increases from v1 = 4.5 m to v0 = 123 m is (v0− v1)/αg ≃ 126 kyr, and the timescale

for deglaciation is τd ln |(v0−αdτd)/(v1−αdτd)| ≃ 22 kyr. Thus, the timescale for forming a cycle is 148 kyr. This is larger

than 100 kyr, but still closer to 100 kyr than 20, 41 and 400 kyr. In this model the astronomical forcing makes the cycles shorter235

than the intrinsic timescale. Benzi et al. (1982) considered a stochastic hopping in a double potential modulated by a small

forcing with 100-kyr periodicity. In the model, the signal-to-noise ratio is maximal at a certain noise intensity, the so-called

stochastic resonance. This occurs when the average waiting time between two noise-induced transitions between the two wells

(the inverse of the Kramers rate) is half the forcing period, i.e., ∼50 kyr (Benzi, 2010). Therefore, the intrinsic timescale of a

cycle is Tcyc = 2× 50 = 100 kyr. The stochastic resonance theory is one of earliest examples treating the ∼100 kyr problem240

as a matching problem between the Earth’s intrinsic timescale and external astronomical timescale. This theory has since been

extended to align with Milankovitch theory (Matteucci, 1989; Ditlevsen, 2010). On the other hand, the piecewise linear model

by Imbrie and Imbrie (1980) is the example of a model with no 100-kyr-scale intrinsic timescale, and it fails to simulate the

dominant ∼100-kyr periodicity. Its intrinsic timescales are 42.5 kyr for glaciation and 10.6 kyr for deglaciation.

Nevertheless, although many models have∼100-kyr internal timescales (Table 1), not all the models have been assessed from245

the viewpoint of intrinsic timescales. The existence of an underlying 100-kyr-scale intrinsic timescale is hence our hypothesis

based on the finite set of simple models surveyed here.

In this study, we distinguished between ice age models that exhibit synchronization and those that exhibit resonance. This

distinction can be subtle in some cases. (i) In synchronization theory, the forcing is generally assumed to be small relative to

the underlying self-oscillatory dynamics (Pikovsky et al., 2003). If the forcing is strong, it can significantly alter the oscillation250

amplitude, making it challenging to categorize the phenomenon strictly as either synchronization or resonance. (ii) Excitable

systems, which are mono- or multistable in the absence of forcing, can produce repetitive oscillations when subject to small

forcing or noise. If the frequency of such excited oscillations becomes locked to astronomical forcing, it resembles synchro-

nization, though synchronization is typically reserved for systems with intrinsic self-sustained oscillations (Pikovsky et al.,

2003). Pierini (2023) discusses the 100-kyr cycles from the perspective of a deterministic excitation paradigm.255

In Verbitsky et al. (2018) as well as Daruka and Ditlevsen (2016), the period doubling as well as the period tripling of the

41-kyr periodic cycle is proposed as the scenario to give 100-kyr-scale glacial cycles (specifically 82-kyr as well as 123-kyr

cycles). This is not inconsistent with the present analysis of the VCV18 model. Indeed, if the VCV18 model is forced by the

pure 41-kyr periodic forcing and if the forcing amplitude is increased, the period doubling bifurcation is observed as shown in
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Table 1. Intrinsic timescales of models simulating ∼100-kyr glacial cycles. TSO is the period of self-sustained oscillations, Tnat is the natural

periodicity of damped oscillations, Tint is the intrinsic timescale, and Tcyc is the timescale for forming a cycle. The asterisks (*) indicate the

models explored in this study.

Model Timescale (kyr) Type of dynamics

Saltzman and Maasch (1990) TSO = 98 synchronization of a sustained oscillator

Gildor and Tziperman (2000) TSO ≃ 100 synchronization of a sustained oscillator

Crucifix (2012) TSO = 103 synchronization of a sustained oscillator

Mitsui et al. (2015) TSO = 119 synchronization of a sustained oscillator

Ashwin and Ditlevsen (2015) TSO ≃ 100 synchronization of a sustained oscillator

Ganopolski (2024) model 1 TSO = 101.2 synchronization of a sustained oscillator

*SO model (present study) TSO = 91.7 synchronization of a sustained oscillator

*Verbitsky et al. (2018) Tnat = 95 nonlinear resonance in a damped oscillatory system

Benzi et al. (1982) Benzi et al. (1982); Benzi (2010) Tcyc ≃ 100 stochastic resonance in a bistable system

Parrenin and Paillard (2012) Tint ≃ 148 regime transitions at threshold crossings

*Ganopolski (2024) model 3 Tcyc = 76 regime transitions at threshold crossings

Fig. S5. Comparing Fig. 4b with Fig. S5, the transition from the 41-kyr regime to the 95-kyr regime in Fig. 4b is considered260

an analog of a period doubling bifurcation. The true period doubling is from 41 kyr to 82 kyr. However, the 95-kyr cycles are

realized instead of the 82-kyr cycles because the climatic precession forcing, which is modulated by 95-kyr eccentricity cycles,

is stronger than the obliquity forcing in the power of the summer solstice insolation at 65◦N (Fig. 1e).

The idea proposed here for the∼100-kyr periodicity could potentially be extended to the 41-kyr dominant periodicity before

the Mid-Pleistocene transition (MPT) (Berends et al., 2021; Legrain et al., 2023). That is, the 41-kyr periodicity may arise if the265

intrinsic timescale of the climate system is close to 41 kyr. Mitsui et al. (2023) suggested this scenario by showing the 41-kyr-

scale self-sustained oscillations simulated in CLIMBER-2. The G24-3 model aligns with this perspective, as it exhibits shorter

timescales closer to 41 kyr before the MPT (Fig. S6), although the model does not produce self-sustained oscillations. On the

other hand, how close the intrinsic timescale should be to 41 kyr depends on models. The VCV18 simulates the MPT-like

transition if the parameters are changed in time so that the positive-to-negative feedback ratio is increased (Fig. S7a). Over the270

last 3 Myr, the natural period of damped oscillations increases from ∼75 kyr to 95 kyr, which is calculated from the complex

eigenvalue of the Jacobian matrix at the stable state (Fig. S7). Although the natural period before the MPT (75–80 kyr) is

still larger than the observed 41-kyr, this subtle change is enough to obtain the 41-kyr principal periodicity before the MPT in

the VCV18 model. This is already suggested by the 41 kyr region adjacent to the 95-kyr resonance tongue in Fig. 4b. While

those models suggest changes in intrinsic timescale through long-term parameter changes across the MPT, some other models275

produce the MPT-like periodicity change without particular parameter changes (Imbrie et al., 2011; Huybers and Langmuir,

2017; Watanabe et al., 2023). Investigating the relationship between the intrinsic timescale and the 41-kyr response using the
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present approach requires comparing more models that accurately simulate the records through the MPT. We thus postpone

this research to future work.

5 Summary280

The origin of the ∼100-kyr periodicity of the late Pleistocene glacial cycles has been an enduring question in paleoclimate

studies. By analyzing simple models of ice age cycles, we have demonstrated that the key factor is the proximity of the intrinsic

timescale of the Earth’s climate system to the ∼100-kyr periodicity of eccentricity cycles, regardless of the specific dynamical

mechanism. In other words, the climate system may respond to astronomical forcing at∼100-kyr periodicity because it is close

to the intrinsic timescale of the climate system. Note that this is a hypothesis derived from a finite set of models, mostly simple285

ones. Investigating the intrinsic timescales of more complex models is challenging. If adjusting the timescale of a model proves

difficult, artificially varying the astronomical frequencies and observing the response could be a useful approach for evaluating

the validity of the timescale-matching hypothesis in complex models.

Code and data availability. The R-package Palinsol is available from CRAN. The other codes used in this study will be uploaded to a Github

repository after the acceptance of the paper. The tuned and untuned LR04 benthic stack records are available from https://lorraine-lisiecki.290

com/stack.html (last visited 2nd December 2024). The Huybers (2006) composite δ18O record on the depth-derived age model is available

from https://www.ncei.noaa.gov/pub/data/paleo/contributions_by_author/huybers2006/huybers2006.txt (last visited 2nd December 2024).

Appendix A: Power spectral density method

The power spectral density (PSD) S(f) of a time series is estimated using the periodogram (Bloomfield, 2004), which is

computed with the R function spec.pgram (R Core Team, 2020). By default, this function applies a split cosine bell taper295

to 10% of the data at both the beginning and end of the time series to minimize discontinuity effects between the start and end

of the series. To increase the number of frequency bins in the periodogram, zeros are added to the end of the series to extend

its length by a factor of 10 (i.e., pad=9 in the spec.pgram option). Zero-padding does not fundamentally affect the PSD of

the signal, but the frequency corresponding to a PSD peak is estimated with a higher resolution.

Appendix B: van der Pol–Duffing–Hill equation300

We assume that the series of glacial cycles is represented by a forced van der Pol–Duffing–Hill equation:

ẍ + (µx2−κ)ẋ + αx+ βx3 + θ + (ν + ρx)I(t) + ηI2(t) = 0, (B1)

where the parameters are written in Greek and I(t) is an insolation anomaly defined below. Under the restriction to the second

order differential equation, Eq. (B1) is quite comprehensive from the viewpoint of dynamical systems. First, it contains the van
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der Pol equation ẍ + (µx2−κ)ẋ + αx = 0, where κ, ν and α are typically positive (Van der Pol, 1926; Strogatz, 2018). The305

van der Pol equation is well studied as a generic system showing self-sustained oscillations. Crucifix’s group (Crucifix, 2012;

De Saedeleer et al., 2013; Crucifix, 2013; Mitsui and Crucifix, 2016) and others (Mitsui and Aihara, 2014; Ashwin et al., 2018)

have used the forced van der Pol equation as a mathematical model for investigating ice age dynamics since it can roughly fit

the late Pleistocene glacial cycles.

Second, Eq. (B1) contains the Hill equation ẍ + [α + ρI(t)]x = 0 if I(t) is periodic in time (Magnus and Winkler, 2004).310

Furthermore, if I(t) is a simple harmonic, the Hill equation is called the Mathieu equation ẍ + (α + ρcos2t)x = 0. The latter

is invoked to explain the rhythm of ice age cycles by Rial (1999) from the viewpoint of frequency modulation.

Third, for κ < 0, Eq. (B1) contains Duffing equation ẍ−κẋ+αx+βx3 =−νI(t) if I(t) is a sinusoid. It is a paradigmatic

system of nonlinear resonance as well as chaos (Duffing, 1918; Strogatz, 2018). Duffing equation exhibits forced oscillations

but not self-sustained oscillations. Dropping out the additive forcing and the nonlinear damping term, Eq. (B1) reduces to the315

model by Daruka and Ditlevsen (2016): ẍ + aẋ− bx + bx3 + bc− bxI(t) = 0, where ẋ is the global temperature anomaly, x

represents a climatic memory effect, and a, b, c are parameters (different symbols are used in the original reference). Their

model is essentially the Duffing-Hill equation since the damping term is linear. A modified version of their model can fit the

proxy record well (Riechers et al., 2022).

A way to link Eq. (B1) with a proxy variable of ice age cycles is to make a first-order system taking the so-called Liénard320

variable y = ẋ−κx+ µ
3 x3 (Jackson, 1989; Crucifix, 2012), which yields Eqs (1) and (2). Equation (2) links the variable y with

the modeled δ18O (‰) with an offset δ + 4. The variable x is an unobserved climate variable. In association with insolation

forcing I(t), x determines whether the system is in a glaciation phase or in a deglaciation phase. The scaled summer solstice

insolation anomaly I(t) is defined as I(t)≡ (F65N(t)− 495.7)/24, where F65N(t) is the summer solstice insolation [Wm−2]

at 65◦N calculated with the solar constant of 1368 Wm−2 (Fig. 1c) (Laskar et al., 2004; Crucifix, 2016). The nonlinear effect325

of the insolation, ηI2(t), is included to account for the lower sensitivity of the ice volume in the cold period (Paillard, 1998).

The term−ρxI(t) is a multiplicative forcing. Such a multiplicative term can appear, from physical point of view, in the energy

balance via albedo effects, the ice-mass balance via temperature-precipitation feedback (Le Treut and Ghil, 1983) as well as

the calcifier-alkalinity model (Omta et al., 2016).

The parameters of the equations are calibrated so as to minimize the mean squared error over the last 1 Myr. The min-330

imization is conducted with the Nelder–Mead method implemented in R-function optim (R Core Team, 2020). The re-

sultant parameters are κ = 1.0536394044, µ = 2.9662458029, α = 0.0356079021, β = 0.0001000922, θ = 0.0180996836,

ν = 0.0514402004, ρ = 0.0189082535, η = 0.0049923333 and δ = 0.1801349684.

Author contributions. M.C. and P.D. provided the original research plan, which was merged with another plan by T.M. and N.B. P.D.

and T.M. extended the van-der-Pol type oscillator model introduced by M.C. (Crucifix, 2012). T.M. performed the simulation and numerical335

analysis, with substantial contributions from the others. All authors contributed to discussing the results and analysis throughout the research.
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