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Abstract. We introduce an novel approach to compare Earth System Model output using a causality-based approach. The

method is based on the PCMCI+ algorithm, which identifies causal relationships between multiple variables. We aim to inves-

tigate the causal relationships between atmospheric (North Atlantic Oscillation - NAO), oceanic (gyre strength, stratification,

circulation), and biogeochemical variables (nitrate, iron, silicate, net primary production) in the North Atlantic subpolar gyre,

a critical region for the global climate system with a well characterised multi-year variability in physical and biogeochemical5

properties in response to the North Atlantic Oscillation. We test a specific multivariate conceptual scheme, involving causal

links between these variables. Applying the PCMCI+ method allows us to differentiate between the influence of vertical mixing

and horizontal advection on nutrient concentrations, spring bloom intensity, as well as to highlight model-specific dynamics.

The analysis of the causal links suggests a dominant contribution of vertical mixing to peak spring bloom intensity compared

to transport. The strength of the links is variable among models. Stratification is identified as an important factor controlling10

spring bloom NPP in some, but not all, models. Horizontal transport also significantly influences biogeochemistry. However,

horizontal transport generally exhibits lower contributions than vertical mixing. Most of the links found are model-specific,

hence likely contributing to inter-model spread. The limitations of the method are discussed and directions for future research

are suggested.

1 Introduction15

Earth System models (ESMs) are essential tools in climate science. They are designed to unravel the intricate workings of

the planet’s climate system. The simulation of historical and present dynamics have proven to be skillful in many aspects,

including the representation of ocean physics and marine biogeochemistry (Flato et al., 2014; Séférian et al., 2020; Vautard

et al., 2021; Tsujino et al., 2020). Despite advances in complexity, ESMs simplify the real world and this is a source of errors

and uncertainties. These models create their own climate system shaped by specific spatial resolutions and parameterizations20

of various physical, chemical or biogeochemical processes. Multiple reasons explain the differences in architecture between

models (Bonan and Doney, 2018): the constraint of computational efficiency which calls for the parameterization of small-scale

processes unresolved by the large-scale variables in the model, but also the selection of which processes to include. Given the
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inherent complexity of the climate system, encompassing myriad of processes currently impossible to be represented in a

model, these disparities can lead to differences in future climate states and dynamics leading to projections with still scattered25

outcomes (e.g., Kwiatkowski et al., 2020; Tebaldi and Knutti, 2007; Flato et al., 2014; Zelinka et al., 2020).

Intercomparing model output is essential to characterize inter-model differences and to identify the uncertainty around

projected values. Most model intercomparison studies still rely on the analysis of the spatial and temporal distribution of

selected model outputs presented as maps of mean values, their range, along with the computation of statistics (e.g. extremes,

variability) (e.g., Wang et al., 2020; Flato, 2011; Jacob et al., 2007; Chen and Knutson, 2008). For intercomparisons targeting30

the historical period, observations or reanalyses are commonly used as references. Model performance is evaluated against real-

world data or derived products and bias maps are used to locate model differences (e.g., Séférian et al., 2020; Yool et al., 2021;

Chen and Knutson, 2008; Schaller et al., 2011). Yet, none of these methods characterises the interactions between the variables

or quantifies their inter-model differences. Hence, correlation-based approaches have been developed to try to overcome these

limitations (e.g., Charakopoulos et al., 2018; Anagnostopoulos et al., 2010; Gleckler et al., 2008). However, if correlation35

allows the identification of co-variation between variables or phenomena, it fails to identify causal relationships.

To overcome the limitations of correlation-based approaches, Krich et al. (2020) and Nowack et al. (2020) employed a

causality approach to analyse or evaluate model output. Here, we extend these earlier studies to the analysis and comparison

of multi-model output by adopting a causality framework. This approach allows to describe model differences in a novel

way, potentially revealing model-specific dynamics, quantifying the strength of interactions and its range across Earth System40

Models.

Our study focuses on the subpolar North Atlantic, a critical region for the global climate system with a well characterised

multi-year variability in physical and biogeochemical properties in response to the North Atlantic Oscillation, the dominant

mode of regional climate variability. At the seasonal time scale, deep winter mixing replenishes the sunlit surface ocean

in nutrients and sustains an intense spring bloom. The subpolar North Atlantic is also a region undergoing rapid changes45

including freshening and cooling (Tesdal et al., 2018; Holliday et al., 2020), with potential impacts on large-scale circulation

(Fox-Kemper et al., 2021; Hakkinen and Rhines, 2004). Along with these physical changes, an important variability in surface

ocean nutrient levels has been documented (Johnson et al., 2013; Hátún et al., 2017) potentially foreshadowing future changes

in primary productivity under climate change.

The impact of climate change on net primary production (NPP) in the North Atlantic region remains highly uncertain with50

a larger spread between model projections compared to other regions (Tagliabue et al., 2021; Fu et al., 2022). While vertical

mixing is crucial for injecting nutrients to the productive surface ocean and fuelling primary production (D’Asaro, 2008;

Williams et al., 2006), recent studies highlighted the contribution of horizontal transport to observed and projected variability

of nutrients and primary production (Whitt and Jansen, 2020; Kwiatkowski et al., 2020; Hátún et al., 2017). The eastern part

of the subpolar North Atlantic was proposed by Hátún et al. (2017) as a key area for the mixing of nutrient-poor subtropical55

waters into the subpolar North Atlantic gyre. The variability of the gyre circulation would be one mechanism controlling the

advection and mixing of nutrients and ultimately NPP at regional scale. Moreover, (Pelegrí et al., 1996; Williams et al., 2011)
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highlight the contribution of subsurface nutrient-rich waters of subtropical origin (the nutrient streams) as a source of nutrients

to the subpolar Atlantic through vertical mixing.

This study targets the eastern subpolar North Atlantic and seeks to differentiate between the variability of vertical mixing and60

horizontal advection of nutrients as controls of fluctuations of NPP. It draws on an ensemble of Earth System Model simulations

to explore causal links from atmospheric processes to marine biogeochemistry. We rely on the "PCMCI+" method (Runge et al.,

2019) for the analysis of causal interactions represented as causal graphs. In these graphs, nodes represent variables and edges

indicate potential causal links with associated strengths. Our objective is twofold: (1) to propose a novel approach for model

intercomparison, (2) to understand model-specific causal links between variability in atmospheric processes, advection and65

vertical mixing of nutrients to the surface ocean and NPP, as well as the consequences on inter-model spread.

This article is structured as follows: The next section 2 describes the causality discovery algorithm we use as well as the

conceptual scheme that guides our study. Section 3 details the data used and the pre-processing steps applied to each variable.

Section 4 presents the results obtained, highlighting specific key links and their similarities and differences between models.

Section 5 discusses the limitations of the method employed, providing details on its strengths and weaknesses. Results are70

discussed in section 6 and section 7 concludes this article as well as proposing future perspectives.

2 Methodology

2.1 Causality approach: PCMCI+

To investigate the causal links among the variables in our study, we use the PCMCI+ method (Runge et al., 2019; Runge,

2020). PC stands for “Peter & Clark”, the first step of PCMCI+ (Spirtes and Glymour, 1991), and MCI stands for “Momentary75

Conditional Independence”, the other step of PCMCI+. This method is based on Granger-Causality (Granger, 1969). Granger

Causality examines whether past values of variable A enhances the prediction of B more than using B’s own past values. In

such a case, it is said that A Granger-causes B. PCMCI+ relies on Granger causality to create a causal graph by detecting

contemporaneous or lagged relationships between the (physical or biogeochemical) variables, noted Xi from now on. These

variables, within the PCMCI+ framework, become the nodes in the causal graph. The edges of the graph correspond to the80

contemporaneous or lagged links. A causal link between two nodes has a lag (0 if contemporaneous) and a strength ranging

from -1 to 1. The strength is the result of a correlation so if A causes B with a certain strength, the sign indicates if the

relationship is positive or negative and the value indicates the intensity of the correlation. The graphs provided by PCMCI+ for

the different climate models will be compared to the conceptual scheme discussed in Section 2.3 and intercompared to each

other.85

To investigate lagged interactions, we set a maximum lag value T . This means that all causal links established will have a

lag within J0,T K. To consider the lagged interactions, each variable Xi is considered T times. For each timestep t ∈ J0,T K, a

new set of variables Xi
t is obtained, by considering the variable Xi shifted by t timesteps. Then, for each Xi

0 a first selection of

possible candidate explanatory variables is done based on correlation tests. The variables in the selection are ranked in terms

of decreasing correlation order. These explanatory variables able to “cause” Xi
0 are called the parents of Xi

0.90
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Before explaining the PCMCI+ algorithm in details, it is important to remind the concept of conditional independence of A

and B given C (Dawid, 1979), defined by Equation (1). It describes the irrelevance of the event B to explain the event A when

conditioned by C:

A⊥⊥B|C ⇐⇒ P (A|B,C) = P (A|C) with A,B,C being events. (1)

The first step of PCMCI+, PC, consists in an iterative process where the conditional independence of two variables given a95

third one is tested (Spirtes and Glymour, 1991). More concretely, let X , Y and Z be three variables and ti, tj ∈ J0,T K. We want

to test if variable Xτ=0 is still related to Yτ=ti
when the influence of the most significant variable (according to the ranking

previously made) to Xτ=0 (e.g., Zτ=tj
) is removed. This is achieved through Partial Correlation (noted ParCorr in equation

(2)), to test the conditional independence of Xτ=0 and Yτ=ti
given Zτ=tj

, by conducting a regression on each variable:

ParCorr(Xτ=0,Yτ=ti
|Zτ=tj

) = Corr(ϵXτ=0|Zτ=tj
, ϵYτ=ti

|Zτ=tj
) (2)100

with




Xτ=0 = αXτ=0 ∗Zτ=tj + ϵXτ=0|Zτ=tj

Yτ=ti
= αYτ=ti

∗Zτ=tj
+ ϵYτ=ti

|Zτ=tj

(3)

and Corr() being the Pearson correlation. Applied to our field of interest, let’s consider an example where we have nitrate

(X) related to the gyre strength (Y ) and Mixed Layer depth (Z). The algorithm’s purpose is to determine if nitrate and the

gyre strength remain correlated when the influence of mixed layer depth is removed. The first iteration of the PC step tests,105

for each variable, the conditional independence with all the possible parents (explanatory variables) given the most significant

parent. The subsequent iterations of PC test the conditional independence of each parent according to the k most significant

variables (according to a new ranking made at the end of the previous iteration). Regressions are made with k variables. False

Discovery Rates (hereafter FDR, Benjamini and Hochberg, 1995) are then used to find the equivalent of a p-value that will be

the threshold to keep only the most significant links.110

At the end of PC, each variable has a set of parents, corresponding to the possible explanatory variables. The concluding

step MCI (“Momentary Conditional Independence”) can then start, testing if the "grand-parents" influence the variable. For

each variable, the conditioning variables are not taken among the parents but among the parents of the parents. Testing the

grand-parents influence allows to investigate more deeply the causal relationships and to see if more distant variables have an

influence.115

2.2 Quantification of causal graph: Dissimilarity measure

The output of PCMCI+ is a causal graph with a set of nodes (the variables given to PCMCI+) and potential edges (i.e.,

causal relationships) between those nodes. We can look at the PCMCI+ results via the adjacency matrix M representing the

presence and strength of links between nodes. To compare the graphs (i.e., the relationships within models), it is then possible

to compute dissimilarity metrics between adjacency matrices. However, many of these measures have limitations that make120
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them inappropriate in our case. Firstly, the methods often assume edge’s weight to be positive (e.g., Wicker et al., 2013; Koutra

et al., 2013), which is not suitable in our case, as our edges can be positive or negative. The second problem is that the lag

associated to the link also has to be taken into account. Even if different, when the lags are close, the distance should be small.

In the other hand, once we exceed a certain difference in terms of lags, we can consider the link already too different that an

even bigger difference in terms of lags will not give a bigger distance. To address these limitations, we propose an alternative125

approach that allows for negative weights and lags.

An Euclidean distance (as dissimilarity) allows us to deal with the weights of positive and negative edges noted wij where

i, j ∈ J0,NK. To account for the lags, we extend the matrices M from size N×N to size N×N×T by adding a third dimension,

indicating the lag at which the link occurs:

M [i, j, t] =





wij , if there is a link from i to j with a lag t

0, otherwise.
130

Next, each vector M [i, j] is blurred with a Gaussian filter convolution. The kernel K is a gaussian blur 3x1 (
[
1
4 , 1

2 , 1
4

]
). We

note M ′ the matrix after the application of the Gaussian filter convolution. This approach helps to consider the lag difference

by blurring the links in the third dimension, similar to how a blur would make two red squares on blank images share some red

pixels if they are close enough. If we consider an example where M [i, j] = [wij ,0,0,0] (i.e., a relationship from i to j only at

t = 0), the transformed vector M ′[i, j] is thus given by:135

M ′[i, j] = M [i, j] ∗
[
1
4 , 1

2 , 1
4

]
= [wij ,0,0,0] ∗

[
1
4 , 1

2 , 1
4

]
=

[wij

4 ,
wij

2 ,
wij

4 ,0,0,0
]
.

The Euclidean distance can then be applied to the blurred vectors/matrices, considering both the variations in lags and strengths.

Our new dissimilarity measure DIS between two (blurred) adjacency matrices M1 and M2 can thus be written as:

DIS(M1,M2) =
√ ∑

(i,j,k)

(M ′
1[i, j,k]−M ′

2[i, j,k])2. (4)

With this dissimilarity, we take into account how different the lags are for the same link while also taking into account the140

difference in intensity (strength of interaction).

2.3 Conceptual scheme

We selected the Eastern subpolar North Atlantic (Figure 1) as a test case for this study focusing on the comparison of physical-

chemical drivers of spring bloom dynamics in an ensemble of ESMs through a causality approach. The region is known for its

large variability in contemporary nutrient concentrations (Johnson et al., 2013; Hátún et al., 2017). The latter has been linked145

to the strength of the subpolar gyre circulation through its control on the inflow of nutrient poor subtropical waters (Hátún

et al., 2017). Fluctuations in gyre circulation, in turn, are driven by regional atmospheric forcing, leading to a causal chain

from atmospheric processes to ocean dynamics and finally biogeochemistry.

This region is also prone to great sensitivity to climate change with a high spread of projected values of primary production.

However, the mechanisms behind the projected impacts of climate change on NPP are not well understood(Kwiatkowski et al.,150
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2019; Tagliabue et al., 2021). While vertical mixing is crucial for injecting nutrients to the productive surface layers and

fueling NPP (e.g. deepening of the mixed layer during winter for nutrient supply and spring stratification for the initiation

of the bloom), changes in subsurface nutrients brought by horizontal transport are also important and are likely to contribute

to the between-model spread of projected NPP. (Whitt and Jansen, 2020; Kwiatkowski et al., 2020) (Johnson et al., 2013).

Our conceptual scheme aims to highlight model-specific representations of the chain of causality running from atmospheric155

forcing to NPP. It attempts to disentangle the respective contributions of variability in vertical mixing and horizontal transport

to modelled fluctuations of nutrient levels and NPP in the Eastern North Atlantic basin (Fig. 1).

Figure 1. Study area "Eastern North Atlantic Subpolar Gyre" (green square). The main surface circulation patterns are indicated by the

arrows (inspired by Daniault et al. (2016)). IC stands for Irminger Current, EGC for Eastern Greenland Current and NAC for North Atlantic

Current. The gyre corresponds to the zone in light blue.

The anticipated chain of causality is represented as a conceptual scheme in Fig. 2. The target variable is the NPP of the spring

bloom. Predictors of its variability include atmospheric and ocean physical processes, but also nutrient concentrations (nitrate,

silicate and dissolved iron). Atmospheric processes are represented by the North Atlantic Oscillation (NAO), a prominent160

mode of regional climate variability and an important driver of variability of ocean physical and biogeochemical dynamics

(Yamamoto et al., 2020; Feucher et al., 2022; Keller et al., 2012; Oschlies, 2001; Herceg-Bulić and Kucharski, 2014; Delworth

and Zeng, 2016). Physical processes included are vertical and horizontal transports. Winter-time deepening of the mixed layer

injects nutrients to the surface ocean, replenishing the pre-bloom nutrient stock.(Williams et al., 2006). Stratification during

spring and the shoaling of the mixed layer contribute to initiate the spring bloom. Mixed Layer Depth (MLD) and stratification165

are thus chosen as predictors of vertical transport. For the advection of nutrients we will focus on the net transport into the area

of study, as well as consider the strength of the North Atlantic subpolar gyre. Lastly, three nutrients are considered: nitrate,

silicate and dissolved iron.

We anticipate numerous interconnections across the scheme. The NAO is known to exert influence over multiple processes

in the North Atlantic affecting physical variables such as gyre strength, water transport and MLD (Yamamoto et al., 2020;170

Feucher et al., 2022), but also nutrient concentrations. Diving into the oceanic variables, the gyre strength, relevant for physical
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Figure 2. Suggested conceptual scheme. The target variable is in green, the explanatory variables are in blue.

variables such as MLD (Swingedouw et al., 2021), could as well be explanatory for nutrient concentrations (Hátún et al., 2017;

Johnson et al., 2013) through its impact on nutrient transport. For the vertical mixing component of the scheme, a link from

MLD to nutrient concentrations is anticipated, because winter MLD deepening is crucial for replenishing the nutrient stock

(Williams et al., 2006). We also expect a relationship between stratification and NPP because high stratification during the175

productive period will inhibit the upward mixing of nutrients and thus NPP (Lozier et al., 2011; Tagliabue et al., 2021). The

scheme will be explored for each nutrient (nitrate, dissolved iron and silicate) and we anticipate differences in the intensity of

the relationships for each nutrient, especially for the relationship between nutrient and productivity.

3 Experimental setup

3.1 Selection of Earth System Models and simulations180

We selected a set of Earth system models with biogeochemical models of similar complexity to explore the variability of causal

links connecting atmospheric processes to NPP. These biogeochemical models include 4 plankton functional types (PFT) (2

phyto- and 2 zoo-plankton groups) with model-specific parameterisations of interactions between PFTs, as wall as nutrient

limitation of phytoplankton growth. We made sure not to repeat the coupling of ocean and biogeochemical models twice. This

led to the selection of 5 Earth System Models presented in table 1. There is nevertheless some redundancy in our selection with185

4 ESMs sharing the same ocean model (3 with the same version).

We selected pre-industrial control simulations (piControl) from the 6th Coupled Model Intercomparison Project (CMIP6)

(Eyring et al., 2016). These simulations were run for 500 years with constant external forcings (e.g. volcanoes, solar radiation,

greenhouse gases) fixed at pre-industrial level. It allows access to an extented period for assessing model specificites through

causal graphs. Due to the absence of variability and trend in external forcings, climate variability is restricted to its unforced190

internal component. Interactions between variables should not evolve during the 500 years of simulation.
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Table 1. Models used in the study.

ESM model
Oceanic

model
Oceanic grid

Atmospheric

model

Atmospheric

grid

Biogeochemical

model
ESM reference

IPSL-CM6A-

LR

NEMO-OPA

3.6

1° x 1° with 75

levels
LMDZ

1.3° x 2.5° with

79 levels
PISCES-v2

Boucher et al.

(2020)

CESM2 POP2
1°x1.125° with

60 levels
CAM6

0.9°x 1.25° with

32 levels
MARBL

Danabasoglu

et al. (2020)

CMCC-

ESM2

NEMO-OPA

3.6

1° x 1° with 50

levels
CAM5.3

0.9° × 1.25° with

30 levels
BFM5.1

Lovato et al.

(2022)

CanESM5-

CanOE

CanNEMO

3.4.1

1° x 1° with 45

levels
CanAM5

isotropic triangu-

lar 2.8° grid with

49 level

CanOE

Swart et al.

(2019); Chris-

tian et al.

(2021)

UKESM1-0-

LL

NEMO-OPA

3.6

1° x 1° with 75

levels

MetUM-

HadGEM3-

GA7.1

1.25° x 1.88°

gridpoints with

85 levels

MEDUSA2

Sellar et al.

(2019); Yool

et al. (2021)

3.2 Definition and preprocessing of variables for PCMCI+

We compute time series of annual means from monthly output fields for each model variable. From these time series variables

for PCMCI+ are computed as described below. Each processed variable is normalized prior to running PCMCI+. Variables

selected for PCMCI+ and their definition are presented in table 2. The following paragraphs add details to the preprocessing.195

With the exception of transport of nutrients and the subpolar gyre index which are computed on the original model grid, all

other variables are interpolated on a regular 1°x1° grid prior to preprocessing.

3.2.1 Bloom and productivity

We focus on the variability of maximum of NPP reached during the year. This corresponds to the maximum reached during

the spring months, the spring bloom. For several other variables (e.g. atmospheric forcing, nutrient transport, gyre circulation)200

it is important to time the start of the bloom as their variability during the bloom might impact bloom dynamics. Following the

threshold method in (Brody et al., 2013) we consider the bloom has started once a certain threshold has been exceeded. This

threshold value corresponds to the median NPP plus 5%. The starting date for the bloom is the first month m verifying Eq. (5):

intpp(m) > 1.05×median(intpp). (5)205
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Table 2. Variables and their formulation. The variables used in PCMCI+ are in bold.

Full name Abbreviation Formulation Period Grid

Net Primary

Productivity
intpp Max(

∫
depth

pp)
Peak of the

bloom
Regular Grid

Nutrients no3, dfe, si Max([nutrients]0m−100m)
Peak reached be-

fore the bloom
Regular Grid

Mixed Layer

Depth
mlotstmax Max(mlotst)

Peak reached be-

fore the bloom
Regular Grid

North Atlantic

Oscillation
NAO slpα− slpβ

From the start

of the bloom to

the peak of the

bloom

Regular Grid

Sea Level Pres-

sure of the high

pressure zone

slpα

α= {(i, j) | |{t | slp(i, j, t) >

P90(t)}|> 0.9 ∗T} with (i, j) indi-

cating a grid point, and P90(t) the 90th

percentile of slp at time t

Regular Grid

Sea Level Pres-

sure of the low

pressure zone

slpβ

β = {(i, j) | |{t | slp(i, j, t) <

P10(t)}|> 0.9 ∗T} with (i, j) indi-

cating a grid point, and P10(t) the 10th

percentile of slp at time t

Regular Grid

Strength of the

gyre
Gyre

Mean(ψ7.5) where ψ7.5 = {ψ >

7.5 Sverdrup} with ψ the barotropic

streamfunction

From the start

of the bloom to

the peak of the

bloom

Original Grid

Barotropic

Streamfunction
ψ

∫ East

West

∫ 0m

−2000m
vdxdz with v the merid-

ional component of the velocity
Original Grid

Stratification Strati ρ100− ρ0 with ρz the density at depth z

From the start

of the bloom to

the peak of the

bloom

Regular Grid

Transport Trsp

∑
(i,j)∈BMax(

∫ 0m

MLD
vel[nutrient]dz,0)

with B the group of bordering points

of the study area and vel the velocity,

meridional or zonal component accord-

ing to the orientation of the border)

From the start

of the bloom to

the peak of the

bloom

Original Grid
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3.2.2 Nutrients

The study focuses on nitrate, silicate, and dissolved iron before the beginning of the bloom to qualify the biogeochemical

context of the spring bloom. Specifically, we will consider the average concentration in the upper 100 meters of the water

column. When the bloom starts, nutrient concentrations of the pre-bloom period begin to decline. The timing of the spring

bloom varies across different regions and models, as does the timing of the maximum nutrient concentration. Therefore, we210

will define our annual signal as the peak (i.e., maximum) concentration reached during the winter-spring season. This approach

will allow us to capture the yearly variability in nutrient concentrations associated with the intensity of the spring bloom.

3.2.3 North Atlantic Oscillation

The NAO (North Atlantic Oscillation) index quantifies the difference between the high and low-pressure zones in the North

Atlantic region. However, the location of the high and low-pressure centers varies among different climate models, making it215

necessary to use a model-independent method for its computation. Historically the NAO was computed as the difference of

Sea Level Pressure (slp) between two specific stations (Lisbon, Portugal and Stykkisholmur, Iceland) (Hurrell et al., 2003).

Nowadays, the use of EOF over a large geographic area has become common (Hurrell et al., 2003; Hurrell and Deser, 2010).

We preferred using the method consisting in computing the difference of slp on two selected zones (Hurrell, 1995; Hurrell

et al., 2003) but the selection of the zone needs to be model independent.220

Our proposed solution to select the zones here uses a counting approach. At each time step, the points belonging to the

higher and lower 10th percentiles of sea level pressure are identified. For each of these points, the counting index for the high

and low pressure is incremented accordingly. As a result, each point is associated with two numbers α and β indicating how

many times it belonged to the high (α) or low-pressure zone (β). To compute the NAO index, we consider 10th percentile for

respectively α and β as the high and low-pressure areas to compute the sea level pressure difference. In the end, we consider225

the zones that were most of the time high or low pressure as the high and low pressure poles. We display the poles selected

for each model in the supplementary material Figure S1. The selected period for computing the index was from the start to the

peak of the bloom. Choosing this period ensures coherence with the other variables considered during this period (e.g. gyre

circulation, nutrient transport)

3.2.4 Gyre index230

The gyre circulation is characterized by the gyre index which is computed on the months between the start and the peak of the

bloom as it is linked to the NAO (Hurrell and Deser, 2010; Koul et al., 2020). The stream function is computed over 2000 m

depth on the original grid and integrated from east to west. Once obtained, a threshold of 7.5 Sverdrup is applied on each grid

point as in Biri and Klein (2019). From this method we extract the strength i.e the mean of the stream function at the selected

point). The shape of each model gyre and its geographical variability is displayed in the supplementary material in Figure S2.235
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3.2.5 Vertical mixing

The MLD depth in winter will determine the stock of nutrients available (Williams et al., 2006) for the spring bloom. Here

we want to capture the variability of MLD intensity. Therefore, we focus on the maximum depth reached between November

and April. The impact of stratification on NPP is an important aspect of our study, and we will quantify this relationship using

the difference in density as an indicator (Lozier et al., 2011; Van De Poll et al., 2013). We focus on the difference of density240

between 100m and the surface ρ100−ρ0. To assess the impact of stratification on productivity, we will calculate the mean value

of ρ100− ρ0 from the beginning to the peak of the bloom. This approach will allow us to examine the relationship between

stratification and NPP during the most active period of phytoplankton growth.

3.2.6 Nutrient transport

The inflow of nutrients via advection is also an important factor to consider for the nutrient concentration at the start of the245

bloom and the resulting NPP. We integrate the transport of nutrients from the ocean surface to the mixed layer depth (MLD) for

each model. For each depth level and each month considered (between the beggining of the bloom and the peak of the bloom),

the nutrient concentration is multiplied by the transport. The transport is computed from the meridional and zonal velocity

variable. For our analysis, we will focus only on the inflow of nutrients into our study region. As for the period selected for the

signal we will take the transport of nutrients from the beginning of the bloom to the peak of the bloom.250

4 Results

We obtain one distinct graph for each nutrient : nitrate, dissolved iron and silicate. With the exception of CanESM5-CanOE for

which silicate was not available, all 3 nutrients are considered for the remaining models. Causal links differ slightly between

nutrients. For example, for a given link between two variables, the nutrient may not be directly involved but indirectly influence

the relationships through changes in conditioning variables, resulting in slight variations in the calculated strength. Nutrients255

are identified in the following by adding “_no3” (nitrate), “_dfe” (dissolved iron) or “_si” (silicate).

4.1 Similar models

The similarity between models is evaluated based on the dissimilarity introduced earlier. Focusing on sub-matrices provides

insight into differences between models with respect to specific causal relationships. For instance, computing the dissimilarity

on the sub-matrix corresponding to the drivers of one variable allows to explore specific dynamics shared by two models260

(similar impacts, similar lags). Figure 3 represents the dissimilarity between models for links with dfe. UKESM1-0-LL has the

largest dissimilarity with other models. These high values of dissimilarity have two possible explanations (interactions between

nutrients and lagged links) which will be discussed in section 4.2.

To further quantify the similarity or dissimilarity between models and to identify the corresponding variables, we count how

many times two models are the closest to each other or the most different. The results are synthesised in Figure 4 for IPSL-265
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Figure 3. Dissimilarity between each model for iron links only. The darker the colour the more different the models.

CM6A-LR with the most similar links displayed on 4(a) and the most different on 4(b) The results for the other models are given

as supplementary material from Figure S2 to S5. From Figure 4, it appears that CMCC-ESM2 is the closest model, particularly

for impacts from NAO, gyre, and transport. It has to be noted that the converse is not true. To understand this, we can look

at the most different model on the right of Figure 4. CESM2 is the most different model from IPSL with differences located

mainly on Gyre and Transport but UKESM1-0-LL also appears to be rather different from IPSL-CM6A-LR. UKESM1-0-LL270

is also the most different model for all the other models (Figure S1-S4). However, UKESM1-0-LL obviously also has a most

similar model, which is CMCC-ESM2, but this similarity is not reciprocal, as UKESM1-0-LL seems to have the most distinct

behaviour. CanESM5-CanOE frequently appears as the most different model from UKESM1-0-LL concerning nutrients, gyre,

NAO, and stratification. Therefore, these two models are the most dissimilar. Grouping models according to their similarity or

dissimilarity raises the question of which specific links differ between the models and for which links the models agree. To275

answer this question, specific key links are analysed next starting with contemporaneous links (at lag 0).
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Figure 4. Most similar (a) and most different (b) models to/from IPSL-CM6A-LR according to dissimilarity introduced in 4. The interior

circle is the variable studied. Each variable is presented for each nutrient in the middle circle. The exterior circle indicates which model is

the closest/most different for this specific variable.

4.2 Control of nutrients

On Figure 5, we have selected a subset of links that directly control pre-bloom nutrient concentrations. The first panel shows

the model agreement for the control of MLD on nitrate and silicate (highlighted in green). As expected, the maximum winter

MLD has a strong impact on pre-bloom nutrient concentrations with a consensus between models (mean strength of link: 0.61280

for silicate and 0.65 for nitrate). This agreement brings coherence among models, although links for nitrate (standard deviation

of 0.15) are slightly more scattered compared to silicate (standard deviation of 0.08). Regarding iron concentration, UKESM1-

0-LL stands out with a non-significant link from MLD to iron concentration. For the other models the strength of the link is of

the same order of magnitude as for nitrate. This reflects the variability in underlying parameterisations of iron biogeochemistry

across Earth System Models (Tagliabue et al., 2016). The median strength is about the same for the three nutrients.285

The models also agree in the lack of direct impact of NAO on nutrient concentrations. However, it is possible that the NAO

indirectly affects nutrient concentrations by impacting a physical variable which in turn influences nutrient concentrations. As

discussed in (Patara et al., 2011), this intermediary variable could be the advection of nutrients, which is considered here via the

transport of nutrients. The intermediary variable could also be the MLD, partially driven by the NAO (Yamamoto et al., 2020),

also considered in our scheme. These indirect links will be discussed in Section 4.4. Lastly, the influence of nutrient transport290
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Figure 5. Controls of pre-bloom nutrients concentrations: Strength of links for each model with median and quartile values (boxplot). Each

model is represented with a different marker and the color of the marker shows the significance of the link according to PCMCI+ (green for

significant and red for not significant). Boxplots highlighted in green (red) indicate model agreement (disagreement).

on pre-bloom nutrient concentrations is scattered. Models CMCC-ESM2 and IPSL-CM6A-LR agree on a positive impact for

nitrate and silicate, (CMCC-ESM2:0.18, IPSL-CM6A-LR:0.27 for nitrate and CMCC-ESM2:0.3, IPSL-CM6A-LR:0.19 for

silicate) but neither shows a significant impact on iron. CESM2 also shows a positive impact on silicate (0.24) and is the only

one to have an impact on iron (0.27). CanESM5-CanOE shares some of the behaviour of CMCC-ESM2 and IPSL-CM6A-LR,

with a positive impact for nitrate (0.36, the strongest link for transport) and no impact for iron. UKESM1-0-LL is the only295

one to have no influence from advection for any nutrient. In CESM2, nitrate is not influenced by advection but is strongly

influenced by MLD. In contrast, for iron and silicate, MLD has a less strong influence, and a positive impact from transport

is observed. This suggests that for nitrate, the strong influence of MLD leaves no opportunity for advection to affect nutrient

variability.

A general conclusion of those results is the major importance of vertical mixing for nutrients. While there is a consensus on300

the importance of MLD for nitrate and silicate concentrations, inter-model differences still exist, particularly for iron cycling

and nutrient transport.

4.3 Productivity drivers

On Figure 6 we isolated a subset of links between variables known to control NPP and the peak intensity of the spring bloom.

The left panel reveals two consistent links among the models: nitrate and NPP, silicate and NPP. However, while the models305
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Figure 6. Same as 5 but for controls of net primary productivity.

agree on the significance of these interactions, they disagree on their strength, with a wide range of values (nitrate: mean of 0.39

and standard deviation of 0.23; silicate: mean of 0.37 and standard deviation of 0.23). The UKESM1-0-LL model exhibits the

strongest links for both nitrate (0.79) and silicate (0.72), while the CESM2 and IPSL-CM6A-LR models show the weakest, with

all values below 0.19 for both nutrients. The variability of nitrate and silicate concentrations before the bloom has a variable

impact on NPP across the selected models. For iron the range of interaction strengths is narrower, with both the CESM2 and310

UKESM1-0-LL models showing non-significant results. The maximum strength value is 0.41, observed for IPSL-CM6A-LR

model. Notably, the impact of iron variability on NPP in the IPSL-CM6A-LR model is twice as strong as that of silicate or

nitrate. Conversely, the CMCC-ESM2 and UKESM1-0-LL models show the opposite trend. For CMCC-ESM2, the strength

decreases from approximately 0.44 for both nitrate and silicate to 0.17 for iron. The difference is even more pronounced in

the UKESM1-0-LL model, which exhibits the strongest links for nitrate and silicate, but a non-significant one for iron. In the315

CESM2 model the strength of those links remains fairly stable, with low strength values for both nitrate and silicate and an

iron residual value (the last partial correlation value obtained which did not pass the significativity test) that is close to these.

The last panel of Figure 6 presents the relationship between stratification during the productive period (from the start to

the peak of the bloom) and NPP. With the exception of CanESM5-CanOE, which shows a non-significant link, the impact

of stratification is negative across all models, as anticipated. However, the range of interaction strengths is quite broad. The320

UKESM1-0-LL and IPSL-CM6A-LR models exhibit strong negative links (approximately -0.7), while CESM2 shows a weak

strength of around -0.2, and CMCC-ESM2 has a moderate strength of approximately -0.3. This marked difference in dynamics

among the models suggests that they may respond differently to projected climate conditions, as stratification is known to be
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increasing under global warming (Li et al., 2020). Specifically, if stratification continues to increase, the intensity of the bloom

in the eastern part of the subpolar gyre may decrease more significantly in the UKESM1-0-LL and IPSL-CM6A-LR models325

compared to the others.

Lastly, the middle panel of Figure 6 indicates that nutrient transport does not have a significant direct impact on NPP in

any of the models. However, as discussed in the previous subsection, transport plays a role in determining pre-bloom nutrient

concentrations for some models. These nutrient concentrations, in turn, significantly affect NPP, as shown in the first panel

of Figure 6. Therefore, transport has an indirect impact on NPP via nutrient concentrations. However, this impact is relatively330

low, as the influence of transport on nutrient concentrations is moderate, and the effect of nutrient concentrations on NPP can

also be moderate or strong depending on the model. As a result, two consecutive moderate impacts lead to a rather low overall

impact. For instance, if the variability of transport explains 30% of the variability of nutrient concentrations and the latter

explains 30% of NPP variability, then transport explains 9% of NPP variability.

4.4 Physical interactions335

Figure 7. Same as Figure 5 but for selected physical interactions. Other physical interactions are displayed in Supplementary Figure S7

Figure 7 presents a subset of physical interactions included in our conceptual scheme. Other interactions are displayed in

the supplementary Figure S7. The focus of Figure 7 is on the atmospheric impact on the ocean component, specifically the

impact of the North Atlantic Oscillation (NAO) on transport, gyre strength, and stratification. For the CMCC-ESM2 model a

significant impact of NAO was found for most variables, except for silicate transport, which has a residual of around 0.14. The

same holds for CESM2 which only misses an impact on nitrate transport with a residual around 0.03. Comparing only these340

two models, the strength of relationship between NAO and gyre strength is similar (around -0.2), but the impact on transport
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is slightly stronger for CESM2 (around 0.3 for CESM2 and around 0.2 for CMCC-ESM2). CESM2 also has a stronger effect

of NAO on stratification (around -0.3 for CESM2 and around -0.2 for CMCC-ESM2), making it the model with the strongest

overall impact from NAO on its oceanic variables.

For the other models many model-specific links were identified, suggesting inter-model differences in dynamics. Starting345

with UKESM1-0-LL, NAO has a significant impact on the gyre strength ( -0.33) but none on the stratification in our zone.

The lack of a significant link between NAO and stratification sets this model apart. It does not result from the approach taken

to compute NAO as there are no major differences in the placement of high and low-pressure zones between UKESM1-0-LL

and the other models. The UKESM1-0-LL model also shows significant links from NAO on iron and silicate transport (with

a strength around 0.24 slightly bigger for silicate), but not on nitrate transport (residual around -0.12). The IPSL-CM6A-LR350

model is the only one with a non-significant impact on gyre strength. However, the NAO significantly impacts stratification

(with a strength of about -0.2) and the transport of nitrate and silicate (around -0.22, slightly bigger for silicate).

Lastly the CanESM5-CanOE model, it is the only one with a negative impact of NAO on the gyre opposed to a positive one

observed in the other models (or at least a positive residual when not significant). However, we see on the third panel Figure 7

that on the first boxplot it is not significant and on the second one it is. This relationship is on the verge of significance (with355

a strength of -0.14 when significant). This suggests a potential unique behaviour in this model with respect to the relationship

between the NAO and gyre strength. The CanESM5-CanOE model also exhibits one of the strongest impacts on stratification

(with a strength of about -0.33). Lastly, the transport of nutrients is not significantly impacted by the NAO.

In the previous analysis, we identified for all models, except UKESM1-0-LL, the transport of at least one nutrient impacting

the variability of nutrient concentrations. Therefore, it is possible for NAO to indirectly influence nutrient concentrations360

through its impact on transport. This indirect link between NAO and nutrient concentrations is present in IPSL-CM6A-LR,

CESM2 and CMCC-ESM2. In the case of IPSL-CM6A-LR nitrate and silicate transport significantly impact their respective

nutrient concentrations. Likewise, for the CESM2 model, iron and silicate transport significantly affect their corresponding

nutrient levels. The CMCC-ESM2 model also exhibits this indirect link through nitrate transport, but not for iron transport, as

NAO does not impact it. In all these cases the transport variability is partly driven by the NAO. In summary, the indirect link365

between NAO and nutrient pre-bloom concentration through transport is model-dependent.

Considering the interaction between gyre strength and nutrient transport and the interaction between gyre strength and

stratification, we observe that the models agree on the non-significance of these interactions. However, there is an exception for

the link between gyre strength and nitrate transport, where the interaction is significant with a strength of 0.16 for CanESM5-

CanOE only. In this model, nitrate transport significantly impacts pre-bloom nitrate concentration with a strength of 0.36. Thus,370

there is an indirect influence of gyre strength on nutrient concentration via nitrate transport.

5 PCMCI+ Limitations

Like for many other algorithms, it is crucial to carefully select variables given to PCMCI+, as the selection will significantly

affect results. While it is necessary to include all variables containing relevant information, a too high number will decrease the
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Figure 8. Precision (blue) and recall (red) according to the number of variables with a max time lag fixed at 5.

performance of the algorithm. To evaluate the decrease in performance as a function of the number of variables and the time375

lag, two criteria are commonly used: “precision” and “recall”:

– The precision represents the ratio of True Positives among all the positives found by the algorithm (True Positives +

False Positives): precision = #true pos./(#true pos.+ #false pos.).

– The recall corresponds to the ratio of True Positives among all the positives that the algorithm should have found (True

Positives + False Negatives): recall = #true pos./(#true pos.+ #false neg.).380

To quantify the recall and precision performances of PCMCI+, we applied it to artificially generated random auto-regressive

vectors. Auto-regressive vectors are time series built so that they depend on past values of themselves.A set of N vectors

(Xi)1≤i≤N is defined according to:

Xi(t) =
∑

0≤τ≤τmax

∑

1≤j≤N

αi,j,τXj(t− τ) (6)

with αi,j,τ being randomly chosen dependence coefficient and τmax the maximum lag value. Each non null random dependence385

between the variables has been constrained to have a value of at least 0.2. To be close to the configuration of this study, vectors

are generated on 500 time steps. These auto-regressive vectors are now taken as the “ground truth” and thus allow to evaluate

the precision and recall performances of the PCMCI+ algorithm.
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We tested the performances according to a varying number of variables and 50 times for each number of variables con-

sidered.. The result is displayed in Figure 8, where the blue curve in Figure 8 illustrates that precision is not critical, since390

an increasing number of variables does not lower the it. However, the red curve shows that an increasing number of variable

affects the recall. With 60 variables, we retrieve less than half of the expected links (recall criterion). Thus, this experiment

clearly illustrates that it is important to give a relatively low number of variables to the algorithm.

Hence, variables need to be selected with great care in order to capture every important feature of the scheme under in-

vestigation. In our study, we selected 7 variables to consider key elements for our study and to also have a good compromise395

with the performance by not having too many variables. If certain key variables are omitted from the set of variables given

to PCMCI, there is a risk that some of the causal links found by PCMCI will be incomplete or inaccurate. Forgetting key

explanatory variables turns a causality analysis into a correlation analysis.

6 Discussion

PCMCI+ has demonstrated its efficiency in identifying model-specific dynamics and highlighting differences between models400

that may not be immediately apparent on traditional model output intercomparisons. We were able to separate the role of

vertical mixing and advection on controling the variability of NPP. Our analysis suggests that vertical mixing plays a more

pronounced role in modulating the intensity of spring bloom NPP in Eastern North Atlantic subpolar gyre than horizontal

transport, in line with previous studies (Ólafsson, 2003). We also observed that stratification during the bloom serves as a

significant inhibitor of bloom intensity (Sarmiento et al., 2004), but this relationship is significantly strong in only two of the405

five models included in this study (IPSL-CM6A-LR, UKESM1-0-LL). As climate change progresses, it is anticipated that NPP

in these models will show a greater sensitivity to increasing stratification (Wilson et al., 2022). Moreover, models that currently

show no significant impact of stratification on NPP may exhibit a negative effect appearing as global warming intensifies. This

could unveil a novel causal relationship emerging under certain climate change scenarios. This inter-model variability of the

response of spring bloom NPP to stratification may contribute to the multi-model spread on projected values of NPP.410

Furthermore, the nutrient transport in this study has been computed along the borders of a large region, with each boundary

point of the area (Figure 1) taken into consideration. With the exception of CanESM5-CanOE, this transport criteria did not

allow to retrieve a consistent link between the gyre strength and the transport. However, this criteria allowed to highlight

impacts of NAO on nutrient variability via its impact on transport for most of the models. Addressing this indirect link from

NAO to nutrient concentration via the transport underscores the importance of a causality based approach and the importance415

of considering key explanatory variables. If we do not consider transport we may find a spurious link between NAO and

nutrient concentration, obscuring a hidden variable. This illustrates results that would have been missed by a correlation-based

approach only.

The above highlights the complexity of the North Atlantic subpolar gyre and the potential for indirect relationships between

variables. Although the NAO does not directly impact nutrient concentrations, it can still influence nutrient availability through420

indirect pathways. By examining these indirect links, we obtain a more comprehensive understanding of the dynamics of the

19

https://doi.org/10.5194/esd-2024-31
Preprint. Discussion started: 14 October 2024
c© Author(s) 2024. CC BY 4.0 License.



North Atlantic subpolar gyre and the factors that control nutrient concentrations and NPP. This also emphasises the additional

information gained from a causality-based intercomparison approach compared to a correlation-based intercomparison.

Despite the redundancy of the oceanic component (NEMO) across selected ESMs, with only CESM2 using a different

oceanic model (POP2), we do not observe any unique behaviour specific to CESM2 or a commonality shared by the other four425

ESMs. It is noteworthy that the two models exhibiting the strongest NAO impact, namely CESM2 and CMCC-ESM2, share

the same atmospheric model CAM6. Simpson et al. (2020) did not identify a distinct behaviour for this atmospheric model

compared to others among CMIP models, but did not look at the impact of NAO on specific variables via causality. With our

study, it is hard to establish a firm conclusion based on a single member, but applying a causality-based approach to a wider

set of simulation using this atmospheric model could offer alternative insights.430

The proposed causality-based comparison method also allows to quantify inter-models variations in the strength of variables

interactions. While it is expected that winter mixing influences the pre-bloom nutrient stock, variations between the models

still exist. All models agree on the significant role of MLD for silicate within a narrow range of strengths. However, the range

is somewhat broader for nitrate and even more for iron, with CanESM5-CanOE finding MLD not significant. Tagliabue et al.

(2016) found a similar result with models having a stronger disagreement for iron than for nitrate. Also, the unique behaviour435

we observe in the MEDUSA2 model from UKESM1-0-LL is also discussed in this article with an overestimation of surface

iron possibly due to a too long residence time and a too low scavenging rate. We also found a strong auto-correlation for iron

(not shown) only for this model which could have the same explanation.

7 Conclusion and perspectives

This study uses a set of Earth System Models to explore the variability of nutrients and NPP in the Eastern North Atlantic440

Subpolar Gyre. This region is characterized by significant mixing and inter-model uncertainty in nutrient and NPP projections.

We established a conceptual scheme to determine which mechanism, vertical mixing or advection, is crucial in explaining

multi-model dispersion in nutrient and NPP dynamics in this region.

The method allowed us to extract the causal links from a multivariate conceptual scheme. Our findings indicate that vertical

mixing during winter is generally more important for peak spring bloom NPP in this region than transport. However, the445

influence of vertical mixing on peak spring bloom NPP still has some variability among the models expressed by the spread of

the strength of the link. Combined with model-specific dynamics (e.g. NAO impacting transport, transport impacting nutrient

concentration), such differences are likely to contribute to inter-model spread. Stratification is identified as an important factor

controlling spring bloom NPP in some, but not all, models. As climate change progresses, it is expected that NPP will suffer

from increasing stratification with potentially different reactions to it from one model to another.450

Despite its limitations, the causality method used in this study has proven effective in identifying model-specific dynamics

and highlighting differences between models that may not be immediately apparent based on usual difference metrics. The

proposition of a new dissimilarity measure to be applied on causal graphs has enhanced model comparison by synthesising and

quantifying between-model differences.
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The method has been verified and can be applied for a variety of purposes such as model evaluation. For example, the455

comparison of model output and observational data will allow to identify discrepancies in links and associated strengths,

suggesting unrealistic model dynamics. The dissimilarity metric proposed could serve as a validation tool. However, it is

essential to acknowledge as the recall of PCMCI+ decreases with increasing variables, an important part of the ground truth

(True Links existing in the data) can be missed and will add a bias for the validation. Another possible application of the

PCMCI+ method involves comparing various experiments, such as different climatic scenarios. This approach facilitates the460

discovery of new dynamics or the observation of changes in the intensity of existing ones, leading to an improved understanding

of models’ behaviours under different environmental conditions. Applying the method to climate change scenarios will improve

our understanding of the inter-model spread of projected variables (e.g. NPP).
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