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The paper "Potential for Equation Discovery with AI in the Climate Sciences" is a vital discussion topic 
for advancing climate research. It's clear that there are infinitely many more non-linear formulations 
than the linear set of possibilities that humans are comfortable with solving. Fluid dynamics a la Navier-
Stokes by itself contains many non-linear elements that have not been completely explored due to a lack 
of ability to solve in a closed form.  The paper suggests an important possible constraint to apply: "For 
physical systems involving fluid flows where the underlying equations are known to be energy-
preserving, although also nonlinear". 
  
And that's where artificial neural networks and symbolic regression (i.e. equation discovery) comes into 
play. There are really few other alternatives outside of tedious human trial & error that are available to 
both (1) fully explore the combinatorial solution space and (2) incorporate numerical solvers to train the 
possible solutions to fit the available data using appropriate metrics for plausibility and precision. 
  
The paper as is falls short on two fronts, one of which the authors' themselves highlight.  The first can be 
remedied by citing the importance of cross-validation (CV) strategies.  The success of machine learning is 
in part due to how CV can separate the wheat from the chaff in potential solutions. Yet, nowhere in the 
text is cross-validation mentioned, and this is a vital part of equation discovery, as an optimal CV 
algorithm+metric is necessary to isolate candidate solutions along a Pareto front of complexity 
(1/plausibility)  vs precision.  Neural networks can fit just about any curve, so CV approaches to equation 
discovery help to eliminate those that are the result of over-fitting. Suggest Ref [1] as a citation starting 
point. 
  
The second front is based on the authors' statement "It is relatively easy to set aspirations for 
implementing AI methods in climate science, rather than performing the analysis itself".  I read this as a 
call to just do it instead of dreaming it, or as the thespian philosopher Christopher Walken said: "If you 
want to learn how to build a house, then build a house. Don't ask anybody. Just build a house."  The 
paper suggested   
"We discuss the potential application of AI-led equation discovery to three Earth system components. In 
each example, there is presently a deficiency in understanding, causing uncertainty in the representation 
of processes by equations. Each application falls into one of three categories. " 
  
Instead, I would recommend three Earth system components to evaluate: solid body, atmosphere (gas 
fluid), and ocean (liquid fluid).  In our text Mathematical Geoenergy, P. Pukite, D. Coyne, D. Challou 
(Wiley/AGU, 2019),  we describe novel equation-based models  for the Earth's Chandler wobble (solid 
body), QBO (atmosphere),and ENSO (ocean). The original nonlinear models were derived from 
simplifying Euler equations of motion for the Chandler wobble, and Laplace's Tidal Equations, which are 
simplified Navier-Stokes, for QBO and ENSO. We attain excellent agreement against observations in 
each case, and this extends to other climate indices such as AMO and PDO. See Figures 1..X at the end of 
this review. 
  
Over the past few years, I have tried various machine learning approaches including neural networks 
and symbolic regression to observe if they would "discover" the same equation solutions I had 
formulated and applied.  First, it's clear that neural networks can't do the job as they train only on their 
own data-set as supplied, and so won't automatically pull in all the tidal time-series data available. This 
is the closed-world assumption (CWA) problem well-known in AI circles for years, see Ref [2]. Neural 
networks will fit the data, but it's all based on dreaming up patterns from the data instead of tracing it 
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back to a non-linear modulation from an external forcing. Alas, that external data set doesn't exist in the 
training data, so it gets ignored. 
  
The symbolic regression/equation discovery approaches do an arguably better job. Although they also 
suffer from the CWA problem, they can make up for  it by creating  symbolic expressions from their 
library of primitive  mathematical operators to draw from, such as creating a tidal forcing from (1) the 
time base, (2) arbitrary constants, and (3) sinusoidal primitives such as sin() and cos().  So, in terms of 
results, the frequencies from tidal factors do emerge in a symbolic regression fit to QBO, yet they are 
not directly harmonically-related due to the intrinsic non-linearity of the equation solutions!  Thus, they 
may easily get overlooked when the symbolic regression results are deconstructed, as it also requires 
knowledge of nonlinear signal processing concepts such as aliasing and side-banding.  That's what I have 
found straightforwardly in the Chandler wobble and QBO results, and with more of a challenge in the 
oceanic indices such as ENSO. The symbolic regression tools that I have evaluated include Eureqa, PySR, 
and TuringBot, Ref [3].    
  
And this reflects back on  the importance of cross-validation approaches and the selection of correlation 
metrics, including those that have proved valuable in machine learning in the context of noise and 
uncertainty, such as dynamic time warping - Ref [4] and  complexity-invariance distance - Ref [5]. The 
results of symbolic regression depend on the best metric for the data, as some may prove too stiff to 
emerge from a local optima. 
  
I agree with the paper that the focus on statistical machine learning to model climate variation is 
misguided, as it is more evident that large scale behaviors that are the result of collective deterministic 
actions describe better the standing wave models of ENSO and QBO.  These will show the detail and 
variety in waveforms captured by wave equations, not the smeared responses captured by statistical 
ensembles. 
  
Moreover (and finally), it is difficult to get a new paradigm accepted in geophysics fields such as climate 
science unless the results are beyond reproach. The complete lack of controlled experiments to test 
novel equation-based models means that claims of excellent agreement are dealt with suspicion.  It is 
costly in terms of money and time to wait years for predictive models to come true, so the hope is that 
cross-validation results can conclusively demonstrate a new equation formulation has merit.  
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Models of geophysical behaviors 

 

Figure 1 : Cross-validated Chandler wobble model of luni-solar torqued Euler equations 



 

Figure 2: Cross-validated QBO model at 70hPa of luni-solar forced Laplace’s Tidal Equations 

 

 

Figure 3: Cross-validated ENSO NINO4 modelof luni-solar forced Laplace’s Tidal Equations 

 



 

Figure 4 : Cross-validated AMO model of luni-solar forced Laplace’s Tidal Equations 

 

Figure 5 : Cross-validated PDO model of luni-solar forced Laplace’s Tidal Equations 

 


