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Abstract.

Climate change and Artificial Intelligence (AI) are both attracting great interest across society. There is also substantial

interest in merging the two sciences, with evidence already that AI can identify earlier precursors to extreme weather events.

There are a range of AI algorithms, and selection of the most appropriate one maximizes the amount of additional understanding

extractable for any dataset. However, most AI algorithms are statistically based and even with careful splitting between data5

for training and testing, they arguably remain as emulators. Emulators may make unreliable predictions when driven by out-of-

sample forcing and climate change is an example of this, requiring understanding responses to atmospheric Greenhouse Gas

(GHG) concentrations that may be substantially higher than present or the recent past. Notable, though, is the emerging AI

technique of “equation discovery”. AI-derived equations from data also does not automatically guarantee good performance

for new forcing regimes. However, access to equations rather than a statistical emulator guides system understanding, as10

their variables and parameters often have a better interpretation. Better process knowledge enables judgements as to whether

equations are trusted under extrapolation. For many climate system attributes, descriptive equations are not yet fully available

or may be unreliable. This uncertainty is hindering the development of Earth System Models (ESMs) which remain the main

tool for projections of large-scale environmental change as GHGs rise. Here, we make the case for using AI-driven equation

discovery in climate research, given that its outputs are more interpretable in terms of processes. As ESMs are based around15

the numerical discretisation of equations that describe climate components, equation discovery from new datasets provides a

format amenable to direct inclusion into such models where representation of environmental systems is missing. We present

three illustrative examples of how AI-led equation discovery may advance future climate science research. These are generating

new equations related to atmospheric convection, parameter derivation for existing equations of the terrestrial carbon cycle,

and (additional to ESM improvement) the creation of simplified models of large-scale oceanic features to assess Tipping Point20

(TP) risks.

1 Introduction

Addressing climate change due to human burning of fossil fuels remains a three-fold challenge for society and science. The

first challenge is to determine what constitutes a broad “safe” maximum level of global warming, for which there are already

proposals of 1.5◦C or 2.0◦C (UNFCCC, 2015) above preindustrial times. One guide is to constrain global warming to levels25

that avoid trigger large-scale TPs (e.g. Abrams et al., 2023) (or even a self-perpetuating cascade of TPs; Wunderling et al.
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(2021)), where major changes occur to Earth system components for small extra temperature rises. Once a warming threshold

is adopted, the second requirement is to support adaptation planning by determining detailed local changes in near-surface

meteorology corresponding to that global temperature rise. The third task is to derive GHG emissions profiles compatible

with eventual stabilisation of global warming at prescribed target levels. Knowledge of such profiles encourages mitigation

plans to develop technologies for a transition from using fossil fuels sufficiently fast to prevent key global warming threshold5

exceedence. All three activities depend on accurate projections of changes to the climate system and the global carbon cycle

in response to rising GHGs. Current understanding of such expected changes is presented in reports by the Intergovernmental

Panel on Climate Change (IPCC), of which the latest is the sixth assessment (IPCC, 2021). However, this latest report highlights

substantial remaining uncertainties in key climate components. Such uncertainties aggregate, affecting the constraining of

summary global parameters such as Equilibrium Climate Sensitivity (ECS), which is global warming in a stabilised climate for10

doubling of atmospheric CO2 concentrations. The range of ECS values estimated by ESMs remains substantial (Forster et al.,

2021). Regionally for many locations, there remains major uncertainty in how hourly to annual rainfall levels will change as

GHGs rise (e.g. Tebaldi et al., 2021), including for extremes (Lenderink et al., 2017; Lenderink and Fowler, 2017). Uncertainty

in ECS value makes mitigation planning difficult, leading to poor knowledge of the reductions of CO2 emissions needed to

keep global warming below a target such as two degrees. Uncertainty in future changes to rainfall statistics prevents adaptation15

planning for adjustments to future flood or drought frequencies.

Earth System Models (ESMs) are large computer codes designed to estimate climate change for different prescribed trajec-

tories of future atmospheric GHG concentrations or emissions. The basis of ESMs is the numerical discretisation (at scales

of typically 100km) of equations that describe all Earth system features, including the oceans, land surface, atmosphere and

cryosphere, and their feedbacks. Analysis of ESM diagnostics has enabled breakthroughs in climate system understanding,20

and a particular community achievement is that approximately twenty research centres contribute model output to a common

database, available for analysis by researchers. The latest ensemble of models is the Coupled Model Intercomparison Project

version 6 (Eyring et al., 2016). However, the large uncertainties noted above are derived from differences between ESMs.

Hence, a key requirement for climate researchers is to understand and remove such differences, to create refined projections

with smaller uncertainty bounds. An interim approach to uncertainty reduction is the method of emergent constraints (e.g. Hall25

et al., 2019; Williamson et al., 2021; Huntingford et al., 2023), which searches for inter-ESM regressions between quantities

that are also measured and changes of importance in the future. Where robust regressions are found, measurements use this

to constrain the future quantity. However, while emergent constraints provide a powerful methodology to lower inter-ESM

spread, ultimately needed are ESMs that, for some remaining processes, have improved equation representation with accurate

parameterisation.30

As climate science has progressed through ESMs development in recent decades, so have Artificial Intelligence (AI) al-

gorithms. The potential applications of AI in society are vast and include opportunities to advance scientific discovery (e.g.

Wang et al., 2023). As expected, there are calls for AI to be applied to climate science (Jones, 2017) and in detail (e.g. Schnei-

der et al., 2017; Huntingford et al., 2019; Reichstein et al., 2019; Eyring et al., 2024). Already AI has been found to have a

strong ability to alert to emerging extreme climate events (e.g. Bi et al., 2023; Lam et al., 2023), and the timing or onset of35
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oscillatory features of the climate system, such as the Madden-Julian Oscillation (MJO) (Delaunay and Christensen, 2022).

Yet most AI algorithms are statistically based and so there is growing interest in applying newer physics-informed methods

(Karniadakis et al., 2021) to support understanding climate system components Kashinath et al. (2021). Physics-informed ap-

proaches ensure that AI-derived findings retain at least some consistency with known underlying process differential equations.

Examples of applications include the reconstruction of atmospheric properties of tropical cyclone events (Eusebi et al., 2024)5

and characteristics of extreme precipitation (Kodra et al., 2020).

Even more recently, a branch of AI has emerged termed “AI-led equation discovery”, which derives candidates for the

governing equations that describe any dataset under investigation. Unlike physics-led approaches, the technique instead uses

AI to discover hereto unknown equations. The authors who initially suggested this possibility include (Raissi et al., 2019, their

Section 4) as well as Champion et al. (2019); Brunton et al. (2016); Rudy et al. (2017). As suggested above, the advancement10

of ESMs implies the development of the equations encoded in them. Hence, we now consider how this form of AI may support

ESMs by discovering any required missing equations and parameters.

2 AI Methods and Including for Equation Discovery

2.1 Background climate analysis methods and existing AI methods

The range of AI methods is vast and the correct one to apply depends on the issue being investigated in the data such as15

frequency, spatial size, level of system nonlinearity, and if there are “labels” describing the effects being searched for. The

latter point determines whether to use supervised or unsupervised algorithms. The development of ESMs has traditionally

been driven by advances in contemporary knowledge of geophysical processes and related mathematical models. However,

climate research has also been influenced by statistically based research, some of which may be regarded as precursors of

more modern AI techniques. In this Section we give: (1) a brief overview of some traditional statistical approaches to climate20

analysis, (2) describe the application of generic and currently available AI algorithms to climate science, then (3) review

currently available AI algorithms in a more general non-climate context and (4) consider the newer techniques including

physics-informed calculations, again for the broader application background. To achieve this summary and for each of these

four points, we point to and make brief summaries of four influential textbooks (Figure 1). For an initial statistical analysis

of climate attributes, we select “keywords” from some section headings of Storch and Zwiers (1999). Early applications of25

machine learning applied to environmental issues, including forecasting and components of the climate system, are presented

in Hsieh (2009). For a general but extensive overview of available machine learning algorithms, we use Murphy (2013).

Moving to the main theme of this perspective, Brunton and Kutz (2022) summarises very current methods of data-driven

machine learning, including physics-led techniques.

In more detail, Storch and Zwiers (1999) describe the initial application of statistical methods to climate-related research,30

including probability theory, timeseries analysis, Eigen techniques and Empirical Orthogonal Functions (EOFs). The EOF

method is popular for spatiotemporal analyses of physical climate variables (Smith et al., 1996; Mu et al., 2004; Hannachi

et al., 2007). EOFs reduce the degrees of freedom of key variables (such as Sea Surface Temperatures; Smith et al. (1996)), and
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Figure 1. Schematic illustrating the evolution of the application of statistical methods to climate research, as well as more recent general

developments in AI methods. The techniques illustrated and applied to environmental research are based on sections of the books by Storch

and Zwiers (1999) and Hsieh (2009). More generic AI developments, not necessarily used in climate research, are linked to parts of the

books by Murphy (2013) and Brunton and Kutz (2022), where the latter considers physics-led algorithms. The top bar suggests using recent

advances in AI that are capable of deriving underlying process equations to better determine features of the climate system where uncertainty

remains. The call for applying AI-led equation discovery to climate research is the main subject of this commentary. We retain the idea that

AI may also support climate research in ways not yet considered, as shown by the question mark

are often presented as spatial patterns capturing geographical modes of variability multiplied by timeseries of their magnitudes.

EOFs enable a simpler way to characterise climate models and therefore allow easier comparison against gridded datasets

(e.g. Mu et al., 2004). Early neural networks, inspired by how the human brain is believed to operate, evolved from the

perceptron model to hidden-layer models (Hsieh, 2009). Standard multivariate regression and EOF methods contain strong

implicit assumptions of linearity, while neural networks in all forms contain nonlinear elements. Also of importance is the5

widespread application of Bayesian statistics in climate science. Bayesian statistics provide information on state variables that

also include a-priori knowledge about such variables. Bayesian methods, therefore, hint at the newer physics-led approaches.

The application of deriving Bayesian probability distributions for climate quantities matured during the first decade of the

21st century. For example, Berliner et al. (2000) employ such methods to the problem of detection and attribution of human

forcing of the climate system, as represented by near-surface temperature fields. Boulanger et al. (2006) determine the dominant10
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features of the temperature variability in South American data, which is then used to compare to the performance of the ESMs

and thus weight such modes and hence their future projections. Similar Bayesian-based analyses for near-surface temperature

but for multiple regions across the globe are performed by Smith et al. (2009).

Most early studies with AI elements focus on supervised learning, where the training is performed using labelled target

data. However, in recent decades, clustering algorithms have substantially increased the popularity of unsupervised learning.5

Unsupervised learning, by definition, raises the exciting possibility of algorithms that interpret climate data or ESM-based

outputs in new ways. The broad analysis of Steinbach et al. (2003) uses clustering to identify climate indices that characterise

many behaviours of the oceans and the atmosphere. Similarly, Lund and Li (2009) use clustering of autocorrelated climate

timeseries to identify the areal bounds of distinct climate zones. Graphical models, also an unsupervised method, provide a

novel technique to represent linked relationships between variables of interest. Ebert-Uphoff and Deng (2012) use graphical10

models to explore causal relationships between atmospheric circulations and provide a framework with potential to discover

further causal links between climate variables.

Many contemporary scientific problems, including climate research, involve interpretating exceptionally large datasets. The

advent of “Big Data” methods has fuelled a branch of analysis of climate models and data that generates better forecasting

methods, supporting enhanced or earlier warnings of extreme events. For example, Liu et al. (2008) compared different data-15

driven learning methods to downscale weather forecasts, to provide statistics of near-surface meteorological conditions at single

points or very small spatial scales, and which may include local predictions of extremes. Additionally, the climate system con-

tains strong and complex nonlinear interactions that operate over multiple timescales including that of forecasting. Yet, despite

this complexity, there may be robust underlying reduced-complexity nonlinear dynamic systems awaiting discovery. Tradi-

tional scale analysis of underlying equations may reveal such dynamical systems, including the famous paper of Lorenz (1963)20

which is a three-variable system of coupled ordinary differential equations that simulate aspects of atmospheric convection.

The suggestion is that newer algorithms may routinely identify the dominant processes in a complex system, and much hope

is placed in the Long-Short Term Memory (LSTM) technique (which is a recurrent neural network algorithm; Vlachas et al.

(2018)), designed to forecast high-dimensional chaotic systems. Recent studies also highlight the performance benefits of deep

learning methods that analyse key datasets to improve medium-range weather forecasting (Bi et al., 2023; Lam et al., 2023).25

Although these two examples are for much shorter timescales than explaining emerging climatic signals on decade-to-century

timescales, they illustrate the usefulness of AI in extracting additional information from the complex atmospheric system.

Reduced Order Models (ROMs) project partial differential equations (PDEs) such that the dominant dynamic processes

are encoded in low-rank spaces. The method allows for improvements in computational speed and optimisation of any full

parameterised PDE system. ROMs can effectively project PDE dynamics to low dimensional spaces so simulations of the full30

PDE model can be better evaluated and understood. Proper Orthogonal Decomposition (POD) is a key method for creating a

ROM, is used to study complex spatiotemporally dynamic systems in fluid dynamics (e.g. for oceanic circulations; San and

Iliescu, 2015) and provides a viable way to interpret ESM diagnostics. EOFs are an earlier form and a subset of ROMs, but

we suggest that the full utility of ROMs and their many potential configurations and applications is still largely unexplored
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for climate science. Brunton and Kutz (2022) make the case that, ideally, a process interpretation is derived for the main

components of any decomposition.

Yet despite the remarkable progress with creating AI methods, most are highly statistical in construction. There is a growing

view (again reflecting the Bayesian viewpoint) that additionally, AI needs to recognise that there are underlying processes

and for which there often exists substantial information and knowledge. Hence, physics-informed learning is gaining traction,5

providing methods of constraining machine learning-based predictions using laws of physical rationality. Karniadakis et al.

(2021) reviewed recent trends in this approach by embedding physics in machine learning and concluded that combined data

and physics-based model integration can be achieved even in uncertain and high-dimensional contexts. That research discussed

several applications of physics-informed learning for inverse and ill-posed problems in fluid dynamics, thermodynamics, and

seismology, illustrating the possibility of increased process consistency but expressed via neural network architectures.10

We now turn to what we suggest as the next frontier in AI developments and of substantial potential use to climate science.

This next step is for where there is uncertainty in the underlying physical processes, AI derives the underlying descriptive

equations. Such a discovery can constitute either the full equation set or a smaller reduced-complexity set as a dynamical

system that captures the dominant system responses. The upper row of Figure 1 captures this as an emerging direction for

machine learning (ML) or AI (we use the terminology of ML and AI interchangeably; see Kuehl et al. (2022) for precise15

definitions and how the two differ).

Equation discovery using machine learning is well positioned to advance our understanding of Earth’s climate that contains

nonlinear features, given the basis of much AI is to find underlying nonlinearities. A specific approach is symbolic regression

and is the most common AI-based approach to discover equations implicit in data. This form of regression procedure searches

a space of mathematical expressions to find the optimal combination (i.e. a symbolic model) that best fits the data. Sparse20

regression is a type of symbolic regression method which has the advantage of diminishing the search space of possible terms

in the equation discovery process, substantially reducing the likelihood of over-fitting to the observed data. Brunton and Kutz

(2022) place a special emphasis on a sparse regression method, which they refer to as the Sparse Identification of Nonlinear

Dynamics (SINDy), as a data-driven approach to uncover reduced order models (ROMs) of systems with unknown spatial-

temporal dynamics.25

2.2 Symbolic Regression Methods for Equation Discovery to Uncover Unknown Dynamics

Equation discovery techniques can be categorised as data-driven or knowledge-driven discovery (Tanevski et al., 2020). These

approaches involve inferring the best possible derived model structure and parameter values by ensuring minimal error between

observations and model predictions. The former approach, considered to be general AI-led equation discovery, is applicable for

systems where there is very little or no understanding of the underlying dynamics and, therefore, no obvious model structure30

preexists. The latter approach relies on existing expert knowledge of the system, in which those developing the discovery

process ensure features of the existing models remain in the new derived equations.

Where the behaviours of a dynamical system are largely or completely unknown, an emerging method to determine the

underlying equations is that of symbolic regression. The data-driven symbolic regression algorithm does not depend on user-
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specified prior knowledge of a system. Hence, unlike a usual regression task that involves a predefined model structure, sym-

bolic regression finds the optimal model and its parameters that best fit the data.

The usual form of symbolic regression, which can effectively minimise both model complexity and prediction error, is

sparse regression, which is the main focus of this section. However, we first note other methods, such as a deep learning-

based symbolic regression model proposed by Petersen (2019) that uses a recurrent neural network with a “risk-seeking policy5

gradient” to generate better fitting expressions. This approach has been shown to be robust against noisy data. Another type of

symbolic regression method is that of Genetic Algorithms (GA) (Keren et al., 2023). GAs can include prior physical knowledge

of the system in the optimisation procedure, and works particularly well for systems with strong linearity. This technique

involves building “trees” of random symbolic expressions and using stochastic optimisation to perform the replacement and

recombination of tree subsamples. Ultimately, this finds the combination of terms that best fit the data.10

Common to these three symbolic regression methods (sparse regression, deep learning and GAs) is an optimisation procedure

which finds a linear combination of (potentially nonlinear) functions from a large functional space which best fits the underlying

system behaviour. The quickest and most general approach is to use sparse regression, which substantially reduces the search

space of possible functions. Such speed is needed, compared to a computationally inefficient “brute-force” method of looping

over all combinations of possible contributing functions. Sparse regression also reduces the likelihood of over fitting, generating15

equations with limited terms, although sufficient to explain the features of the underlying datasets. A popular sparse regression

algorithm developed by Brunton et al. (2016), known as Sparse Identification of Nonlinear Dynamics (SINDy), identifies the

simplest (parsimonious) model that describes the dynamics of nonlinear systems implicit in data. SINDy investigates time

series data to extract interpretable and generalisable models in the form of ordinary differential equations evolving in time. In

the event of multiple timeseries spanning a spatial region, then SINDy can determine partial differential equations. A general20

dynamical system model takes the form of ẋ(t) = f(x(t)) where the vector x = [x1(t) x2(t) · · · xd(t)]T ∈ Rd represents

the state of the system at a single time instance, t, consisting of d system variables. The SINDy algorithm finds a function

f : Rd→ Rd defining the dynamics and time evolution of the system. Collecting a time-history of the state ẋ(t) across the m

set of times t1, t2, ..., tm produces the complete m× d data matrix,

X =




xT (t1)

xT (t2)
...

xT (tm)




=




x1 (t1) x2 (t1) · · · xd (t1)

x1 (t2) x2 (t2) · · · xd (t2)
...

...
. . .

...

x1 (tm) x2 (tm) · · · xd (tm)




(1)25

The symbolic regression task is to find the form of f from a time series of the state X(t) that maps to the derivative Ẋ(t),

and that is valid across the m set of times t1, t2, ..., tm at which data is available. In order to find a sparse representation of

f, an augmented library, we first start with Θ(X), consisting of n candidate functions. The individual functions contributing

to f may include polynomial and trigonometric terms. This construction gives a library of dimensions n×m× d. We show

this construction below, where the horizontal direction (size n) are the candidate functions, the vertical direction (size m) are30

7

https://doi.org/10.5194/esd-2024-30
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.



the timesteps, and “out of the page” is size d which are the different state variables. In the matrix Θ(X) below, functions can

include “cross terms”, so for instance a quadratic term X2 and for d= 2 would have x2
1, x

2
2 and additionally x1x2 terms (see

Eqn. 2 of Brunton et al. (2016)).

Θ(X) =




| | | | | | | |
1 X X2 X3 · · · sinX cosX sin2X cos2X · · ·
| | | | | | | |


 . (2)

The sparse regression problem is then set up as Ẋ(t) = Θ(X)Ξ where we want to solve for the matrix Ξ ∈ Rnd which contains5

vectors of n coefficients corresponding to the linear expansion for each of the d state variables, Ξ =
[

ξ1 ξ2 · · · ξd

]
.

For each state variable, the fitting procedure attempts to minimise the difference between y and Θξ where y is a vector of m

data measurements (i.e. a column of X). However, this minimisation is a single sweep across all state variables, and so is not

the best fit for each individual variables.

Various sparse regression optimizers can solve for ξ. A common algorithm known as LASSO introduces sparsity to the10

regression procedure via an L1 regularisation term: ξ = argmin
ξ′

∥∥Θξ′−y
∥∥

2
+λ

∥∥ξ′
∥∥

1
. The key result of solving for Ξ using

sparse regression is the coefficient vectors that it obtains are sparse (where most entries are set to zero) due to the optimisation

procedure. This means that only a few nonlinear terms in the candidate library are active and therefore included in the right-hand

side of one of the row equations ẋk = f k(x). This leads to a sparse representation of f and therefore parsimonious dynamical

models.15

A particularly comprehensive verification of the capability of sparse identification to derive equations is presented in Chen

et al. (2021). In that analysis, and pretending to have no knowledge beforehand of the underlying equations, five fundamental

governing equations are reproduced and purely from data. These equations are those of Burgers, Kuramoto-Sivashinsky, non-

linear Schrödinger, Navier-Stokes and a reaction-diffusion equation. Although we place an emphasis in this section on sparse

regression for equation discovery where we might have little or no knowledge of underlying model structures beforehand, this20

method may also be used where there exists some process understanding. Such an application is closer to a physics-informed

approach. In these circumstances, the library Θ is restricted to take only a limited set of functional forms based on such a

priori knowledge, possibly allowing faster convergence of the optimisation procedure as some components of the dynamical

system are known.

The SINDy algorithm can additionally include forcing variables in the sparse representation of the dynamics, known as25

“SINDy with control” (Brunton et al., 2016). This configuration gives the ability to simultaneously disambiguate the internal

dynamics of a system and the effect of forcing variables. For climate modeling, an external forcing variable could be a time-

series of GHG emissions, their atmospheric concentration levels, or radiative forcing that integrates the effect of all changes in

different GHG concentrations. One of the important properties of dynamical systems is stability, which is not guaranteed with

the standard SINDy regression algorithm. For physical systems involving fluid flows where the underlying equations are known30

to be energy-preserving, although also nonlinear (e.g. having quadratic terms), the “Trapping SINDy” algorithm is available,

based on the Schlegel–Noack trapping theorem (Kaptanoglu et al., 2021). This algorithm offers necessary conditions for the
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discovered models to be globally stable and energy conserving. We note that the confirmation of basic conservation proper-

ties is a cornerstone of ESM development and testing. The SINDy algorithm was originally used to only discover systems

of ordinary differential equations (ODEs) but was quickly extended to search for partial differential equations (PDEs), using

an algorithm known as "PDEFIND", which fully captures the spatial-temporal behaviour of dynamical systems (Rudy et al.,

2017).5

There are computer packages that implement the SINDy algorithm and its configurations (for example, trapping capability),

for ODE and PDE systems, such as the Python-based PySINDy package (Brunton et al., 2016).

3 Potential Applications of AI-led Equation Discovery

We discuss the potential application of AI-led equation discovery to three Earth system components. In each example, there is

presently a deficiency in understanding, causing uncertainty in the representation of processes by equations. Each application10

falls into one of three categories.

In the first example, we address the requirement to better parameterise small-scale convective events at the larger scale to

enable planet-wide representation in coarser-scale Earth System Models. In this instance, arguably, we do not understand the

form of the governing equations.

In the second example, we consider closing the global carbon cycle, where the largest uncertainty is often the magnitude of15

atmosphere-land CO2 exchanges. We suggest seeking parameters valid at the large ESM gridbox scale, although for placement

in existing land equations. Due to parameter uncertainties, global land-atmosphere CO2 exchange is often derived as a residual,

after contemporary CO2 emissions and changes in atmospheric and oceanic carbon content are accounted for (e.g. Canadell

et al., 2007), circumnavigating using a land surface model. However, while this provides valuable contemporary information,

it prevents predictions of future land changes. Land surface models are improving (Blyth et al., 2021) with new key processes20

already represented by equations, but their parameterisation may apply only at the field scale or smaller, depending on data

used for calibration. Yet the land surface is heterogeneous, providing an opportunity for algorithms to determine equation

parameters that instead aggregate fine-scale processes to ESM gridbox scale. In some instances, terrestrial processes do remain

poorly understood, and so equation discovery may also identify additional equation terms that capture such effects. Hence we

focus on whether AI may advance existing equations by deriving parameters valid at large spatial scales, but note discovery25

methods might also characterise missing processes in equation form.

Our third example concerns ocean circulations where the governing equations are fully understood at the local scale, but of

interest is how their internal interactions aggregate to create regional and global responses. Spatially upscaled computationally

fast equations generate key knowledge of oceanic response for a broad range of potential future GHG trajectories, for which

ESMs have not simulated. Many reduced complexity large scale ocean models exist but the equations are presently estimates.30

We conjecture that AI-generated spatial aggregation may refine such equations. An additional benefit is that comparing these

simpler models with large-scale oceanic datasets may provide information on the performance of ESMs from which AI has

derived the large scale equations.
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3.1 Large-scale Parameterisation of Fine Resolution Convective Events

The representation of convection remains a major shortcoming in traditional ESMs, where grid scales of 50-200 km cannot

explicitly resolve convection, necessitating parameterisation. These empirical parameterisations simulate the effect of sub-grid

vertical displacement of mass, energy, and water on the ESM gridbox scale, producing modelled rainfall as a result. However,

common convective parameterisations often fail to capture typical diurnal cycles of cloud cover and rainfall (Fosser et al.,5

2015; Prein et al., 2013), with too frequent and light rainfall estimates. Such parameterisations also struggle to represent

long-lived convection that propagates across multiple gridboxes, organizing the atmosphere on the mesoscale (Stephens et al.,

2010). Meanwhile, rainfall intensities are rising with global temperatures, scaling with the water-holding capacity of a warmer

atmosphere at 7% K−1 on average, following the Clausius-Clapeyron relationship (e.g. Westra et al., 2014). However, this

statistic does not account for complex meso-scale dynamics unresolved by ESMs. Thus, shortcomings in sub-grid convection10

representation in ESMs have significant implications for climate change preparedness, limiting the reliability of future rainfall

intensification estimates.

Convection is complex, with governing equations not amenable to direct analytical analysis. Therefore, the current approach

involves discretising these equations and conducting Convection-Permitting (CP) simulations on high-resolution ( <10 km)

model grids, which better represent convective storms (Kendon et al., 2017) (c.f. Fig 2). Unfortunately, due to the high com-15

putational requirements of fine-resolution calculations, global climate CP simulations have yet to emerge, remaining flagship

proposals by only a few major computing centres. Consequently, CP climate simulations are currently limited to specific spatial

domains and time periods (Kendon et al., 2021; Stevens et al., 2019).

Nevertheless, these individual simulations enable us to assess the added value of high-resolution global climate projections,

particularly by comparing CP simulations with diagnostics from lower-resolution climate models (e.g. Fosser et al., 2024).20

However, due to the small number of simulations and their limited temporal extent, CP models currently provide little in-

formation on projection uncertainty or transient climate behaviour. An alternative is to perform multiple CP calculations in

parallel for specific target regions, using ESM boundary conditions. Such limited-area downscaling provides valuable regional

information but prevents the modelling of large-scale feedbacks (’upscale effects’), which are expected to change and modulate

how climate evolves as GHGs rise.25

A key challenge for climate science is to derive mean large-scale governing equations that accurately present the local

statistical properties of convective storms. These equations need to simulate how storm properties will respond to higher levels

of GHGs and, crucially, how any changes feed back to the large-scale climate system. Thus, such mean calculations must

be designed for integration into coarse-scale ESMs. A promising strategy is to use AI to analyse available CP simulations,

treating these as ’true data’ despite being computer-generated (Rasp et al., 2018). Processes that could be extracted from CP30

models to enhance ESM convective parameterisations include the interaction of storm-scale circulations with large-scale wind,

temperature, and humidity fields O’Gorman and Dwyer (2018), the effects of convective upscale growth (Bao et al., 2024),

entrainment variability due to wind shear (Mulholland et al., 2021), and the relative importance of thermodynamic versus

dynamical drivers of precipitation changes under global warming (Klein et al., 2021). Key target variables would include
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gridbox-mean temperature, humidity, and momentum for direct ESM use, as well as cloud cover properties (Grundner et al.,

2024) and distributions of convective precipitation and extremes.

Figure 2. Explicit representation of convective storm circulations in a CP model. We show a simulated convective storm cross-section and for

a single timestamp, centred on a storm updraft in a 4.4 km gridbox resolution convection-permitting climate model simulation (CP4-Africa,

Senior et al., 2021). The organised storm is visible as an area of >90% relative humidity (shading), with extensive cloud anvil across 600-350

hPa pressure levels vertically and extending to a horizontal scale (’x’-axis) of > 500km. Wind vectors indicate a high vertical velocity at

the cross-section centre point (0 km), extending across a horizontal scale of approximately 30 km, these being typical features resolvable in

this high-resolution CP model but missing in climate models. The resolved updraft circulation is co-located with very high rainfall intensity

locally at 0 km (white line, second bottom ’y’-axis), which rapidly decreases as a function of distance and is specifically linked to the

correct representation of the internal updraft circulation. These features of storm processes are expected to be sensitive to background global

warming level (e.g. Prein et al., 2017).

Deriving equation sets via AI brings important challenges, first in the large number of potential input variables that influence

convection. While temperature, humidity, wind, and pressure fields may serve as the baseline, derived quantities like Convective

Available Potential Energy (CAPE) and other vertical profile descriptors, along with spatially variable land characteristics (e.g.5

topography, vegetation, land use, soil moisture) and oceanic features (e.g. sea surface temperature, surface roughness), can
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significantly impact convective processes. Omitting these variables from any new equation set could hinder the transferability

of knowledge from CP simulations. Moreover, equations must also accurately bridge the scale gap between CP and coarser

models, necessitating an algorithm that discovers fundamental relationships transferable to ESM resolutions (e.g. Grundner

et al., 2024).

Secondly, while equation discovery approaches offer promise in generating transferable equations for process descriptions5

beyond their training domain (Ross et al., 2023), it is important to verify they maintain physical consistency and adhere to

fundamental principles like moisture and energy conservation. Thus, a question is whether both transferability and physical

consistency challenges can be overcome by equation discovery targeting interpretability in ways that other methods cannot

achieve. Expert judgement can constrain equation parameters within realistic physical limits, enhancing trustworthiness for

extrapolation beyond training conditions (Jebeile et al., 2023). The reward for deriving reliable equations for ESMs that capture10

convective behaviours is substantial. Reliable predictions of convective properties in future GHG-enriched environments are

vital for policymakers to anticipate future rainfall extremes. Moreover, better constraints on upscale changes in circulation and

radiative feedbacks linked to improved cloud cover modeling will lead to more reliable ESMs. A major concern is that some

ESMs project very high simulated ECS values, however strongly depending on how they represent climate change feedbacks

on cloud features (Bjordal et al., 2020). Dufresne and Bony (2008) provide a detailed disaggregation of direct and feedback15

drivers (including changes to cloud characteristics) that contribute to simulated global warming as GHGs rise.

Ultimately, as computing power advances, century-long global climate model ensembles at kilometre-scale may become

feasible (Slingo et al., 2022), offering more robust projections of convection and related storms as GHG levels rise. However,

given the urgent need to understand climate impacts at fine scales, an AI-supported approach is likely invaluable. Equation

discovery that captures local effects within a structure available for global calculations may offer an interim solution, reducing20

resource costs for large ensembles and uncertainty estimation, while providing crucial insights into future rainfall patterns.

3.2 Improving models of Terrestrial Carbon Cycling

We consider the task of modelling large-scale land-atmosphere carbon dioxide (CO2) exchanges. A substantial fraction of CO2

emissions are currently absorbed by the ocean and land surface, and their future extent affects global climate policy. Decreased

future natural “drawdown” implies that fewer emissions are compatible with any societal goal to restrict global warming to25

a target such as two degrees above preindustrial levels. However, the magnitude of these fluxes, even for the contemporary

period is highly uncertain. This uncertainty is described in detail in many studies, including efforts to constrain it (e.g. Chandra

et al., 2022). Budget calculations between emissions and atmospheric concentration changes reveal with high accuracy the

combined global land plus ocean offset of emissions. However, Chandra et al. (2022) note (by citing Friedlingstein et al., 2020)

that the balance between the land and ocean components is unknown within the order of a GtC yr−1. Approaches to reducing30

uncertainty in regional-to-global land-atmosphere CO2 fluxes include using FLUXNET towers (e.g. Baldocchi et al., 2001)

above strategic representative biomes, atmospheric CO2 measurements merged with atmospheric transport models (generating

atmospheric inversions, (e.g. Table 1 of Kondo et al., 2020)) and forward modelling with Dynamic Global Vegetation Models
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(DGVMs) (e.g. Sitch et al., 2008). Robust forward modelling is of particular importance in quantifying flux changes expected

for any altered climatic state.

The challenge of simulating the land surface is different from that of the atmosphere. One generalisation is that the equa-

tions and their parameters that describe atmospheric processes are well understood, but admit a particularly rich set of possible

behaviours, including local convection, the effects of which are not understood at large scales (Section 3.1). The land surface,5

however, is modelled with simpler equations, including some components that are purely algebraic (i.e. not differential equa-

tions), but instead the complexity is substantial heterogeneity in their parameterisation. Variation in parameters can be due

to multiple factors, including that a typical large-scale transect of land will contain many biomes or plant functional types,

all having slightly different responses to imposed environmental variations. We propose AI-led approaches that quantify sim-

ilar processes but with different magnitudes of response at finer scales. AI methods may also successfully aggregate spatial10

behaviours to generate equation parameters valid at much larger scales and thus amenable for inclusion in ESMs.

Eddy covariance is a measurement method that measures high-frequency (many times per second) simultaneous fluctu-

ations in vertical windspeed and a scalar quantity of interest, and where the covariance statistic is linearly related to the

land-atmosphere exchange of the scalar. In recent decades, there has been a growing number of towers with such measurement

devices installed on top of them, estimating momentum, heat, vapour and CO2 exchanges. The operation of eddy covariance15

systems over land and the related measurement databases are undertaken by the expanding FLUXNET network (Baldocchi

et al., 2001). These measurements already provide training data for ML methods that map from global Earth Observation

data products that record land attributes across to estimates of surface fluxes (Tramontana et al., 2016). This approach, named

FLUXCOM, also entrains near-surface meteorological measurements as additional driving variables. FLUXCOM then extrap-

olates spatially, generating global historical estimates of surface energy fluxes (Jung et al., 2019) and CO2 exchange (Jung20

et al., 2020).

Here, we suggest a slightly different approach to FLUXCOM. Using AI-led equation discovery without prior information

will generate equations with strong similarities to existing knowledge, including established representations of surface energy

partitioning (Monteith, 1981) and photosynthesis (Farquhar et al., 1980). However, two (or more) biomes are often in close

proximity to each other, which has resulted in the development of “two source” models (e.g. Huntingford et al., 1995), or25

descriptions of biomes with complex canopy structures (e.g. Mercado et al., 2007). Here, we suggest an AI-led approach to

building models of land-atmosphere CO2 exchange, valid at the ESM gridbox scale and that account for extra local-scale

complexities. We would first use equation discovery methods to model land behaviours for the footprint SCHMID (1994) of

FLUXNET sites. Revised equations would map driving data from Earth Observation (EO) retrievals that fall within the flux

tower footprint, along with FLUXNET meteorological measurements, to the tower data of land-atmosphere CO2 exchange.30

The use of EO this way supports the suggestions of Chen et al. (2011). AI would derive equation terms and their parameters

that are additional to current standard formulations (as might be in current ESMs) to capture surface heterogeneity factors.

The dependencies on meteorological conditions support the generation of equations valid for altered background climatic

conditions.
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Figure 3. Sentinel-2 L2A images capturing complex land surface information down to 10m spatial resolution, in this example for (a)

deforestation in Rôndonia, Brazil (10◦S, 65.7◦W) with visible wild fire plumes and (b) a permafrost landscape in Putorana State National

Reserve, Russia (71◦N, 96.3◦E) (Sentinel-EO, 2024). A wealth of high-resolution imagery now documents processes acting on fine-scale

land surface patterns and temporal changes therein, opening new avenues for AI-led mapping of sub-grid surface complexity onto physical

variables typically used in climate models.
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Once established at FLUXNET sites that AI-derived revised equations and their parameters successfully translate EO mea-

surements to CO2 exchanges, full images from EO data fields can be used as forcings elsewhere. That is, EO provides forcings

to the equations derived at FLUXNET sites, to determine local fluxes away from towers, capitalising on the often complete

spatial information held in satellite records. Deriving a careful spatial aggregation of these local calculations to the large ESM

gridbox scale would provide equations and parameters in ESMs that capture more accurately fine spatial heterogeneity in the5

land surface, thus offering better predictions of CO2 exchanges in such models. ML-derived spatial aggregation is a form of

technique known as computer vision. In Figure 3 we present two representative images, panel (a) showing complexity in the

South American tropical rainforest where there is extensive land use, and panel (b) of permafrost at high latitude, where there

is substantial variation in land cover attributes. An additional requirement of computer vision algorithms is that they ignore

locations in EO imagery where there are clouds or other masking factors such as smoke from fires (e.g. panel a of Fig. 3).10

Our proposed approach would become increasingly accurate as the eddy covariance network extends, with Papale (2020)

stating that FLUXNET expansion should occur to support an improvement in the accuracy of annual estimates of global

land-atmosphere CO2 exchange. Furthermore, the availability of EO data over ever-increasing time periods allows training

(and more extensive testing) of AI-discovery equation approaches, including checking their performance at capturing climate-

induced trends. Finally, as additional FLUXNET towers become live, it will be possible to more routinely test equations (rather15

than training algorithms to find them) at a range of locations. Where there are discrepancies, this may imply further missing

processes in the equation set, or a strong regional dependency of parameters, which our techniques may help quantify. As an

example, the introduction of geochemical cycles beyond carbon in land models is still in its early stages, with Davies-Barnard

et al. (2022) noting major differences in its representation between ESMs.

3.3 Dynamical System Models of Ocean Circulation20

The study of major oceanic circulations is conducted mainly with high-resolution numerical simulations, often as part of ESMs.

However, the large computational time of such simulations maintains interest in faster summary models, mainly in the form of

coupled Ordinary Differential Equations (ODEs). Reduced form operationally fast spatially aggregated bulk ODEs that evolve

in time allow researchers to more readily scan parameters and a broader range of future climate forcings, enabling a better

assessment of potential features of circulation stability. These simpler dynamical systems can enable levels of understanding not25

possible with restricted computer power constraining the number of possible perturbed parameter full complexity simulations.

Early model attempts at simplified descriptions of oceanic behaviour exist including the Atlantic Meridional Overturning

Circulation (AMOC) (e.g. Stommel, 1961). More recently, simplified models have emerged that include atmospheric drivers

and their impact on the important El-Niño-Southern Oscillation (ENSO) (e.g. Timmermann et al., 2003). Here, we present the

Timmermann model in Fig. 4, in both schematic form (panel a), and bifurcation diagram (panel b), with details in the caption.30

ENSO is hypothesised to occur as follows. There is a positive ocean-atmosphere feedback process that activates ENSO, first

suggested by Bjerknes (1969). The feedback process may start with weakened easterly trade winds, which reduces the strength

of the ocean current responsible for drawing surface water away from the western equatorial Pacific. This in turn reduces

the ocean up-welling of colder water from the deep ocean, flattening the thermocline. A build up of warmer surface water in
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Figure 4. A schematic and bifurcation diagram of the equatorial coupled ocean-atmosphere system as represented in the Timmermann model

of ENSO. Panel (a): T1 (K) and T2 (K) are the sea surface temperatures of the western Pacific and eastern Pacific respectively, and τ is the

wind stress on the ocean surface due to easterly trade winds, given in Newtons per meter squared. Tsub (K) is the temperature below the

mixed layer of depth Hm (m). The ocean upwelling velocity is denoted w (m s−1) and u (m s−1) is the atmospheric zonal surface wind.

Diagram adapted from Dijkstra (2013). Panel (b): Bifurcation diagram of eastern Pacific temperature T2 as a function of zonal advection

efficiency ε, showing solutions to Eqs. (3) to (4) and their stability. Diagram adapted from Timmermann et al. (2003).

the equatorial east Pacific (El Niño) then emerges. As a result, we now have a reduced east-west SST gradient that further

weakens the Walker circulation (a positive feedback mechanism). However, after the El Niño matures, a negative feedback

mechanism emerges to turn El Niño into a cold phase known as La Niña. This negative feedback mechanism accounts for the

observed oscillatory behaviour of the coupled ocean-atmosphere ENSO system which has a characteristic timescale of two

to seven years. In addition, the tropical Pacific sea surface temperature (SST) also exhibits decadal variability (Timmermann5

et al., 2001). Previous studies have shown this pattern has two leading modes of inter-decadal variability, the ENSO-like and

ENSO-induced modes (Choi et al., 2012), where the latter mode is strongly related to decadal variations in the amplitude of

ENSO.

When modelling the processes that cause irregular inter-annual El Niño occurrences, there are usually two approaches. The

first is deterministic, albeit that there exists chaotic behaviour in the large-scale dynamics of the coupled ocean-atmosphere10

system due to nonlinear interactions. The other viewpoint assumes that this behaviour is only weakly nonlinear and the irregular

but oscillatory feature is mainly due to stochastic noise. The former approach is more suited to using reduced complexity

models of ENSO, which may be gained from using AI-led equation discovery methods to uncover chaotic nonlinear dynamics

without the need for stochastic terms in the equations. We now describe some of the deterministic modelling of ENSO that

exists already.15

Modelling the positive and negative feedback mechanisms of ENSO initially led to four basic deterministic oscillator models.

Such models are known as the delayed oscillator (Suarez and Schopf, 1998), the recharge–discharge oscillator (Jin, 1997a),
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the western-Pacific oscillator (Weisberg and Wang, 1997) and the advective–reflective oscillator (Picaut et al., 1997). All four

of these models are linear, producing periodic oscillations. However, observed ENSO behaviour has been shown to exhibit

nonlinear and irregular oscillations, which can only be modelled with these four linear models if external noise forcing is

applied. As a result of observing this irregular behaviour, nonlinear deterministic models of ENSO have also been built to

capture the chaotic behaviour and without the need for an annual noise forcing to generate it. One such model is that of5

Timmermann et al. (2003), which is a dynamical systems model that captures both the inter-annual oscillations and the decadal

variability of El Niño events seen in observations and climate models. The physical setup involves using a two-strip and two-

box approximation (Jin, 1997b), extending the simpler ENSO description proposed by Zebiak and Cane (1987). The upper

equatorial ocean is described using a box model version of a shallow-water model in conjunction with a mixed ocean layer of

fixed depth. The heat budget is given by two coupled first order ordinary differential equations in time, as10

dT1

dt
=−α(T1−Tr)−

u(T2−T1)
L/2

(3)

dT2

dt
=−α(T2−Tr)−

w(T2−Tsub)
Hm

(4)

where the variables T1, T2, Tsub, Hm, w and u are described in the caption to Fig. 4. The additional variables in Eqs. (3) and

(4) are as follows. Tr (K) is the radiation equilibrium temperature in kelvin,L (m) is the basin width and 1/α (day−1) represents15

a typical inverse timescale of thermal damping. Furthermore, we have the physically derived relations u
L/2 = εβτ and,w/Hm =

−ζβτ where ε and ζ are the strengths of zonal and vertical advection respectively (model bifurcation parameters).

The subsurface temperature, Tsub is defined as,

Tsub = Tr−
Tr−Tr0

2

[
1− tanh(H +h2− z0)

h∗

]
(5)

where h2 is the east equatorial Pacific thermocline depth (relative to a depthH) in meters, z0 is the depth in meters, for which20

the upwelling velocity w, in meters per second, becomes its characteristic value and h∗ is the sharpness of the thermocline.

The thermocline depths are calculated as follows:

h2 = h1 + bLτ (6)

dh1

dt
=−r

(
h1 +

bLτ

2

)
(7)25
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where h1 is the west equatorial Pacific thermocline depth in meters, b is the efficiency of wind stress τ to drive the thermo-

cline tilt. Wind stress is given by

τ =
µ(T2−T1)

β
. (8)

Overall this leaves us with six equations (Eqs. (3) to (8)) and six unknown variables (T1, T2, Tsub, h1, h2 and τ ). The

original parameter values used in the study Timmermann et al. (2003) were Tr0 = 16◦C, Tr = 29.5◦C, α= 1/180day−1,5

r = 1/400day−1, Hm = 50m, H = 100m, z0 = 75m, h∗ = 62m, µ= 0.0026K−1 day−1, µbL/β = 22 m K−1, L= 15×
106 m and ζ = 1.3. In Timmermann et al. (2003), the bifurcation parameter, ε, is varied to understand how the nonlinear zonal

advection term generates chaotic behaviour. The typical values of ε range between 0.024 to 0.24, as calculated from CGCM

simulations and ocean data assimilation products (Timmermann et al., 2003).

This low-order model simulates strong decadal El Niño conditions (El Niño bursting) which have been observed in full com-10

plexity simulations, where the ENSO mode grows in amplitude and then quickly resets, from which the amplitude variations

grow again. For small values of the zonal advection efficiency bifurcation parameter, ε, and a fixed value of ζ, the system is in

stable equilibrium with a cold “tongue” in the eastern Pacific and a warm pool in the western Pacific, as shown in Fig. 4 Panel

a). However, this steady mean state becomes unstable for a larger critical value of ε, leading to a Hopf bifurcation, and a stable

periodic orbit appears, as illustrated in Fig. 4 Panel b). For simplicity we have described here the situation of varying ε and15

keeping ζ constant. Further analysis (Fig. 3 in Timmermann et al. (2003)) finds similar behaviour for T2 as a function of ζ also

giving rise to stationary and oscillatory solutions of Eqs. (3) and (4). Key to this is for values of ζ > 0.54 a Hopf bifurcation

emerges giving rise to the oscillatory self-sustained ENSO mode with a typical period of several years.

The full three-dimensional ENSO system exhibits both periodic and chaotic windows during periods of ENSO amplitude

modulations, for instance when the efficiency of zonal advection, ε, takes on larger values. Further rich dynamical behaviour20

exists when both ε and ζ are varied simultaneously, also giving rise to ENSO amplitude modulations, period-doubling bi-

furcations and chaos (Timmermann et al., 2003). Relating to the premise of this paper, although the existing simpler models

such as that repeated above appear to reproduce many features of ENSO, utilising AI-led equation discovery offers a potential

way to verify this dynamical behaviour using observational data sets and model simulations as training data. Do these newer

algorithms back out a model with implicit Hopf bifurcations and low-dimensional chaos that match that found in Timmermann25

et al. (2003), or will they suggest refinements?

We propose the three main potential outcomes of using equation discovery in this context. Firstly, equation discovery may

back out simpler deterministic models of ENSO, such as the four basic linear oscillator models mentioned previously. Most of

these models can be generalized into a recharge oscillator framework (Jin and An, 1999). Secondly, with careful consideration

of the variables and the physical set-up involved, included in Fig. 4, the derived equations may provide verification of the30

Timmermann model by exhibiting similar nonlinear chaotic behaviour for different values of the bifurcation parameters. If this

is the case we expect the discovered equations to emulate 1) low-amplitude biannual ENSO oscillations at low values of ε, 2)

amplitude-modulated and chaotic behaviour at intermediate values of ε and 3) large amplitude ENSO oscillations with periods
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of 3-4 years at higher values of ε. A third possibility is that the learned equations provide a new description of ENSO behaviour

which may potentially come with 1) better parameterisation of the ENSO system, 2) enhanced understanding of physical

mechanisms leading to the generation of nonlinear ENSO behaviours which agree better with observations and models and, 3)

improved predictive skill of ENSO.

Due to the shortness of available observational records and the level of noise in the data, it can be difficult to determine5

from observations alone if ENSO amplitude modulations are a statistical manifestation or a result of deterministic processes

(Timmermann et al., 2003). AI-led equation discovery methods such as sparse regression only require a limited time series to

discover the underlying dynamics and work well in the presence of noise, and therefore may be effective in this situation.

State-of-the-art ESMs still contain biases in the eastern equatorial Pacific (Timmermann, 2018) which leads to problems in

representing key physical processes, feedback mechanisms and so may impact their ability to accurately predict future changes.10

ESMs struggle to converge in their simulations of ENSO characteristics such as amplitude, period and the asymmetry between

El Niño and El Niña phases (Jin et al., 2020). Yet, inter-ESM disagreements are an opportunity for AI-led discovery of reduced

complexity equations, as such models are computationally fast and thus allow substantial sampling of different parameter

values. If such parameters have process interpretations and if it is possible to map ESM projections onto different values of

such parameters, this enables the differences and uncertainties between ESMs to be better understood.15

4 Discussion and Conclusions

AI plays an increasing role in society (e.g. Makridakis, 2017) and will likely influence multiple aspects of scientific research

(e.g. Xu et al., 2021). Artificial intelligence methods are proposed to support the mitigation of climate change (e.g. Kaack et al.,

2022; Chen et al., 2023; Rolnick et al., 2023), and climate research itself (e.g. Reichstein et al., 2019; Huntingford et al., 2019;

Eyring et al., 2024). The basis for most AI algorithms is statistical, frequently introducing nonlinearity into forms of regression20

(e.g. Murphy (2013), with an early chapter on linear regression, to be viewed in the context of subsequent chapters on key AI

algorithms). Recently, there has been an emphasis on constraining AI-based discoveries to be compatible with known theory

about underlying processes. These methods are referred to as “physics-informed AI” (e.g. Karniadakis et al., 2021) and are

considered for climate analysis (e.g. Karniadakis et al., 2021). An early form of physics-informed activity has been the de-

velopment and maintenance of data assimilation methods to generate historical gridded datasets of meteorological conditions,25

e.g. the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis (Hersbach et al., 2020). Reanalysis products

merge data with forecasts, balancing the need to simultaneously remain within the uncertainty bounds of measurements and

broadly satisfy the equations of atmospheric dynamics.

We propose advancing climate change science with the even newer AI technique of “equation discovery”. Although existing

AI methods provide powerful insights into the features of large datasets, they remain embedded in statistical approaches.30

Unfortunately, statistical descriptions may not estimate well “out-of-sample”, yet the main requirement of climate science is

to predict environmental regimes different from those of the present day or the recent past. If, instead, AI reveals process

equations, this opens the opportunity for their assessment and parameterisation. This understanding of processes may confirm
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that equations have the predictive capability needed to describe new climatic regimes. Indeed, a fundamental role of applied

mathematics is to determine data-led equations for a system that can subsequently simulate responses to alternative forcings.

Already suggested is using AI to emulate the few limited-area very high resolution atmosphere simulations, and for the

forcings for which they have been operated (e.g. Schneider et al., 2023). Such emulators may be placed in ESMs to predict

high-resolution atmospheric features, including average storm characteristics, at other locations. Extending such analyses to5

generate governing equations (possibly with stochastic components) may more rigorously capture high-resolution effects at

alternative places and atmospheric GHG levels. Equation sets are amenable to discretisation in ESMs and including feedbacks.

We also consider extending basic equations, allowing additional perturbation term discovery, or location-specific parameters,

e.g. for capturing ecological responses with strong spatial heterogeneity. A further application is AI-based equation discovery

valid over substantial areas (e.g. averaging ESM projections), aggregating geographical variation and reducing to Ordinary10

Differential Equations (ODEs) in time only that respond to changing GHGs. ODEs are often amenable to more complete

analysis, and even if exact solutions are unavailable, they can be tested for linear stability about equilibrium states, and for

nonlinear systems including how parameter perturbation may activate tipping points. TPs in the Earth system are the basis for

intense research (e.g. Mckay et al., 2022), given their strong potential impacts on society, yet estimated GHG levels causing

occurrence are highly dependent on ESM studied (Drijfhout et al., 2015). Mapping to a common simpler model enables15

characterising ESMs by effective parameters in such reduced complexity representations. This approach may identify parts of

the Earth system that, if measured better, will better determine GHG levels likely to trigger TPs.

Could AI replace conventional climate research? This question is already being asked about weather forecasting (e.g. Schultz

et al., 2021). AI is shown to have good skill in predicting the emergence of severe weather events (e.g. Bi et al., 2023; Lam et al.,

2023), but McGovern et al. (2017) argue that the use of such methods to assess high-impact meteorological occurrences should20

be performed in parallel with physical understanding. A deeper understanding of the balance of dominant equation terms,

possibly determined by AI, may reveal causal links between processes (“storylines”; Shepherd (2019)) during the preceding

periods of extreme events and thus provide earlier warnings of their occurrence. If AI methods extend to the extra step of

deriving underlying equations, this offers potentially new insights, but still requires substantial human interpretation to achieve

them. Equation discovery will engage climate research scientists further, rather than creating any form of replacement.25

In summary, in Section 3 we offer three illustrative examples of how AI-led “equation discovery” may support climate

change science, as:

– Simulation of atmospheric convection. Convection modelling involves numerically solving equations at very high

resolution to accurately represent the spatial heterogeneity of individual storms. Typically, a grid spacing of about one

kilometre is necessary, leading to high computational demands. Consequently, simulations are limited in both spatial30

extent and time period simulated, the latter restricting the range of GHG concentrations modelled. The goal is to develop

simplified “bulk” differential equations suitable for ESMs, hence using coarser grid spacings (around 100 kilometres)

that accurately aggregate fine-scale dynamics and their interactions with boundary conditions. Ideally, the equations also

feed back, where appropriate, on ESM-simulated large-scale dynamics. Incorporating these equations into ESMs enables

global convection representation under broad ranges of atmospheric GHG levels and at different locations. The equations35
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may incorporate statistical or stochastic components to describe the intensity and duration of convective events at fine

scales or at single points.

– Simulation of terrestrial carbon cycling. In this case, the general governing equations for land-atmosphere CO2 ex-

change due to photosynthesis and respiration are known, broadly valid at large spatial scales and routinely included in

ESMs. However, at very local scales, the parameterisation of these equations depends strongly on biome type. There may5

also be a need to derive additional equation terms for complex canopy structures or where different biomes are so close

that there are key within-canopy interactions. Hence, the challenge is two-fold. First, to calibrate and, where appropriate,

expand equation terms for key biomes or colocated biomes, possibly guided by eddy-covariance measurements. The

second is to again use AI methods to entrain Earth Observation data, enabling spatial aggregation away from flux towers

to generate equations and parameters applicable at large ESM gridbox scales. This enables ESMs with fully interactive10

carbon cycle simulation to better assess the extent the surface of the land will partially offset future CO2 emissions.

– Very large-scale summary simulation of ocean currents. This AI application aims to derive globally applicable

reduced-complexity models from ESMs that simulate oceanic currents at a smaller scale, offering several benefits. A

simpler model can explore wide ranges of forcings, such as changes caused by many different future emissions trajec-

tories and that cannot be simulated with full ESMs due to their computational constraints. Simpler models facilitate15

parameter scanning and, in the case of nonlinearity, enable broad-scale representation of how TPs may occur. Fitting

simpler model parameters to the individual members of ESM ensembles enables better characterisation of differences

and uncertainties between ESMs. New AI-discovered reduced complexity equations from data or ESMs might indicate

whether existing simpler models, such as that of Timmermann describing ENSO, remain suitable or whether alternative

variants of oscillator models are more appropriate, at least for some ESM frameworks.20

It is relatively easy to set aspirations for implementing AI methods in climate science, rather than performing the analysis

itself. Some suggestions here are likely major research projects that could take multiple years to complete. However, with

the rapid pace of algorithm development raising questions about applicability to climate research, we highlight the particular

method of equation discovery. We contend that equation discovery, a form of interpretable AI, can substantially enhance

climate research in ways not possible by traditional analytical or statistical methods. An emphasis on equation development25

and their inherent description of processes moves on from the complaint that AI-developed models are purely statistical and

may fail if extrapolated beyond current forcings to higher GHG levels. Although an initial equation set may also be suspected

to have poor “out-of-sample” capability, its existence provides a stronger basis for understanding processes and interactions.

Subsequent more careful fitting of equation parameters may generate predictive capability.

ESMs will undoubtedly continue as the main tool for advising climate policy. Two of our examples (convective storm30

modelling and terrestrial carbon cycling) offer the possibility to enhance ESM reliability. Better aggregation of subgrid storm

process representation to gridbox scale may remove known issues with existing cloud representation (Randall et al., 2003).

The current spread in subgrid atmosphere and land parameterisations may be contributing to the large inter-ESM differences

in the projection of changes in rainfall patterns (e.g. Yazdandoost et al., 2021) and the global carbon cycle (e.g. Huntingford
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et al., 2009) respectively. Improving emulation of subgrid effects to support ESM development fits with the commentary of

Wong (2024) on AI and climate, although we stress retaining process understanding through equation representation.

We believe that AI does not represent a threat to climate science and will instead support researchers to increase their skill

to predict meteorological conditions as atmospheric GHGs rise. Climate change is simulated with ESMs, yet their ability to

offer ever more refined estimates of change is arguably at a standstill. For similar future pathways in GHGs, the spread of5

projections between the models in version 5 of the Climate Model Intercomparison Project (CMIP5) and the more recent

version 6 (CMIP6) has not decreased for basic quantities of changes in global mean temperature and global mean precipitation

(e.g. Fig 4 of Tebaldi et al., 2021). Reflecting our three examples (Sections 3.1, 3.2 and 3.3), we conjecture that the particular

form of AI which is the discovery of equations may reduce these uncertainties. Reductions will be by (i) providing new robust

equations that capture subgrid processes, (ii) creating valid grid-scale parameterisations for existing equations that aggregate10

fine-scale processes and (iii) disentangling complex processes to equation sets far simpler than ESMs but that capture the

dominant processes. The latter simpler equations may guide measurement programmes towards tuning key parameters, and

where such knowledge ultimately feeds back by improving ESM parameter calibration.

5 Code availability

This is a review article and therefore does not contain computational elements.15

6 Data availability

No new data are used in this manuscript. The manuscript contains modified Copernicus Sentinel data (2024) processed by

Sentinel Hub: https://apps.sentinel-hub.com/eo-browser/.
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