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Abstract. Lateral nitrogen (N) transport from land to oceans through rivers is an 14 

important component of the global N cycle. We developed a new model of this 15 

system, called ORCHIDEE-NLAT, which simulates the routing of water in rivers, 16 

and the pertaining transport of dissolved inorganic N (DIN), dissolved organic N 17 

(DON) and particulate organic N (PON) as well as the accompanying 18 

biogeochemical processes of decomposition for DON and PON, and 19 

denitrification for DIN during the transit from land to oceans through the river 20 

network. Evaluation against global observation-based datasets reveal that the 21 

model captures both the magnitude and seasonal variations of riverine water 22 

discharges and total nitrogen (TN) flows well. The ORCHIDEE-NLAT model 23 

was then applied to reconstruct the historical evolution of global TN flows from 24 

land to rivers, as well as the denitrification of DIN within the river network. Due 25 

to anthropogenic activities (e.g. mineral fertilisers and manure application, 26 

sewage water injection in rivers and land use change) and indirect climate and 27 

CO2
 effects, the TN exports are modelled to increase from 27.1 Tg N yr-1 over 28 

1901-1910 to 40.8 Tg N yr-1 over 2001-2014, with DIN (80%) contributing most 29 

of this increase. The annual mean TN flow and DIN denitrification rates show 30 

substantial spatial heterogeneities. The seasonal amplitude of TN flow is of 31 

similar magnitude as the large-scale spatial variability. Compared to previously 32 

published global aquatic N transfer models (IMAGE-GNM, FrAMES-N, MBM, 33 

DLEM and Global NEWS2), our model produces similar global and continental-34 

scale TN exports to the ocean, but shows distinct patterns at finer scale spatial 35 

scales (e.g. basin scale). ORCHIDEE-NLAT could also be coupled with other  36 

land surface models such as those used in the Nitrogen Model Intercomparison 37 

Project (NMIP). Our model provides a full simulation of N transport and 38 

reactivity from soils to oceans at an unprecedented spatio-temporal resolution 39 

(daily fluxes at 0.5° globally).  40 

1. Introduction 41 
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Nitrogen (N) is an essential element for all life on Earth, and the N cycle 42 

interacts in multiple ways with the Earths climate system and the environment. 43 

Nitrous oxide (N2O) is an important greenhouse gas, which affects Earths 44 

energy balance in a similar way as carbon dioxide (CO2) but is nearly 300 times 45 

more effective on a per molecule basis (Sainju et al., 2014). N also affects the C 46 

cycling, CO2 and methane (CH4) fluxes as it limits primary production rates in 47 

many terrestrial, freshwater and marine ecosystems (Thornton et al., 2007; 48 

Moore et al., 2013; Zaehle et al., 2014; Seiler et al., 2024). The N cycle thus 49 

plays an important role in controlling the C cycle and climate change, which 50 

calls for an analysis of the N dynamics in the context of changing C cycle, 51 

climate and anthropogenic activities. In this Earth system perspective, 52 

insufficient attention has been given to the tight link between the terrestrial and 53 

marine N cycles through the Land to Ocean Aquatic Continuum (LOAC) 54 

(Galloway et al., 2003; Billen et al., 2013; Maranger et al., 2018). Existing 55 

studies have largely treated the land and open ocean cycles separately, ignoring 56 

N processes occurring along the LOAC (Fowler et al., 2013; Zhang et al., 57 

2021). The representation of N processes in the LOAC is required to achieve a 58 

dynamic coupling between land surface and ocean biogeochemical models, with 59 

land surface models simulating the dynamically changing N exports to the 60 

coast, which may include historical hindcasts and future projections. 61 

Over the past several decades, the cumulative effects of climate change, 62 

increased population, industrialization and agricultural fertiliser use have 63 

accelerated the global N cycle, and increased N leaching into the LOAC 64 

(Bouwman et al., 2005; Kim et al., 2011; Swaney et al., 2012; Beusen et al., 65 

2016). This has resulted in negative human health and environmental impacts 66 

such as drinking water degradation and an increase in frequency and severity of 67 

eutrophication (Dodds & Smith, 2016; Huang et al., 2017; Costa et al., 2018; 68 

Lee et al., 2019; Dai et al., 2023). Most land surface models include N leaching 69 
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to aquatic systems, this process is rarely evaluated in quantitative terms using 70 

observations collected within the fluvial network. It has been shown that N 71 

leaching is inaccurate in most LSMs (Feng et al., 2023), which in turn affects 72 

the simulation of the response of terrestrial C and N cycles to anthropogenic 73 

activities and climate change (Thomas et al., 2013). Furthermore, explicit 74 

representation of the fate of the land-derived N inputs into the LOAC is 75 

required to better constrain the response of the ocean C cycle to increased 76 

nutrient inputs (Lacroix et al., 2021; Resplandy et al., 2024) as well as to assess 77 

the extent to which N pollution reduction scenarios can mitigate (Satter et al., 78 

2014) eutrophication in riverine and coastal aquatic ecosystems (Hashemi et al., 79 

2016; Desmit et al., 2018). 80 

The representation of N lateral transfers through aquatic systems is 81 

challenging because it requires to represent multiple N sources, transformation, 82 

transport, and retention processes along the global fluvial network. A variety of 83 

models with different structures and representations of the water and N cycles 84 

have been developed  (Luscz et al., 2015, 2017). Models such as SWAT (the 85 

Soil and Water Assessment Tool) (Arnold et al., 1998; Liu et al., 2017), HSPF 86 

(the Hydrologic Simulation Program-FORTRAN) (Bicknell et al., 2005; Wang 87 

et al., 2015) and HYPE (HYdrological Predictions for the Environment) 88 

(Lindstrom et al., 2010; Donnelly et al., 2014) represent hydrology and N 89 

transport and transformation processes in rivers, but mainly for catchment scale 90 

applications. Therefore, their complexity and high data requirements for 91 

calibration and evaluation limit their applicability, in particular the long-term 92 

evolution of global N fluxes and transformation processes. Simplified empirical 93 

approaches provide an alternative for large-scale simulations, such as the Global 94 

NEWS2 model (Global Nutrient Export from Watersheds 2) allowing to 95 

estimate riverine N exports to the ocean as a function of N deliveries from the 96 

surrounding catchment with a highly simplified representation of N transport 97 
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and in-stream N processes (Seitzinger et al., 2005; Mayorga et al., 2010; Lee et 98 

al., 2016). The Integrated Model to Assess the Global Environment-Global 99 

Nutrient Model (IMAGE-GNM) provides a more process-based representation 100 

of the river network as it relies on a globally distributed, spatially explicit 101 

hydrological model (PCR-GLOBWB, PCR aster Global Water Balance) to 102 

estimate N delivery to surface waters and its subsequent transport (Beusen et al. 103 

2014, 2016 & 2022; Vilmin et al., 2018). This model however simulates N 104 

retention according to empirical formulas, is not dynamically coupled to 105 

vegetation-soil N processes and only provides yearly averaged fluxes, hence 106 

ignoring the seasonal fluctuations induced by the hydrology and N cycling on 107 

land and in the river network. The Dynamic Land Ecosystem Model (DLEM 108 

2.0) was improved to simulate riverine N flow from terrestrial ecosystems to 109 

rivers and coastal oceans. So far, however, the N lateral transfer simulated by 110 

DLEM has only been evaluated at regional scale (eastern North America, Yang 111 

et al., 2015) or for N2O emissions on the global scale (Tian et al. 2018; Yao et 112 

al., 2020). To complement these studies, we develop a new N lateral transfer 113 

model that can be linked to the outputs of land surface models while capturing 114 

the hydrology and N transformation processes in the global river network at a 115 

temporal resolution (days to months) as relevant for biogeochemical processes 116 

in coastal and marine ecosystems. At the same time, this model should be able 117 

to reconstruct and forecast the long-term (decadal to century-scale) evolution of 118 

the aquatic N cycle as a result of a wide variety of anthropogenic factors, 119 

including climate change. 120 

Our model is an offline model of lateral N transfers which is fed with 121 

outputs from the land surface model ORCHIDEE. ORCHIDEE is a widely used 122 

land-surface model (Krinner et al., 2005), with many versions (or branches) 123 

focusing on different aspects of the terrestrial C cycle and associated bio-124 

elements. We leverage ORCHIDEE-CNP, the branch simulating the coupled 125 
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cycles of carbon (C), N and phosphorus (P) in the terrestrial biosphere (Sun et 126 

al., 2021), and ORCHIDEE-Clateral, the branch simulating the leaching and 127 

erosion of C along the soil-inland water continuum (Lauerwald et al., 2017; 128 

Lauerwald et al., 2020; Zhang et al., 2022). Our study is structured as follows: 129 

(1) development of an offline N lateral transfer model (ORCHIDEE-NLAT) 130 

driven by output from ORCHIDEE-Clateral and ORCHIDEE-CNP; (2) 131 

collection of observations of water discharge and N concentration to evaluate 132 

the performance of ORCHIDEE-NLAT; (3) investigation of the spatio-temporal 133 

dynamics of N lateral transfer over the historical period (1900-2014); and (4) 134 

comparison of model results with those obtained with previously published 135 

models.  136 

2. Methods and Data 137 

2.1. Model development 138 

2.1.1. The ORCHIDEE-NLAT model  139 

The ORCHIDEE land surface model comprehensively simulates the 140 

cycling of energy, water and C, in terrestrial ecosystems (Krinner et al., 2005). 141 

As the model evolved, many versions (or branches) emerged with various foci 142 

on additional land surface processes impacting the climate system. In particular, 143 

the ORCHIDEE-CNP branch features a detailed representation of the coupled 144 

cycling of C, N, and P in vegetation and soil (e.g. root uptake of N, the 145 

allocation of N in the tissue of different parts of vegetation biomass, N turnover 146 

in litter and soil organic matter) and the leaching of NH4
+ and NO3

- from soils to 147 

inland waters (Goll et al., 2017, 2018; Sun et al., 2021). The ORCHIDEE-148 

Clateral branch stimulates the large-scale lateral transfer and fate of water, 149 

sediment, particulate (POC) and dissolved organic C (DOC), and CO2 along the 150 

land-river-ocean continuum (Lauerwald et al., 2017; Zhang et al., 2020, 2022).  151 
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Based on the land-to-river inputs of water, POC, DOC and inorganic N 152 

simulated by ORCHIDEE-CNP and ORCHIDEE-Clateral, we developed the 153 

ORCHIDEE-NLAT model to simulate the transfers of reactive N through the 154 

global river network. We use an offline approach which has the advantage of 155 

running fast, and the potential to be coupled with output from other LSMs. In 156 

this offline approach, ORCHIDEE-CNP provides as input the leaching rates of 157 

terrestrial dissolved inorganic N (DIN) with surface runoff and subsoil drainage 158 

and dissolved organic N (DON) leaching from manure. Inputs of terrestrial 159 

DON and particulate organic N (PON) are derived from the leaching and 160 

erosional fluxes of DOC and POC simulated by ORCHIDEE-Clateral and 161 

stoichiometric C:N ratios of dissolved organic matter (DOM) and particulate 162 

organic matter (POM), please refer to section 2.1.2 for details (Fig. 1). 163 

During the twentieth century, global N (DIN and DON) discharge to 164 

surface water from sewage increased about 3.5-fold to 7.7 Tg N yr-1, which has 165 

large impact on the global N lateral transfer. N discharge from sewage also 166 

included in ORCHIDEE-NLAT using N sewage dataset (1900-2010, gridded 167 

maps every five years) reported by Beusen et al. (2016). N in sewage comes 168 

from three kinds of sources: human waste from urban environments, animal 169 

waste, and industrial waste, which has different fates, please read details in Van 170 

Drecht (2009) and Morée et al (2013).  171 

PON, DON and DIN are transported by advection with the flow of water: 172 

from soils to rivers and through the river network all the way to the coast. 173 

Within the river network, part of the transported DON and PON is decomposed 174 

to DIN, and part of DIN is released back to the atmosphere through 175 

denitrification processes. Following previous global modelling approaches 176 

(Aitkenhead-Peterson et al., 2001; Bernot and Dodds, 2005; Wollheim et al., 177 

2008), ORCHIDEE-NLAT simulates DIN denitrification without explicit 178 
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representation of the different DIN species (i.e. NO3
- and NH4

+) or their 179 

interconversion via nitrification (Fig.1).  180 

 181 

Figure 1. Sources of themodel driving data and the main aquatic N 182 
transformation processes in ORCHIDEE-NLAT. 183 

2.1.2. N delivery from upland soils to the river network 184 

The lateral transfer of DOC and POC from land to rivers was used to 185 

constrain DON and PON inputs. PON erosion with runoff originates from three 186 

soil organic matter (SOM) pools characterised by different C:N ratios set to 12, 187 

25 and 8 for active, slow and passive SOM pools, respectively (Zhang et al., 188 

2022). The PON erosion from each pool is calculated by dividing the POC 189 

erosion flux from the same SOM pool by its corresponding C:N ratio. For DON 190 

leaching with runoff and drainage, we relied on measurements of the 191 

stoichiometry of dissolved organic matter, which report C:N ratios in soil and 192 

rivers comprised between 8 and 25, with an average value of around 12 (Kirkby 193 

et al., 2011; Lutz et al., 2011; Tipping et al., 2016; Maranger et al., 2018; 194 

Rodríguez-Cardona et al., 2021). Therefore, the leaching of DON with runoff 195 

and drainage were quantified from ORCHIDEE-Clateral simulations of the 196 

corresponding DOC fluxes and an average C:N ratio of 12, noting that the 197 

resulting flow excludes the DON leaching caused by manure application (this 198 
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source is not accounted for in ORCHIDEE-Clateral). The spatial and temporal 199 

resolution of the resulting DON and PON flow used to force ORCHIDEE-200 

NLAT was 1° with a timestep of one day (Table 1) and these inputs were 201 

resampled to the nominal resolution of ORCHIDEE-NLAT of 0.5° using the 202 

nearest-neighbour resampling (Patil, 2018). 203 

DIN (i.e. NH4
+ and NO3

-) inputs from soils to rivers was prescribed from 204 

a simulation of ORCHIDEE-CNP (Goll et al., 2017a, 2018; Sun et al., 2021) 205 

which include DIN leaching from natural and cultivated (e.g. cropland and 206 

pasture) ecosystems, and account for changes induced by atmospheric N 207 

deposition, fertiliser use and manure application. DON inputs to rivers from 208 

manure application were  prescribed from ORCHIDEE-CNP based on a DON 209 

pool and leaching factor, a separate DON pool from manure being added into 210 

ORCHIDEE-CNP to participate in the subsequent N cycling and leaching 211 

processes. The spatial and temporal resolution of this input dataset was 2° with 212 

a daily time step and were downscaled to the ORCHIDEE-NLAT spatial 213 

resolution of 0.5° using the nearest-neighbour resampling (Patil, 2018) (Table 214 

1).  215 

Finally, the N inputs from sewage (https://doi.org/10.17026/dans-zgs-216 

9k9m) provided at 0.5° globally but with a yearly timestep (Beusen et al, 2016) 217 

were redistributed evenly across each day of the year (Table 1). 218 

2.1.3. N transport and transformation in the river network 219 

ORCHIDEE-NLAT simulates river discharge along a distributed routing 220 

scheme (Vörösmarty et al., 2000). As shown in Fig. 2, surface runoff (FRO) and 221 

belowground drainage (FDR), both as model inputs extracted from ORCHIDEE-222 

Clateral, first feed into the “fast” (Sfast_H2O, m3) and “slow” water reservoirs 223 

(Sslow_H2O, m3), respectively. The delayed outflows from these reservoirs then 224 

feed into the “stream” water reservoir (Sstream_H2O, m3). The outflow rates from 225 
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the fast (Ffastout_H2O, m3 d−1) and slow (Fslowout_H2O, m3 d−1) reservoirs are 226 

calculated at a daily time-step based on a grid-cell-specific topographic index 227 

ftopo (unitless, Vörösmarty et al., 2000) (Table 1) and a reservoir-specific water 228 

turnover factor τ, which translates ftopo into a water residence time for each 229 

reservoir attached to each river segment (Eqs. 1 and 2). Water in the stream 230 

reservoir (Sstream_H2O) in grid cell i then flows downstream (Eq. 3) into the stream 231 

reservoir of grid cell i+1 (Fdownstream_H2O, m3 d−1). The τfast, τslow and τstream are set 232 

to 3.0 days, 25.0 days and 0.24 days, which are default settings in ORCHIDEE 233 

(Ngo-Duc et al., 2006). 234 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓×𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡
         (1) 235 

𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂 = 𝑆𝑆𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠_𝐻𝐻2𝑂𝑂

𝜏𝜏𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠×𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡
        (2) 236 

𝐹𝐹𝑑𝑑𝑓𝑓𝑠𝑠𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐻𝐻2𝑂𝑂 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝐻𝐻2𝑂𝑂

𝜏𝜏𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠×𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡
        (3) 237 

 238 

Figure 2. Schematic plot for the reservoirs and flows of water and N in 239 
ORCHIDEE-NLAT. Ssoil is the soil pool. Sfast, Sslow, Sstream are the “fast”, “slow” 240 
and stream reservoir, respectively. FRO and FDR are surface runoff and 241 
belowground drainage, respectively. Ffastout is the flow from fast reservoir to 242 
stream reservoir. Fslowout is the flow from slow reservoir to stream reservoir. 243 
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Fupstream and Fdownstream are the upstream inputs from basin i-1 and downstream 244 
outputs to basin i+1, respectively. FD is the wet and dry deposition of DIN from 245 
the atmosphere. 246 

Following the routing scheme of water in ORCHIDEE-NLAT, N 247 

contained in surface runoff (FRO) and belowground drainage (FDR) flows into the 248 

fast and slow reservoir, respectively. Subsequently, and depending on the water 249 

residence time, the N stocks in these reservoirs are subject to decomposition and 250 

losses via denitrification. The remaining fractions flow further into the stream 251 

reservoirs, which also receive N inputs delivered directly by sewage (Fig. 2). 252 

Within stream reservoirs, N is transformed by biogeochemical reactions and 253 

flows from grid cell to grid cell along the river routing scheme. The timescale 254 

for biogeochemical transformation processes scale to the water residence time 255 

(and hence topography) within the river network, and the fraction of N that is 256 

not lost to the atmosphere via denitrification is ultimately exported to the coast. 257 

The biogeochemical reactions within each reservoir include the decomposition 258 

of PON and DON to DIN, and the denitrification of DIN to N gas which is 259 

assumed all released to the atmosphere (Fig. 2). The mass balance equations for 260 

the N stocks in different reservoirs are calculated as follows:  261 

𝑑𝑑𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝑅𝑅𝑂𝑂_𝑃𝑃𝑂𝑂𝑃𝑃 − 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃 − 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃     (4) 262 

𝑑𝑑𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝑅𝑅𝑂𝑂_𝐷𝐷𝑂𝑂𝑃𝑃 − 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 − 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃     (5) 263 

𝑑𝑑𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝑅𝑅𝑂𝑂_𝐷𝐷𝐷𝐷𝑃𝑃 − 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃 − 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃     (6) 264 

𝑑𝑑𝑆𝑆𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠_𝐷𝐷𝑂𝑂𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝐷𝐷𝑅𝑅_𝐷𝐷𝑂𝑂𝑃𝑃 − 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 − 𝑅𝑅𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝑂𝑂𝑃𝑃     (7) 265 

𝑑𝑑𝑆𝑆𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠_𝐷𝐷𝐷𝐷𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝐷𝐷𝑅𝑅_𝐷𝐷𝐷𝐷𝑃𝑃 − 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃 − 𝑅𝑅𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝐷𝐷𝑃𝑃     (8) 266 
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𝑑𝑑𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝑃𝑃𝑂𝑂𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃 + 𝐹𝐹𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃 − 𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃 −267 

𝐹𝐹𝑑𝑑𝑓𝑓𝑠𝑠𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃           (9) 268 

𝑑𝑑𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝑂𝑂𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 + 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 + 𝐹𝐹𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 + 𝐹𝐹𝑓𝑓𝑑𝑑𝑠𝑠𝑓𝑓𝑠𝑠𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 −269 

𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 − 𝑅𝑅𝑑𝑑𝑓𝑓𝑠𝑠𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃               (10) 270 

𝑑𝑑𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝐷𝐷𝑃𝑃

𝑑𝑑𝑓𝑓
= 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓t_𝐷𝐷𝐷𝐷𝑃𝑃 + 𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓t_𝐷𝐷𝐷𝐷𝑃𝑃 + 𝐹𝐹𝑓𝑓𝑢𝑢𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓m_𝐷𝐷𝐷𝐷𝑃𝑃 + 𝐹𝐹𝑓𝑓𝑑𝑑𝑠𝑠𝑓𝑓𝑠𝑠e_𝐷𝐷𝐷𝐷𝑃𝑃 +271 

 𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃 + 𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 − 𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝐷𝐷𝑃𝑃 − 𝐹𝐹𝑑𝑑𝑓𝑓𝑠𝑠𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝐷𝐷𝑃𝑃           (11) 272 

where Fupstream_PON (g N d-1), Fupstream_DON (g N d-1) and Fupstream_DIN (g N d-1) 273 

represent the inflow rates of PON, DON and DIN, respectively, from upstream 274 

grids to the next grid; Fdownstream_PON (g N d-1), Fdownstream_DON (g N d-1) and 275 

Fdownstream_DIN (g N d-1) represent outflow rates of PON, DON and DIN from a 276 

given grid to downstream grid, respectively. For each N species, the N inputs to 277 

a stream reservoir in a given grid cell i (Fupstream_PON, Fupstream_DON and 278 

Fupstream_DON in Eqs. 9-11) is equal to the N outflow from the upstream stream 279 

reservoir in the grid cell i-1 (Fstreamdown_PON, Fstreamdown_PON and Fstreamdown_PON in 280 

Eqs. 17-19). 281 

We assume that N concentrations are homogeneously distributed within 282 

each reservoir of each grid and that the transfers of N from one reservoir to 283 

another simply follow that of water. N transfers are calculated according to: 284 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂
                 (12) 285 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂
                 (13) 286 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂
                  (14) 287 

𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝑂𝑂𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠_𝐻𝐻2𝑂𝑂
                 (15) 288 

𝐹𝐹𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠_𝐻𝐻2𝑂𝑂
                 (16) 289 
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𝐹𝐹𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑠𝑠𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝐻𝐻2𝑂𝑂
                      (17) 290 

𝐹𝐹𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑠𝑠𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝐻𝐻2𝑂𝑂
                      (18) 291 

𝐹𝐹𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑠𝑠𝑑𝑑_𝐷𝐷𝐷𝐷𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡𝑓𝑓𝑓𝑓_𝐻𝐻2𝑂𝑂

𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝐻𝐻2𝑂𝑂
                      (19) 292 

where all the S terms represent N (g N) and water stocks (m3), and F terms 293 

represent flow rates of water (m3 d-1) and N (g N d-1) . 294 

Temperature controls the decomposition rates of organic N in rivers 295 

(Ferreira et al., 2020). Following the algorithm of Xia et al. (2013), the rates of 296 

PON and DON decomposition in each reservoir are calculated using first-order 297 

kinetics of the corresponding N stock and a Q10 temperature dependence based 298 

on water temperature. 299 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑃𝑃𝑂𝑂𝑃𝑃 × 𝐾𝐾𝑃𝑃𝑂𝑂𝑃𝑃 × 𝑄𝑄10
𝑇𝑇𝑇𝑇−𝑇𝑇𝑠𝑠𝑠𝑠𝑓𝑓1

10              (20) 300 

𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝑃𝑃𝑂𝑂𝑃𝑃 × 𝐾𝐾𝑃𝑃𝑂𝑂𝑃𝑃 × 𝑄𝑄10
𝑇𝑇𝑇𝑇−𝑇𝑇𝑠𝑠𝑠𝑠𝑓𝑓1

10             (21) 301 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝑂𝑂𝑃𝑃 × 𝐾𝐾𝐷𝐷𝑂𝑂𝑃𝑃 × 𝑄𝑄10
𝑇𝑇𝑇𝑇−𝑇𝑇𝑠𝑠𝑠𝑠𝑓𝑓1

10              (22) 302 

𝑅𝑅𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝑂𝑂𝑃𝑃 × 𝐾𝐾𝐷𝐷𝑂𝑂𝑃𝑃 × 𝑄𝑄10
𝑇𝑇𝑇𝑇−𝑇𝑇𝑠𝑠𝑠𝑠𝑓𝑓1

10                    (23) 303 

𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝑂𝑂𝑃𝑃 × 𝐾𝐾𝐷𝐷𝑂𝑂𝑃𝑃 × 𝑄𝑄10
𝑇𝑇𝑇𝑇−𝑇𝑇𝑠𝑠𝑠𝑠𝑓𝑓1

10             (24) 304 

KPON (0.028 d-1) represents the average PON decomposition rate at 20℃ in 305 

water (Islam et al., 2012); KDON (0.07 d-1) represents the average DON 306 

decomposition rate at the reference temperature of 20℃ in water  (Xia et al., 307 

2013); Q10 is the temperature sensitivity of PON and DON decomposition rates 308 

(= 2.0 after Liu et al., 2021; Yang et al, 2015); TW is the water temperature 309 

(℃); and Tref1 is the reference temperature for PON and DON decomposition 310 

(=20℃). 311 
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The denitrification rates of DIN decrease with stream depth, because 312 

most denitrification happens in benthic sediments rather than in the water 313 

column, so high benthic area to water volume ratios result in high denitrification 314 

rates (Bernot and Dodds, 2005; Aitkenhead-Peterson et al., 2001). In addition, 315 

denitrification rates are also controlled by temperature (Jung et al., 2014; Ma et 316 

al., 2022). The denitrification is simulated by adapting the equations of Pauer et 317 

al. (2009): 318 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐷𝐷𝐷𝐷𝑃𝑃

𝑑𝑑𝑑𝑑𝑢𝑢𝑓𝑓ℎ
× 𝐾𝐾𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹𝑇𝑇_𝐷𝐷𝐷𝐷𝑃𝑃               (25) 319 

𝑅𝑅𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝐷𝐷𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑠𝑠𝑡𝑡𝑠𝑠_𝐷𝐷𝐷𝐷𝑃𝑃

𝑑𝑑𝑑𝑑𝑢𝑢𝑓𝑓ℎ
× 𝐾𝐾𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹𝑇𝑇_𝐷𝐷𝐷𝐷𝑃𝑃               (26) 320 

𝑅𝑅𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑_𝐷𝐷𝐷𝐷𝑃𝑃 = 𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠_𝐷𝐷𝐷𝐷𝑃𝑃

𝑑𝑑𝑑𝑑𝑢𝑢𝑓𝑓ℎ
× 𝐾𝐾𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹𝑇𝑇_𝐷𝐷𝐷𝐷𝑃𝑃              (27) 321 

𝐹𝐹𝑇𝑇_𝐷𝐷𝐷𝐷𝑃𝑃 = 𝑒𝑒
−(𝑇𝑇𝑇𝑇−𝑇𝑇𝑠𝑠𝑠𝑠𝑓𝑓2)2

𝑇𝑇𝑠𝑠𝑠𝑠𝑓𝑓2
2

                 (28) 322 

𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑒𝑒2.56 × 𝑄𝑄0.423, 1.0)               (29) 323 

where KDIN (0.15 d-1) represents the denitrification rate in water at 25℃ 324 

(Alexander et al., 2009); FT_DIN (unitless) represents the dependency of 325 

denitrification on temperature (Ma et al., 2022); Tref2 is the reference 326 

temperature for denitrification (=25℃); Here 1
𝑑𝑑𝑑𝑑𝑢𝑢𝑓𝑓ℎ

 (unitless) represents the 327 

factor that simulates the role of the benthic surface area to water volume ratio as 328 

a key control factor of denitrification rates. The stream depth is simulated 329 

according to Eq. 29 (Raymond et al., 2012). Therefore, aside from available 330 

DIN stocks, denitrification rates are spatially and temporally dependent through 331 

the effects of water residence time (controlled by topography), temperature and 332 

water depths (controlled by discharge). See Tables A1 and A2 for a summary of 333 

all variables, fluxes and processes incorporated in ORCHIDEE-NLAT.   334 

2.2. Observational data 335 
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Riverine water discharge from the Global Runoff Data Centre (GRDC) 336 

(Federal Institute of Hydrology, 2018) and riverine TN and NO3
- concentrations 337 

from the Global River water Quality Archive (GRQA) (Virro et al., 2021) were 338 

used to evaluate ORCHIDEE-NLAT (Fig. 3). We retrieved GRDC water 339 

discharge data for 350 gauging stations with a catchment area greater than 50 340 

000 km2. From the GRQA data, only time-series with more than two 341 

observations in each month of one year were retained for model evaluation. For 342 

N concentrations, after removing duplicates in the GRQA database, we 343 

collected data of TN for 3507 sites and NO3
- for 1841 sites. Moreover, as 344 

observations of NO3
- at a given site are generally more frequent and cover a  345 

longer time span than for TN, we used the strong correlation between both 346 

species to estimate TN concentrations from NO3
- if only the latter were 347 

available (yellow dots in Fig. 3). The prediction equation applied in this study 348 

(Eq. 30, Fig. S1) was obtained based on GRQA data at 148 sites with 349 

simultaneous concentrations of both TN and NO3
- (R2 =0.78):  350 

𝐶𝐶𝑇𝑇𝑃𝑃_𝑓𝑓𝑜𝑜𝑓𝑓 = 1.33 × 𝐶𝐶𝑃𝑃𝑂𝑂3_𝑓𝑓𝑜𝑜𝑓𝑓 + 0.56               (30) 351 

where CTN_obs (g N m-3) and CNO3_obs (g N m-3) represent the observed 352 

concentrations of TN and NO3
-, respectively. 353 

The TN flow rates equal to the water discharge rates multiplied by N 354 

concentrations. Therefore, for a given GRDC site, we systematically selected 355 

the nearest GRQA site with reported N concentration (McDowell et al., 2021) to 356 

calculate the flux:  357 

𝐹𝐹𝑇𝑇𝑃𝑃_𝑓𝑓𝑜𝑜𝑓𝑓 = 𝐹𝐹𝑊𝑊_𝑓𝑓𝑜𝑜𝑓𝑓 × 𝐶𝐶𝑇𝑇𝑃𝑃_𝑓𝑓𝑜𝑜𝑓𝑓                (31) 358 

where FTN_obs (g N d-1) and FW_obs (m3 d-1) represent observed rates of TN flow 359 

and water discharge, respectively.  360 

Since TN concentrations for several large rivers (e.g., Amazon and 361 

Chinese rivers) were missing in GRQA, we complemented this dataset by 362 
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collecting additional observational TN data from peer-reviewed literature (green 363 

dots in Fig. 3), resulting in the addition of 20 sites to our database, see details in 364 

Table S1. 365 

 366 

Figure 3. Location of observational sites for N concentrations. Pink dots 367 
represent sites with observations of total nitrogen (TN),116 sites; yellow dots 368 
represent sites with observations of NO3

-, 53 sites; green dots represent sites 369 
with observations of TN from published literature, 20 sites (Table S1); and 370 
black stars represent sites with time series of water discharge and TN flow. 371 

2.3. Simulation protocol and analysis of model results 372 

2.3.1. Simulation protocol 373 

ORCHIDEE-NLAT was applied to simulate the lateral transfer of PON, 374 

DON and DIN, as well as the decomposition of PON and DON, and the 375 

denitrification of DIN within the river network over the period 1901-2014. The 376 

model was run at 0.5° spatial resolution and daily temporal resolution, using the 377 

downscaled terrestrial forcings as inputs (see section 2.1.2). Running 378 

ORCHIDEE-NLAT at a daily step enables us to evaluate the model 379 

performance in simulating not only long-term trends but also the seasonality in 380 

lateral N transfers and transformations within the global river network. Model 381 

evaluation was conducted at a daily time-step by comparing the amount of 382 

simulated and observed TN lateral transfer at three sites with a long time series 383 
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of observations for TN flow. We also evaluated the performance of 384 

ORCHIDEE-NLAT in simulating annual lateral TN transfer against 385 

observational data from the selected 189 sites around the world. The simulated 386 

total amounts of PON, DON and DIN from land to river and from river to ocean 387 

were further compared with previously published global N models, namely 388 

IMAGE-GNM (Vilmin et al., 2018), FrAMES-N (Frame-work for Aquatic 389 

Modeling in the Earth System) (Wollheim et al., 2008), MBM (Mass Balance 390 

Model) (Green et al., 2004), and Global NEWS2 (Mayorga et al., 2010).  391 

 Table 1 summarises the forcing and evaluation data along with their 392 

spatiotemporal resolution and references to the gridded products and point 393 

datasets.  394 
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Table 1. List of forcing data needed to run ORCHIDEE-NLAT and the data 395 
used to evaluate the simulation results. Sres and Tres are the original spatial and 396 
temporal resolution of the forcing data, respectively. 397 

. 
Data Sres Tres Data source 

Forcing 
data 

Runoff 

1° daily 
ORCHIDEE-

Clateral 
 (Zhang et al., 2022) 

Drainage 

DOC and POC with runoff 

DOC and POC with drainage 

Soil temperature (TS) 

DIN with runoff and drainage 
2° daily ORCHIDEE-CNP  

(Sun et al., 2021) DON leaching from manure 
application  

DIN and DON with sewage 0.5° yearly Beusen et al., 2014 

Flow direction 
0.5° / Vörösmarty et al., 

2000 Topographic index (ftopo) 

Evaluation 
data 

Riverine water discharge / daily GRDCa 

Riverine TN and NO3
- 

concentration / point 
measurement GRQAb 

Riverine TN concentration / point 
measurement Table S1 

a Global Runoff Data Centre (GRDC) (Federal Institute of Hydrology, 2018); b Global River 398 

water Quality Archive (GRQA) (Virro et al., 2021). 399 

2.3.2. Model evaluation metrics 400 

To evaluate the performance of ORCHIDEE-NLAT in reproducing the 401 

spatial variations of water and N flow, the relative predictive error (RPE) and 402 

the coefficient of determination R2 were determined. The R2 represents how 403 

much variation in the observations can be explained by the model. The RPE 404 

quantifies the extent to which ORCHIDEE-NLAT overestimates or 405 

underestimates observations of water discharge and TN flow at grid level. 406 
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𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀−𝑂𝑂
𝑂𝑂

× 100%                 (32) 407 

where 𝑀𝑀 is the mean of simulated values, 𝑂𝑂 is the mean of observed values. 408 

To assess the performance of ORCHIDEE-NLAT in reproducing time 409 

series of TN and water flows, the relative root mean square root (RRMSE) and 410 

Nash-Sutcliffe coefficient (NSE) were determined. 411 

               (33) 412 

                (34) 413 

where n represents the total number of days when observations are available at a 414 

given site; Oj and Mj represent observed and modelled values of water/TN flow 415 

on day j . NSE can take values between 1 and −∞. An NSE = 1 would mean a 416 

perfect fit between observed and simulated values, NSE = 0 means that using 417 

the mean observed value as constant simulated value would lead to as much 418 

deviation between observed and predicted values as using the actual simulated 419 

values. If NSE is negative, there is more deviation between simulated and 420 

observed values than between the observed values and their mean. 421 

2.3.3. Seasonality analysis 422 

To explore the seasonal variability of water discharge, TN flow, TN 423 

concentration and denitrification rates during 2001-2014 at the global-scale, we 424 

constructed spatial maps of monthly anomalies following the method by 425 

Roobaert et al (2019). The FV represents the relevant flux, rate or concentration, 426 

we have that for each grid cell, the monthly anomaly of FV can be calculated as 427 

the difference between the FV value for a given month and its annual mean: 428 

                      (35) 429 
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where 𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓′  (g N yr-1) represent the anomaly of FV in month t, while 𝐹𝐹𝐹𝐹𝑓𝑓 (g N 430 

yr-1) and  (g N yr-1) represent the values of FV in month t and for the annual 431 

mean, respectively. 432 

The seasonality, that is the amplitude in seasonal water discharge, N flow 433 

rates, N concentrations and denitrification rates, is expressed as the root-mean-434 

square (RMS) of the monthly 𝐹𝐹𝐹𝐹𝐹𝐹′. 435 

𝑠𝑠𝑒𝑒𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑉𝑉 = � 1
12

× ∑ (𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓′ )212
1                (36) 436 

3. Results and discussion 437 

3.1. Model evaluation 438 

Evaluation of the water discharge results using the GRDC data indicates 439 

that for major rivers with drainage areas larger than 50 000 km2 spread over the 440 

globe, ORCHIDEE-NLAT reproduces the magnitude and seasonal variations of 441 

water discharge well. Overall, the model simulation explains 90% of the spatial 442 

variation in the observed long-term average water discharges (Fig. 4a, Fig. S2 443 

a). The absolute values of RPE for the simulated average water discharges are 444 

mostly smaller than 50% (Fig. S3a). At 25 sites (13% of all sites), the absolute 445 

values of RPE are larger than 100%, but the annual mean values of water 446 

discharge at each of these sites are less than 1.0×1011 m3 yr-1, indicating that 447 

large errors only occur at some sites draining relatively small basins (Fig. S3a). 448 

The discrepancy between model and observations at these sites may be caused 449 

by two factors: (1) a potentially substantial discrepancy between the stream 450 

routing scheme (delineation of catchment boundaries) defined by the forcing 451 

data at 0.5° resolution and the real river network; and (2) the presence of stream 452 

channel bifurcations that are poorly resolved by the model (Zhang et al., 2022). 453 

At some sites, such as the Columbia, Rhine and Mississippi Rivers, 454 
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ORCHIDEE-NLAT also captures the seasonal variation of the water discharges 455 

well, with RRMSE ranging from 30% to 41% (Fig. 5 a1-a3). 456 

Evaluation of area-averaged TN flows are overall comparable to observed 457 

TN flows at the 189 sites extracted from the GRQA database and additional 458 

published literature. ORCHIDEE-NLAT explains 77% of the observed spatial 459 

variation of long-term TN flows across sites (Fig. 4b, Fig. S2b). The absolute 460 

values of RPE of the simulated average TN flows are mostly smaller than 50% 461 

(Fig. S3 b). ORCHIDEE-NLAT significantly underestimated (RPE < -100%) or 462 

overestimated (RPE > 100%) the observed TN flows at 32 sites (17% of all 463 

sites). Similar to water discharge, these sites are all located in relatively small 464 

basins with annual water discharge less than 1.0×1011 m3 yr-1 (Fig. S3 b). At 9 465 

sites (28% of the 32 sites), the RPE of TN flow is very close to that of water 466 

discharge, showing that at these sites, the water discharge (and not the N 467 

concentrations) is the main reason for the discrepancies between observed and 468 

modelled TN flows. The results reveal that the RPE of TN flow is relatively 469 

small for large rivers, such as at sites located in the lower reaches of the 470 

Columbia, Rhine and Mississippi Rivers, where RPE values are -25%, -16% 471 

and 26%, respectively. ORCHIDEE-NLAT also reproduces well the seasonal 472 

patterns of TN flow in these rivers, with RRMSE ranging from 30% to 64% 473 

(Fig.5 b1-b3). At the Rhine river site, the NSE of TN flow is negative, reveals 474 

that although the seasonal pattern of TN flow simulated by ORCHIDEE-NLAT 475 

is similar to that observed, it does not capture accurate trends on the day scale 476 

(Fig.5 b2). 477 

The simulated DIN concentrations display broadly similar spatial patterns 478 

and concentration ranges as obtained from a recent observation based machine-479 

learning (ML) based assessment (Marzadri et al., 2021). ML involves a fair 480 

amount of empirical modelling, and this comparison can thus not be considered 481 

as a direct model evaluation by data. Nevertheless, the agreement between both 482 
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assessments (Fig. S4) lends further confidence in the capacity of our model to 483 

realistically simulate the N cycle along the global river network.  484 

 485 

Figure 4. Evaluation of ORCHIDEE-NLAT. Global-scale comparison between 486 
observed and modelled annual-mean water discharge (a) and TN flow (b). Pink 487 
symbols represent sites with observations of TN from GRQA, yellow symbols 488 
represent GRQA sites for which TN concentrations were estimated from 489 
observations of NO3

-, and green symbols represent sites with observations of 490 
TN from published literature. 491 
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492 
Figure 5. Time series of water discharge (a) and TN flow (b). (a1) and (b1) 493 
Columbia-river (46.18°N, 123.18°W); (a2) and (b2) Rhine-river, (51.84°N, 494 
6.11°E); (a3) and (b3) Mississippi river (32.25°N, -91.25°W).  495 

3.2. Temporal and spatial patterns of N flows 496 

3.2.1. Trends in global N flows 497 

Averaged over the 2001-2014 period, the annual TN input from soils to 498 

rivers, TN exports to oceans and denitrification in transit amount to 67.4 Tg N 499 

yr-1, 40.8 Tg N yr-1, and 26.6 Tg N yr-1, respectively. These three N fluxes show 500 

increasing trends from 1901 to 2014. The global annual TN input to rivers 501 

increased by 82.3 %, from 36.8 Tg N yr-1 during 1901-1910 to 67.4 Tg N yr-1 502 

during 2001-2014 (Fig. 6 a). The global annual TN exports to oceans increased 503 

by 50.4 % from 27.1 Tg N yr-1 to 40.8 Tg N yr-1. Most of the increase in N 504 

exports to oceans is from DIN which doubled over the simulation period, from 505 

9.6 Tg N yr-1 to 20.8 Tg N yr-1, while DON exports show a much smaller but 506 
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still substantial increase of 56.9% (Fig. 6b). In contrast, PON exports to oceans 507 

show a slightly decreasing trend. The increase in global denitrification mostly 508 

follows that of increasing DIN inputs, with a relative increase of 174.0 %, from 509 

9.7 Tg N yr-1 to 26.6 Tg N yr-1. The global TN input into rivers, TN exports to 510 

oceans and the denitrification in rivers all show a small peak between 1926 and 511 

1931 due to the relatively higher surface runoff but lower belowground drainage 512 

during this period (Fig. S5). The reality of this transient peak is however 513 

questionable as it results mostly from meteorological forcing, which is uncertain 514 

for the beginning of the 20th century.  515 

 516 
Figure 6. Trends in global N flows from 1901 to 2014: (a) TN inputs into rivers, 517 
TN exports to oceans and denitrification; (b) DIN, DON and PON exports to 518 
oceans. TN: total nitrogen; DIN: dissolved inorganic nitrogen; DON: dissolved 519 
organic nitrogen; PON: particulate organic nitrogen. 520 

3.2.2. Spatial patterns in N flows and concentrations 521 

Annual mean TN input into rivers during 2000-2014 shows large spatial 522 

heterogeneity, with higher values mainly located in eastern North America, 523 

South America, Western Europe, tropical Africa, South Asia, Southeast Asia 524 

and Southeast China (Fig. 7a). When compared with 1901-1910, the TN inflow 525 

into rivers increased in most areas (about 70%), with the highest increase in 526 

China exceeding 300% (Fig. 8a). Annual mean contemporary denitrification 527 

rates (2001-2014) also reveal large spatial heterogeneity (Fig. 7b) with high 528 

denitrification rates in large tropical and subtropical rivers, for example, the 529 
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Amazon river, the Nile river and the Congo river. Over the entire simulation 530 

period, the grids with highest relative denitrification increases are mostly 531 

located in the subtropics (Fig. 8b).  532 

The 2001-2014 TN export to oceans also varies substantially across 533 

regions (Fig. 7c). The riverine TN exports are relatively low for the Arctic 534 

Ocean, the western and southern coasts of Australia, and the coastal zone 535 

adjacent to desert areas in South America (e.g., the Atacama Desert and the 536 

Patagonian Desert), Africa (the Sahara Desert and the Namib Desert), and Asia 537 

(e.g., the Arabian Desert, the Thar Desert in India, the deserts of Eastern Iran, 538 

and the Syrian Desert) (Fig. 7c). On the contrary, the Amazon region in South 539 

America, African rainforest region, Western Europe, South Asia, and southeast 540 

China are prominent hot spots of riverine TN exports (Fig. 7c). Unsurprisingly, 541 

the TN export to oceans increased in most regions since the beginning of the 542 

20th century (Fig. 8c) and in regions such as the south-eastern coastal areas of 543 

China, not only the recent TN exports to oceans are relatively high, but also the 544 

percentage increase over the 20th century exceeded 100% (Fig. 7c and Fig. 8c).  545 

Annual mean contemporary concentration of TN at river mouths also 546 

shows large spatial heterogeneity (Fig. 7d), which differs from that of TN 547 

export to oceans (Fig. 7c). For instance, the Amazon region is one of the 548 

hotspots for TN exports, but its TN concentrations are low (<1 gN m-3), because 549 

the water discharge and denitrification rates are both high (Fig. 7b, Fig. S6 a). 550 

The highest TN concentrations (>5 gN m-3) are found in areas with intense 551 

human activity, for example San Francisco area, Peru, Spain, Egypt (Nile River 552 

estuary) and southeastern coastal areas of China (Bu et al., 2019; Hou et al., 553 

2022; Yang et al., 2023). 554 

The spatial distribution of changes in TN concentrations from 1901-1910 555 

to 2001-2014 is also distinct from that of TN exports (Fig. 8c, d). For example, 556 

along the eastern coast of Amapá state in Brazil, and the western coast of 557 
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Guinea, Sierra Leone, and Libya, TN exports to the oceans decreased by more 558 

than 20%, but TN concentrations increased by more than 10% (Fig. 8c, d). This 559 

phenomenon is due to negative trends in water discharge from the 560 

corresponding watersheds (Fig. 9, Fig. S6). In most regions, the ratio of TN 561 

concentration changes to TN flux changes is between 0 and 1, meaning that TN 562 

flux changes are the result of the joint action of changes in water and TN 563 

concentrations (TN inputs into rivers) (Fig. 9). 564 

 565 

Figure 7. Spatial patterns of annual mean N fluxes and concentrations during 566 
2001-2014: (a) TN inputs into rivers; (b) denitrification rates in rivers; (c) TN 567 
exports to oceans; (d) TN concentrations at rivers mouths. To display the spatial 568 
patterns of denitrification in rivers better, we excluded data with denitrification 569 
rates less than 0.001 GN yr-1 per grid. 570 
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 571 

Figure 8. Spatial patterns of changes from 1901–1910 to 2001–2014 of: (a) TN 572 
inputs into rivers; (b) denitrification; (c) TN exports to oceans; (d) TN 573 
concentrations. 574 

 575 

Figure 9. Ratio of TN exports changes to TN concentration changes from period 576 
1901–1910 to 2001–2014. 577 

3.2.3. Seasonal variability in N flows and concentrations 578 

The seasonality of TN inputs into rivers over 2001-2014 is most 579 

pronounced in the central United States, Europe, South Asia, Southeast Asia 580 

and southeast China (Fig. 10a). The frequency distribution of the seasonal 581 

amplitude in inputs (Fig.10a) is broadly similar to that of the mean annual 582 

inputs (Fig 7a), suggesting a seasonal variability of similar magnitude than the 583 
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broad, global scale spatial variability. A similar finding can also be observed for 584 

the denitrification rates, with seasonal and spatial variations of the same order 585 

of magnitude for both (Fig. 7b, 10b).  586 

The seasonal amplitudes of TN exports to oceans over 2001-2014 shows 587 

highest values (> 10 Gg N yr-1) along South Asia, and southeast China, and to a 588 

lesser extent (1-10 Gg N yr-1) along the coastline of the Amazon region, the 589 

rainforest regions of Africa, Western Europe, and Mexico (Fig. 10c). 590 

Unsurprisingly, a large share of this seasonal variability is due to the river 591 

discharge (Fig. S7 a). Our results suggest that the seasonality of TN 592 

concentrations at the rivers' mouths has different spatial pattern with seasonal 593 

amplitudes of TN exports (Fig. 10c, d). This result is important because the 594 

ocean biogeochemical modelling community typically uses annual mean TN 595 

fluxes derived from Global News to force their simulations, an downscale these 596 

inputs to monthly values under the assumption that the seasonal variability of 597 

the flux is entirely due to the river discharge. Our simulations thus stresses the 598 

need for models explicitly resolving the seasonal variability of fluxes and 599 

concentrations. 600 

We also normalized seasonalities by the mean value of nitrogen flux or 601 

concentrations. For TN inputs into reivers, denitrification and TN exports, 602 

normalized seasonal maps all show higher values in the middle and high 603 

latitudes of the Northern Hemisphere and lower values in the low latitudes and 604 

the Southern Hemisphere (Fig. S8). And it is obvious that the regional 605 

heterogeneity of normalized seasonality of TN concentration is much weaker 606 

than that of nitrogen flux (Fig. S8).  607 
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 608 

Figure 10. Spatial distribution of seasonality for TN and denitrification over 609 
2001-2014: (a) TN inputs into rivers; (b) TN exports to oceans; (c) dnitrification 610 
removal rates; (d)TN concentrations at rivers mouths.  611 

3.3. Comparison with other models 612 

We compared the trends of global N input to rivers simulated by 613 

ORCHIDEE-NLAT and the recently published IMAGE-GNM (Vilmin et al., 614 

2018). Overall, both models capture a similar increasing trend of global DIN 615 

delivery from land to rivers from 1901 till 2001 (Fig. 11a). During 1961-2000, 616 

the global-scale interannual variability of DIN simulated by ORCHIDEE-NLAT 617 

is comparatively stronger than that simulated by IMAGE-GNM (Fig. 11a). To 618 

some extent, this could be due to the different temporal resolution of the two 619 

models (daily for ORCHIDEE-NLAT, yearly for IMAGE-GNM) and their 620 

associated climate forcings. That is, ORCHIDEE-NLAT calculates annual 621 

means from daily fluxes, while IMAGE-GNM does not resolve the intra-annual 622 

variability. The results however markedly differ regarding organic N 623 

(ON=PON+DON) with IMAGE-GNM simulating a significant increase from 624 

24.9 Tg N yr-1 during 1901-1910 to 37.9 Tg N yr -1 in during 1990-2000, while 625 

the ON inflow simulated by ORCHIDEE-NLAT shows a weaker increasing 626 

trend over the same period (26.5 Tg N yr-1 during 1901-1910 to 32.4 Tg N yr-1 627 
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during 1990-2000). The weaker trend in our model can primarily be explained 628 

by the increasing DON inflow being offset by a decreasing PON inflow (Fig. 629 

11c). The fundamental reason for the discrepancy among the two models stems 630 

from their distinct structures and algorithms. In ORCHIDEE-NLAT, the ON 631 

flows into rivers are calculated separately for the dissolved and particulate 632 

compounds using a process-based representation of the soil C stock dynamics 633 

and C:N ratios, as well as the rates of runoff and drainage. The approach is 634 

different in IMAGE-GNM which calculates the bulk ON flows (DON+PON) 635 

based on empirical formulas (Vilmin et al., 2018). Specifically, it calculates the 636 

ON delivery from land to rivers with drainage based on the TN delivery rate, 637 

assuming that 50% of this flux is in the form of ON. For ON flows into rivers 638 

with runoff, IMAGE-GNM distinguishes two runoff mobilisation pathways, i.e. 639 

losses from recent nutrient applications in forms of fertiliser and manure, and a 640 

memory effect related to long-term historical changes in soil nutrient 641 

inventories. These two pathways are simulated based on empirical formulas 642 

(Vilmin et al., 2018). In ORCHIDEE-NLAT, we used default C:N ratios (from 643 

ORCHIDEE-Clateral) in different SOM pools to calculate the PON flow out of 644 

soils, and a constant C:N ratio (averaged values from references) to simulate 645 

DON flow out of soils. The assumption of constant C:N ratio for dissolved 646 

matter in soil could to some extent contribute to the weaker trend in ON 647 

delivery to rivers simulated by ORCHIDEE-NLAT, since some studies have 648 

revealed that DOC:DON ratios vary with time and land cover (Li et al., 2019; 649 

Yates et al., 2019). 650 
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 651 

Figure 11. Global terrestrial N flows into rivers from 1901 to 2001 simulated by 652 
ORCHIDEE-NLAT and IMAGE-GNM (Vilmin et al., 2018): (a) DIN; (b) ON 653 
(DON+PON); (c) DON and PON simulated by ORCHIDEE-NLAT. 654 

The simulated lateral N flows from land to rivers and N exports to oceans 655 

in this study are now compared with those simulated by other models for 656 

different time horizons, noting that each model covers different time periods 657 

(Fig. 12a). Focusing first on the global N flows from land to rivers, we find that 658 

for different time horizons, the simulated N input by ORCHIDEE-NLAT is very 659 

close with those estimated by IMAGE-GNM (Vilmin et al., 2018) and 660 

FrAMES-N (Wollheim et al., 2008) with differences between ORCHIDEE-661 

NLAT and other models for the different time horizons never exceeding 7%. 662 

Although the fraction of DIN in TN over 1901-1910 simulated by ORCHIDEE-663 

NLAT (27%) is slightly lower than that of IMAGE-GNM (29%), the DIN 664 

fractions simulated by these two models both show obvious increasing trends 665 

with time, ORCHIDEE-NLAT and IMAGE-GNM reporting DIN fractions for 666 

the 1991-2000 period reaching 48% and 43%, respectively. A comprehensive 667 
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cross-biome assessment of N composition in rivers also found that the dissolved 668 

N pool shifts from highly heterogeneous to primarily inorganic N in response to 669 

human disturbances (Wymore et al., 2021). Changes in the composition of TN 670 

inputs from land to rivers is primarily caused by the excess inorganic N release 671 

from agricultural (due to the utilisation of fertilisers) and urban (due to the 672 

release of sewage) areas. 673 

The global N export from rivers to oceans simulated by ORCHIDEE-674 

NLAT is also comparable to the estimates from other models. During 1901-675 

1910, the global riverine N export to oceans is 29.0 Tg N yr-1, within the range 676 

of values simulated by IMAGE-GNM (19.0 Tg N yr-1, Vilmin et al., 2018) and 677 

DLEM (29.4 Tg N yr-1, Tian, pers. com.) (Fig. 12b). For the most recent period 678 

(2000s), the simulated riverine N export to oceans is converging, with 679 

differences smaller than 10 % compared to other models such as GlobaNEWS2 680 

(Mayorga et al., 2010), IMAGE-GNM, and DLEM (Fig. 12b). Although the 681 

global riverine TN export to oceans simulated by ORCHIDEE-NLAT is close to 682 

that simulated by GlobalNEWS2 (1970-2010), the TN export reported here 683 

contains a slightly larger fraction of DIN and a slightly lower fraction of PON 684 

compared to GlobalNEWS2 (Fig. 12b).  685 

The TN export to oceans simulated by ORCHIDEE-NLAT and 686 

GlobalNEWS2 are also comparable at continental scale (Fig. 13a), with largest 687 

TN exports from Asia, and lowest exports from Australia. However, the 688 

simulated proportions of N species in the overall TN export show distinct 689 

behaviour between these two models. For example, compared to 690 

GlobalNEWS2, the DIN proportion in TN exports simulated by ORCHIDEE-691 

NLAT is larger in Asia, Africa and South America but smaller in Europe (Fig. 692 

13a).  693 

The magnitude of TN exports simulated by ORCHIDEE-NLAT and 694 

GlobalNEWS2 continue to diverge at basin scale (Fig. 13b). In 8 of the top 20 695 
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basins by area, the difference between the two models is less than 50%, such as 696 

the Congo, the Mississippi, the Ob, the Parana, the Yenisei, the Changjiang, the 697 

Mackenzie and the Nelson. Larger discrepancies can even be observed for 698 

several large river systems. For instance, in the Amazon basin, the TN export 699 

simulated by GlobaNEWS2 is about 2.5 times larger than that simulated by 700 

ORCHIDEE-NLAT. Evaluation of ORCHIDEE-NLAT simulation results 701 

against measurements of TN flow rates in the Amazon River indicates that 702 

ORCHIDEE-NLAT underestimates the TN flow in this basin (Fig. S2). At the 703 

Manacapuru and the Óbidos, two observation sites on the main channel of the 704 

Amazon River, the observed TN flow is 1.90 Tg N yr-1 and 2.82 Tg N yr-1, but  705 

the simulated values are 0.92 Tg N yr-1 and 1.57 Tg N yr-1, respectively. To 706 

evaluate whether the underestimation is caused by less TN inflow into rivers, 707 

we set the river transformation processes to zero, and found that the TN flow is 708 

1.56 Tg N yr-1 at the Manacapuru site and 2.35 Tg N yr-1 at the Óbidos site. 709 

Therefore, even with no N removal ORCHIDEE-NLAT still underestimates the 710 

observed TN flows at these two sites , a finding suggesting that N delivery from 711 

terrestrial ecosystems is too low in the Amazon basin by ORCHIDEE-NLAT. In 712 

the Nile basin, the TN export simulated by ORCHIDEE-NLAT is thirty times 713 

larger than that simulated by GlobalNEWS2. The observed annual exports of 714 

DIN and DON amount to 0.079 Tg N yr-1 and 0.038 Tg N yr-1, respectively 715 

(Badr, 2016). These observed values are of the same magnitude with those of 716 

ORCHIDEE-NLAT reaching 0.113 Tg N yr-1 for DIN and 0.048Tg N yr-1 for 717 

DON. suggesting that our model better captures the observed N export for this 718 

specific basin than GlobalNEWS2.  719 

It should be noted that the GlobalNEWS2 and IMAGE-GNM both have 720 

IMAGE part to simulated N inputs into inland water, but they were developed 721 

based on different hydrological models and use different methods to calculate N 722 

transport and retention. The hydrological model used in GlobalNEWS2 is Water 723 
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Balance Model (WBMplus) (Fekete et al., 2010) , and NEWS models were used 724 

to calculate nutrient retention in streams and reservoirs (Seitzinger et al., 2005, 725 

2010; Mayorga et al., 2010). The hydrological model ued in IMAGE-GNM is 726 

Global Water Balance (PCR-GLOBWB) (Van Beeket al., 2011), and IMAGE-727 

GNM uses the nutrient spiraling approach (Newbold et al., 1981) to describe in-728 

stream retention of both N and P with a yearly time step (following Wollheim et 729 

al., 2008). 730 

In summary, the global total N input to rivers and N export to oceans 731 

simulated by the different models are comparable, but the spatial distribution of 732 

N export to oceans at finer spatial scales shows increasing discrepancies, as 733 

does the chemical speciation. This is mainly due to differences in model 734 

structures, spatial and temporal resolutions and forcing data. Albeit our model 735 

has been evaluated against the largest dataset of river discharge and N 736 

concentrations from the recently assembled global GRQA database, the 737 

significant cross-model discrepancies that emerge as the analysis is refined to 738 

regional patterns and single species urgently calls for ensemble-means 739 

assessments, similar to what has recently been performed for C exports to the 740 

ocean (Liu et al., 2024). 741 
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 742 
Figure 12. Comparison of global TN fluxes estimated by different models: (a) 743 
global TN inputs to rivers; (b) global TN exports to oceans. IMAGE-GNM: 744 
Integrated Model to Assess the Global Environment-Global Nutrient Model 745 
(Vilmin et al., 2018); FrAMES-N: Frame-work for Aquatic Modeling in the 746 
Earth System (Wollheim et al., 2008); MBM: Mass Balance Model (Green et 747 
al., 2004); Global NEWS2: Global Nutrient Export from Watersheds 2 748 
(Mayorga et al., 2010); DLEM, Dynamic Land Ecosystem Model, unpublished 749 
(Tian, pers. com.). 750 
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 751 
Figure 13. Comparison of TN export to oceans simulated by ORCHIDEE-752 
NLAT and GlobalNEWS2: (a) at continental scale over 2001-2010 (Mayorga et 753 
al., 2010); (b) at basin scale over 2001-2010.  754 

3.4. Some limitations to keep in mind 755 

ORCHIDEE-NLAT currently relies on a simplified representation of the 756 

N processes in benthic sediments and water, without explicit simulation of the 757 

hyporheic exchange between sediments and water, instead estimating the 758 

importance of these processes via a scaling factor based on water depth. This 759 

scaling itself relies on a coarse estimate of the stream channel geometry based 760 

on empirical formulas (Raymond et al., 2012). Global-scale databases on the 761 

geomorphic properties of global river channels  including river depth and width 762 

however exist (Andreadis et al., 2013) and could be used in the future to further 763 

refine the representation of N processes in river channels, including the 764 

hyporheic exchange between sediments and water. The use of a constant C:N 765 
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ratio to simulate DON fluxes from soils to rivers is another limitation of 766 

ORCHIDEE-NLAT, since it has been shown to vary over time and land cover 767 

type (Li et al., 2019; Yates et al., 2019). In addition, few studies have focused 768 

on the influence of PON deposition and resuspension on lateral N transfer in 769 

rivers because of the difficulty to represent these processes on the global-scale. 770 

The role of autotrophic production is another process currently omitted 771 

Autotrophs (aquatic macrophytes, algae, cyanobacteria, bryophytes, some 772 

protists, and bacteria) in freshwater consume N through photosynthesis (King et 773 

al., 2014) and may play a significant role in river N cycling. For instance, a 774 

long-term study has shown that as pollution from industrial and wastewater 775 

emissions decreased, in-situ gross primary production increased, prompting a 776 

shift from heterotrophic-dominated (i.e. controlled mainly by nitrification and 777 

denitrification) towards autotrophic-dominated N retention regime in rivers 778 

(Wachholz et al., 2024). In the future, the role of autotrophic production on N 779 

retention should thus be considered, although the large dominance of the 780 

heterotrophic metabolism on a global scale suggests that in-situ aquatic 781 

production is likely a second-order control (Battin et al., 2023). 782 

In the present version of ORCHIDEE-NLAT, river-floodplain dynamics 783 

and channel erosion are currently not represented, because of the incomplete 784 

understanding of the effects of these processes on lateral N transfer, the lack of 785 

reliable parameters from field studies to calculate the effects of these processes 786 

at global scale. Floodplain inundation does not only carry N into river, but also 787 

has a significant impact on N retention efficiency in rivers (Martí et al., 1997; 788 

Hanrahan et al., 2018), and N cycling (e.g., nitrification and denitrification) in 789 

flooded soils (Sánchez-Rodríguez et al., 2019; Hu et al., 2020). For instance, in 790 

the Jiulong River watershed, southeast China, flood events exported 47% and 791 

42 % of the annual land-derived ammonium (NH4
+) and NO3

-, respectively, 792 

although they only occurred 24% of the time (Gao et al., 2018).  793 
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ORCHIDEE-NLAT includes the major sources of riverine N with runoff 794 

and drainage in natural, agricultural and urban ecosystems (Fig. 1). Yet, several 795 

sources are still missing, for example atmospheric N deposition directly onto 796 

rivers and N release from aquaculture (Filoso et al., 2003; Bouwman et al., 797 

2013; Beusen et al., 2016; Gao et al., 2020), suggesting that the N exports to 798 

oceans simulated by ORCHIDEE-NLAT might be conservative. On the other 799 

hand, N retention and recycling in lakes and artificial reservoirs are currently 800 

missing, which have the potential to decrease lateral N flows because they offer 801 

ideal conditions for N burial in sediment or permanent loss via denitrification 802 

(Saunders & Kalff, 2001; Harrison et al., 2009; Akbarzadeh et al., 2019).  803 

Forcing data used by the ORCHIDEE-NLAT (Table 1) introduces 804 

additional uncertainties in the simulation results. The routing scheme of water 805 

and N is driven by a map of streamflow direction at 0.5◦ spatial resolution 806 

(Vörösmarty et al., 2000, https://doi.org/10.1016/S0022-1694(00)00282-1). 807 

There are obvious discrepancies between this routing scheme and the real river 808 

network (Zhang et al., 2022). Deviation of flow direction induces uncertainties 809 

in the simulated riverine water discharge and N flow because the flow direction 810 

directly determines the area of each catchment and the routing of the river.  811 

Finally, although ORCHIDEE-NLAT reproduces the magnitude and 812 

seasonal variations of water and N transfer from land to rivers and oceans well 813 

(Fig. 4, 5), spatial and temporal biases in observational data also affect the 814 

evaluation of model results. Most observations of riverine N are distributed in 815 

North America, South America and Europe. and there is thus a crucial need to 816 

collect more measurements in other regions of the world, especially in Africa. 817 

In addition, despite the strong correlation between TN and NO3
- concentrations, 818 

the application of the resulting empirical equation (Eq. 30) also adds 819 

uncertainties in the observational dataset (Pisani et al., 2017; Niu et al., 2022). 820 
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4. Conclusions  821 

We developed a global N lateral transfer model from land to oceans 822 

through the river network, including the decomposition of DON and PON and 823 

denitrification of DIN during fluvial transport. Evaluations using observation 824 

data from GRDC and GRQA indicate that ORCHIDEE-NLAT reproduce 825 

observed rates and seasonal variations of water discharge and N flow well. The 826 

global simulations of ORCHIDEE-NLAT shows that global TN inputs into 827 

rivers, TN exports to oceans and denitrification rates in rivers increased 828 

significantly over the last century. In particular, the TN export to oceans 829 

increased from 27.1 Tg N yr-1 during 1901-1910 to 40.8 Tg N yr-1 during 2001-830 

2014, with DIN contributing 80% to the TN increase. Our results reveal 831 

significant spatial heterogeneity in the global distribution of N inputs, 832 

transformation and exports to oceans, with East Asia and Southeast Asia as 833 

hotspots of N lateral transfers and their increase. The seasonal amplitude of TN 834 

exports are of similar magnitude than the large-scale spatial heterogeneity in TN 835 

fluxes. Although the global and continental-scale TN export to oceans simulated 836 

by ORCHIDEE-NLAT is similar to that of another widely used model 837 

(GlobalNEWS2), their spatial distribution at the basin scale reveals significant 838 

discrepancies. One key strength of ORCHIDEE-NLAT is its ability to resolve N 839 

processes at the daily timescale, using a framework fully compatible with land 840 

surface model outputs, hence allowing to account for the effects of climate 841 

change, atmospheric composition changes, land-use change, and agricultural 842 

practices (e.g., manure and fertiliser use) in a fully consistent way. 843 

ORCHIDEE-NLAT has however its own limitations and we plan to further 844 

enhance its capabilities with additional processes (e.g. autotrophy, variable C:N 845 

ratios, erosion-deposition on river bed), additional sources (e.g. aquaculture, 846 

direct N deposition) and interconnections with other (semi)-aquatic and benthic 847 

systems (hyporheic zone, lakes, reservoirs, floodplains). We will also continue 848 
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to collect more observation data to further calibrate and evaluate ORCHIDEE-849 

NLAT. Last but not least, ORCHIDEE-NLAT is currently being dynamically 850 

embedded into ORCHIDEE-3 (Vuichard et al., 2019), the land surface scheme 851 

embedded in the IPSL Earth System Model opening new avenues towards fully 852 

coupled simulations of the land-ocean-atmosphere N cycle. The current offline 853 

version of our model could also be easily coupled to other LSMs representing N 854 

cycling in terrestrial ecosystems.  855 

  856 
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Appendices 857 

Table A1. Abbreviation used in the text. 858 

Abbreviation Meaning unit 
FDR_DIN leaching rates of DIN with drainage g N d-1 
FDR_DON leaching rates of DON with drainage g N d-1 
FRO_DIN leaching rates of DIN with runoff g N d-1 

FRO_DON leaching rates of DON with runoff g N d-1 
FRO_PON erosion rates of PON with runoff g N d-1 
Fsewage_DIN DIN inflow rates from sewage g N d-1 
Fsewage_DON DON inflow rates from sewage g N d-1 
Ffastout_H2O outflow rates of water from fast reservoirs to stream reservoirs m3 d-1 

Ffastout_DIN outflow rates of DIN from fast reservoirs to stream reservoirs g N d-1 
Ffastout_DON outflow rates of DON from fast reservoirs to stream reservoirs g N d-1 
Ffastout_PON outflow rates of PON from fast reservoirs to stream reservoirs g N d-1 
Fslowout_H2O outflow rates of water from slow reservoirs to stream reservoirs m3 d-1 
Fslowout_DIN outflow rates of DIN from slow reservoirs to stream reservoirs g N d-1 
Fslowout_DON outflow rates of DON from slow reservoirs to stream reservoirs g N d-1 
Fstreamout_H2O outflow rates of H2O to downstream reservoirs m3 d-1 
Fstreamout_DIN outflow rates of DIN to downstream reservoirs g N d-1 
Fstreamout_DON outflow rates of DON to downstream reservoirs g N d-1 
Fstreamout_PON outflow rates of PON to downstream reservoirs g N d-1 
Rfast_DIN denitrification rates in fast reservoirs g N d-1 
Rfast_DON decomposition rates of DON in fast reservoirs g N d-1 
Rfast_PON decomposition rates of PON in fast reservoirs g N d-1 
Rslow_DIN denitrification rates in slow reservoirs g N d-1 
Rslow_DON decomposition rates of DON in slow reservoirs g N d-1 
Rstream_DIN denitrification rates in stream reservoirs g N d-1 
Rstream_DON decomposition rates of DON in stream reservoirs g N d-1 
Rstream_PON decomposition rates of PON in stream reservoirs g N d-1 
Sfast_H2O water stock in fast reservoir m3 
Sfast_DIN DIN stock in fast reservoir g N 
Sfast_DON DON stock in fast reservoir g N 
Sfast_PON PON stock in fast reservoir g N 
Sslow_H2O water stock in slow reservoir m3 
Sslow_DIN DIN stock in slow reservoir g N 
Sslow_DON DON stock in slow reservoir g N 
Sstream_H2O water stock in stream reservoir m3 

Sstream_DIN DIN stock in stream reservoir g N 
Sstream_DON DON stock in stream reservoir g N 
Sstream_PON PON stock in stream reservoir g N 
TW water temperature ℃ 
FT_DIN dependency of denitrification on temperature unitless 
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depth depth of rivers m 
Q water discharge m3 yr-1 

Table A2. Values of the key parameters used in ORCHIDEE-NLAT to simulate 859 
the lateral transfer of N. 860 

Parameter Value Description Source 

τfast 3.0 days 
A factor which translates the topographic 
index into the water residence time of the 
“fast” reservoir (Eq. 1) 

Ngo-Duc et al., 2006 

τslow 25.0 days 
A factor which translates the topographic 
index into the water residence time of the 
“slow” reservoir (Eq. 2) 

Ngo-Duc et al., 2006 

τstream 0.24 days 
A factor which translates the topographic 
index into the water residence time of the 
“stream” reservoir (Eq. 3) 

Ngo-Duc et al., 2006 

KPON 0.028 d-1 the average PON decomposition rate at 
20℃ in water (Eqs. 20-21) 

Islam et al., 2012 

KDON 0.07 d-1 the average DON decomposition rate at 
20℃ in water (Eqs. 22-24) 

Xia et al., 2013 

KDIN 0.15 d-1 the average denitrification rate in water at 
25℃ (Eqs. 25-27) 

Alexander et al., 2000 

Q10 2.0 the temperature sensitivity of PON and 
DON decomposition rates (Eqs. 20-24) Liu et al.,  2021 

Zang et al., 2020 
Tref1 20 ℃ the reference temperature for PON and 

DON decomposition (Eqs. 20-24) 

Tref2 25 ℃ the reference temperature for denitrification 
(Eq. 28) 

Ma et al., 2022 

  861 
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Code and data availability. The source code of the ORCHIDEE-NLAT model 862 

is available online (http://doi.org/10.5281/zenodo.13309551). All forcing and 863 

validation data used in this study are publicly available online. The specific 864 

sources for these data can be found in Table 1. 865 
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