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Abstract. Lateral nitrogen (N) transport from land to oceans through rivers is an 14 

important component of the global N cycle. We developed a new model of this 15 

aquatic system, called LSM_Nlateral_Off, which simulates the routing of water 16 

in rivers, and the pertaining transport of dissolved inorganic N (DIN), dissolved 17 

organic N (DON) and particulate organic N (PON) as well as the accompanying 18 

biogeochemical processes of DON and PON decomposition, and denitrification 19 

during transit from land to oceans through the global river network. Evaluation 20 

against global observation-based datasets shows that the model effectively 21 

captures both the magnitude and seasonal variations of riverine water discharges 22 

and total nitrogen (TN) flows. Our model was then applied to reconstruct the 23 

historical evolution of global N flows and transformations from land to rivers and, 24 

ultimately, the oceans. Model simulation results indicate that, driven by 25 

anthropogenic activities (e.g. application of mineral fertilisers and manure, 26 

sewage water injection in rivers and land use change) and indirect effects of 27 

climate change and rising atmosphere CO2, TN exports increased from 27.1 Tg 28 

N yr-1 during the 1901-1910 period to 40.8 Tg N yr-1 during the 2001-2014 period, 29 

with DIN contributing most (80%) of this increase. Simulation results reveal 30 

substantial spatial heterogeneities in annual mean TN flows and denitrification 31 

rates while their seasonal amplitude is of similar magnitude as the large-scale 32 

spatial variability. Compared to previously published regional or global aquatic 33 

N transfer models (IMAGE-GNM, FrAMES-N, MBM, DLEM and 34 

GlobalNEWS2), our model produces similar global and continental-scale TN 35 

exports to the ocean, but shows distinct patterns at the finer scale of river basins. 36 

LSM_Nlateral_Off is here coupled to the Land Surface Model (LSM) 37 

ORCHIDEE, but the offline approach implemented in this work facilitates its 38 

coupling with other land surface models in the future such as those synthesised 39 

by the Nitrogen Model Intercomparison Project (NMIP). Our modelling approach 40 

provides a comprehensive simulation of N transport and transformations from 41 
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terrestrial ecosystems to oceans at 0.5° spatial resolution and daily temporal 42 

resolution, globally. 43 

1. Introduction 44 

Reactive nitrogen (N) is a vital element for all life on Earth, playing a 45 

fundamental role in biological processes. The nitrogen cycle interacts with the 46 

Earth's climate system and environment in multiple ways. One notable 47 

interaction is through nitrous oxide (N₂O), a potent greenhouse gas that 48 

influences the Earth's energy balance in a similar way as carbon dioxide (CO₂), 49 

but with a global warming potential nearly 300 times greater on a per-molecule 50 

basis (Sainju et al., 2014). N also plays a critical role in the C cycle, influencing 51 

CO₂ and CH₄ fluxes by limiting primary production rates in many terrestrial, 52 

freshwater, and marine ecosystems (Thornton et al., 2007; Morée et al., 2013; 53 

Zaehle et al., 2014; Seiler et al., 2024). As a result, the N cycle is a key 54 

regulator of the C cycle and climate change. This role underscores the need for 55 

a comprehensive analysis of N dynamics in the context of a changing C cycle, 56 

shifting climate conditions, and intensifying anthropogenic activities. 57 

From an earth system perspective, the critical connection between 58 

terrestrial and marine nitrogen (N) cycles via the Land-to-Ocean Aquatic 59 

Continuum (LOAC) has been insufficiently addressed (Galloway et al., 2003; 60 

Billen et al., 2013; Maranger et al., 2018; Battin et al., 2023). Existing studies 61 

have largely treated the land and open ocean cycles separately, ignoring the N 62 

processes occurring along the LOAC (Fowler et al., 2013; Zhang et al., 2021). 63 

The representation of N processes within the LOAC is however required to 64 

achieve a dynamic coupling between land surface and ocean biogeochemical 65 

models, as this route plays a pivotal role in controlling the coupled terrestrial C-66 

N cycles and their perturbations from anthropogenic activities (Gruber & 67 

Galloway, 2008; Regnier et al., 2013; 2022). Over the past several decades, the 68 
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cumulative effects of climate change, population growth, industrialization and 69 

increased use of agricultural fertilisers have accelerated the global N cycle, and 70 

hence increased N leaching into the aquatic environment (Bouwman et al., 71 

2005; Gruber & Galloway, 2008; Kim et al., 2011; Swaney et al., 2012; Beusen 72 

et al., 2016a). This has resulted in negative human health and environmental 73 

impacts, such as the degradation of drinking water quality and an increase in the 74 

frequency and severity of eutrophication events (Dodds & Smith, 2016; Huang 75 

et al., 2017; Costa et al., 2018; Lee et al., 2019; Dai et al., 2023). Most land 76 

surface models (LSMs) include N leaching into aquatic systems; however, this 77 

process is rarely evaluated in quantitative terms using observations collected 78 

within the fluvial network. It has been shown that N leaching is inaccurate in 79 

most LSMs (Feng et al., 2023), which in turn affects the simulation of the 80 

response of terrestrial C and N cycles to anthropogenic activities and climate 81 

change (Thomas et al., 2013). Furthermore, an explicit representation of the fate 82 

of the land-derived N inputs into the LOAC is required to better constrain the 83 

response of the ocean C cycle to increased nutrient inputs (Lacroix et al., 2021; 84 

Resplandy et al., 2024) as well as to assess the extent to which N pollution 85 

reduction scenarios can mitigate (Satter et al., 2014) eutrophication in riverine 86 

and coastal aquatic ecosystems (Hashemi et al., 2016; Desmit et al., 2018, 87 

Battin et al., 2023). 88 

The representation of N lateral transfers through aquatic systems is 89 

challenging as it requires to represent multiple N sources, transformation, 90 

transport, and retention processes along the global fluvial network. A variety of 91 

models with different structures and representations of the water and N cycles 92 

have been developed to address this complexity (Luscz et al., 2015, 2017). 93 

Models such as the Soil and Water Assessment Tool (SWAT) (Arnold et al., 94 

1998; Liu et al., 2017), the Hydrologic Simulation Program-FORTRAN (HSPF) 95 

(Bicknell et al., 2005; Wang et al., 2015) and the HYdrological Predictions for 96 
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the Environment (HYPE) (Lindström et al., 2010; Donnelly et al., 2014) were 97 

designed to represent hydrological processes as well as N transport and 98 

transformation in rivers, but mainly for catchment scale applications. Therefore, 99 

their complexity and high requirements for hard-to-get forcing datasets 100 

constrain their applicability, in particular for the long-term evolution of global 101 

N fluxes and transformation processes. Simplified empirical approaches provide 102 

an alternative for large-scale simulations. For instance, the Global Nutrient 103 

Export from Watersheds 2 (GlobalNEWS2) model allows to estimate riverine N 104 

exports to the ocean as a function of N deliveries from the surrounding 105 

catchment with a highly simplified representation of N transport and in-stream 106 

N processes (Seitzinger et al., 2005; Mayorga et al., 2010; Lee et al., 2016). The 107 

Integrated Model to Assess the Global Environment-Global Nutrient Model 108 

(IMAGE-GNM) provides a more process-based representation of the river 109 

networks as it relies on a globally distributed, spatially explicit hydrological 110 

model, PCR-GLOBWB (PCR aster Global Water Balance), to estimate N 111 

delivery to surface waters and its subsequent transport (Beusen et al. 2015, 112 

2016a & 2022; Vilmin et al., 2018). This model however still simulates N 113 

retention using empirical formulas and is not dynamically coupled with 114 

vegetation-soil N processes. Furthermore, it only provides annually averaged 115 

fluxes, hence ignoring the seasonal fluctuations induced by the hydrology and N 116 

cycling on land and in the river network. The Dynamic Land Ecosystem Model 117 

(DLEM 2.0) provides a significant advancement as it simulates riverine N flow 118 

from terrestrial ecosystems to rivers and coastal oceans using a unified process-119 

based representation. So far, however, the model’s simulation of N lateral 120 

transfer has only been evaluated at the regional scale, specifically in eastern 121 

North America (Yang et al., 2015), or for N2O emissions on the global scale 122 

(Tian et al. 2018; Yao et al., 2020). To complement these studies, we develop 123 

here a new N lateral transfer model that can be linked to the outputs of different 124 

LSMs. This model captures the hydrological dynamics and N transformation 125 
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processes in the global river network at a temporal resolution from days to 126 

months, that is, at a temporal resolution relevant for biogeochemical processes 127 

in coastal and marine ecosystems. At the same time, this model has the capacity 128 

to reconstruct and forecast the long-term (decadal to century-scale) evolution of 129 

the aquatic N cycle as a result of a wide variety of anthropogenic factors, 130 

including climate change. To achieve this aim, we apply an offline approach in 131 

which lateral N transfers are constrained by outputs from an LSM. The resulting 132 

model, called LSM_Nlateral_Off, is in the present study coupled to the 133 

ORCHIDEE, a LSM developed by the Institute Pierre-Simon Laplace (IPSL, 134 

France). 135 

ORCHIDEE is a widely used land surface model (Krinner et al., 2005), 136 

with many versions (or branches) focusing on different aspects of the terrestrial 137 

C cycle and associated bio-elements. Here, we leverage ORCHIDEE-CNP, the 138 

branch simulating the coupled cycles of carbon (C), N and phosphorus (P) in the 139 

terrestrial biosphere (Sun et al., 2021), and ORCHIDEE-Clateral, the branch 140 

simulating the leaching and erosion of C along the soil-inland water continuum 141 

(Lauerwald et al., 2017, 2020; Zhang et al., 2022). Our study is structured as 142 

follows: (1) we present the development of the offline N lateral transfer model 143 

(LSM_Nlateral_Off) driven by outputs from ORCHIDEE-Clateral and 144 

ORCHIDEE-CNP; (2) we evaluate our model using a collection of water 145 

discharge and N concentration observations; (3) we investigate the spatio-146 

temporal dynamics of N lateral transfers over the historical period (1900-2014); 147 

and (4) we compare model results with those obtained from previously 148 

published models.  149 

2. Methods and Data 150 

2.1. Model development 151 

2.1.1. The LSM_Nlateral_Off model  152 
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The LSM, here ORCHIDEE, comprehensively simulates the cycling of 153 

energy, water and C in terrestrial ecosystems (Krinner et al., 2005). As the 154 

model evolved, many versions (or branches) emerged with various foci on 155 

additional land surface processes impacting the climate system. In particular, 156 

the ORCHIDEE-CNP branch features a detailed representation of the coupled 157 

cycling of C, N, and P within vegetation and soil (e.g. root uptake of N, the 158 

allocation of N in the tissue of different parts of vegetation biomass, N turnover 159 

in litter and soil organic matter) and the leaching of NH4
+ and NO3

- from soils to 160 

inland waters (Goll et al., 2017, 2018; Sun et al., 2021). The ORCHIDEE-161 

Clateral branch simulates the large-scale lateral transfer and fate of water, 162 

sediment, particulate organic carbon (POC) and dissolved organic C (DOC), 163 

and CO2 along the land-river-ocean continuum (Lauerwald et al., 2017; Hastie 164 

et al., 2019; Bowring et al., 2020; Zhang et al., 2022).  165 

Based on the land-to-river inputs of water, POC, DOC and inorganic N 166 

simulated by ORCHIDEE-CNP and ORCHIDEE-Clateral, we developed 167 

LSM_Nlateral_Off (Land Surface Model Nitrogen lateral Offline), simulating 168 

the transfers and transformations of reactive N through the global river network. 169 

The offline strategy provides a computationally efficient numerical model in 170 

which the mathematical representation of aquatic biogeochemical processes can 171 

easily be implemented, calibrated and evaluated. Furthermore, by construction, 172 

it can also be used to route the N leaching fluxes produced by any other LSMs 173 

in the future, allowing for applications at various scales and across different 174 

regions. In this offline scheme, ORCHIDEE-CNP provides as input the leaching 175 

rates of terrestrial dissolved inorganic N (DIN) with surface runoff and subsoil 176 

drainage and dissolved organic N (DON) leaching from manure. Inputs of 177 

terrestrial DON and particulate organic N (PON) are derived from the leaching 178 

and erosional fluxes of DOC and POC simulated by ORCHIDEE-Clateral and 179 
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stoichiometric C:N ratios of dissolved organic matter (DOM) and particulate 180 

organic matter (POM); please refer to section 2.1.2 for further details (Fig. 1). 181 

N discharge from sewage is also included as an additional input to 182 

LSM_Nlateral_Off, using the N sewage dataset (1900-2010, gridded maps 183 

every five years) reported by Beusen et al. (2016b). Indeed, during the twentieth 184 

century, global N (DIN and DON) discharge from sewage to surface waters has 185 

increased about 3.5-fold to 7.7 Tg N yr-1, and thus has a large impact on trends 186 

in global N lateral transfers. Sewage-derived N comes from three main sources: 187 

human waste from urban environments, animal waste, and industrial waste, 188 

each of which follows distinct pathways. For further details, please refer to Van 189 

Drecht (2009) and Morée et al. (2013).  190 

Following delivery, PON, DON and DIN are then transported by water 191 

flow advection from soils to rivers and through the river network all the way to 192 

the coast. Within the river network, parts of the transported DON and PON are 193 

decomposed into DIN, while part of the DIN is released back to the atmosphere 194 

through denitrification. Following previous global modelling approaches 195 

(Aitkenhead-Peterson et al., 2001; Bernot and Dodds, 2005; Wollheim et al., 196 

2008), LSM_Nlateral_Off simulates the denitrification process without explicit 197 

representation of the different DIN species (i.e. NO3
- and NH4

+) or their 198 

interconversion via nitrification (Fig. 1).  199 
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 200 

Figure 1. Sources of driving data extracted from other models (left) and main 201 

aquatic N transformation processes represented in LSM_Nlateral_Off (right). 202 

2.1.2. Water and N delivery from soils to the river network 203 

The runoff and drainage simulated by ORCHIDEE-Clateral were used to 204 

constrain water inputs from land to rivers. This input dataset had a spatial 205 

resolution of 1° and a temporal resolution of daily time steps (Table 1). The data 206 

were downscaled to the LSM_Nlateral_Off spatial resolution of 0.5° using 207 

nearest-neighbour resampling (Patil, 2018). Runoff and drainage are critical 208 

components that determine DIN, DON, and PON fluxes. As ORCHIDEE-CNP 209 

and ORCHIDEE-Clateral used the same scheme to simulate soil hydrology (Sun 210 

et al., 2021; Zhang et al., 2022) and they have been run with the same climate 211 

and land use forcing data (Table 1).Therefore, the difference in runoff (0.9%) 212 

and drainage (1.7%) simulated by the two ORCHIDEE branches are very 213 

limited (Fig. S1).  214 

The lateral transfer of DOC and POC from land to rivers was used to 215 

constrain inputs of DON and PON. PON erosion with runoff originates from 216 

three soil organic matter (SOM) pools, each characterized by distinct C:N 217 

ratios, set at 12, 25, and 8 for active, slow, and passive SOM pools, respectively 218 

(Zhang et al., 2022). The PON erosion from each pool is calculated by dividing 219 
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the POC erosion flux from the same SOM pool by its corresponding C:N ratio. 220 

For DON leaching with runoff and drainage, the calculation relies upon 221 

measurements of the stoichiometry of dissolved organic matter, which report 222 

C:N ratios in soil and rivers comprised between 8 and 25, with an average value 223 

of around 12 (Kirkby et al., 2011; Lutz et al., 2011; Tipping et al., 2016; 224 

Maranger et al., 2018; Rodríguez-Cardona et al., 2021). Therefore, the leaching 225 

of DON with runoff and drainage was quantified using the DOC fluxes 226 

simulated by ORCHIDEE-Clateral, and an average C:N ratio of 12. It is 227 

important to note that this resulting flow excludes DON leaching sourced from 228 

manure application, as this source is not included in the ORCHIDEE-Clateral 229 

simulations. The spatial and temporal resolution of the resulting DON and PON 230 

fluxes used to force LSM_Nlateral_Off was 1° with a daily time step (Table 1) 231 

and these inputs were resampled to the nominal resolution of 232 

LSM_Nlateral_Off (0.5°) using the nearest-neighbour resampling (Patil, 2018). 233 

DIN (i.e. NH4
+ and NO3

-) inputs from soils to rivers were prescribed from 234 

a simulation of ORCHIDEE-CNP (Goll et al., 2017a, 2018; Sun et al., 2021) 235 

which include DIN leaching from both natural and cultivated (e.g. cropland and 236 

pasture) ecosystems, and account for changes induced by atmospheric N 237 

deposition, fertiliser use and manure application. DON inputs to rivers from 238 

manure application were also prescribed using ORCHIDEE-CNP. The approach 239 

relies on a DON pool and a leaching factor, with a dedicated manure-derived 240 

DON pool incorporated into ORCHIDEE-CNP to participate in subsequent N 241 

cycling and leaching processes. The spatial and temporal resolution of this input 242 

dataset was 2° with a daily time step and the data were downscaled to the 243 

LSM_Nlateral_Off spatial resolution of 0.5° using the nearest-neighbour 244 

resampling (Patil, 2018) (Table 1).  245 

Finally, TN inputs from sewage (https://doi.org/10.17026/dans-zgs-246 

9k9m), provided at 0.5° globally with a yearly time step (Beusen et al, 2016b), 247 

https://doi.org/10.17026/dans-zgs-9k9m
https://doi.org/10.17026/dans-zgs-9k9m
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were evenly redistributed across each day of the year (Table 1). TN from 248 

sewage was then partitioned into different N species following the approach of 249 

Naden et al. (2016), which assumes that 10% of sewage TN is DON and the 250 

remaining 90% is DIN. 251 

Table 1. List of (1) forcing data used to run ORCHIDEE-Clateral, ORCHIDEE-252 

CNP and LSM_Nlateral_Off, and (2) observational data used to evaluate the 253 

simulation results. Sres and Tres are the original spatial and temporal resolution of 254 

the forcing data, respectively. 255 

 Data Sres Tres Data source 

Forcing data of 

ORCHIDEE-

Clateral and 

ORCHIDEE-

CNP 

Climatic forcing data 

(precipitation, 

temperature, incoming 

shortwave/longwave 

radiation, air pressure, 

wind speed, relative 

humidity) 

1° 3 hours 

Global Soil Wetness 

Project Phase 3 

(GSWP 3) (Kim et al., 

2017) 

Land cover 0.5° 1 year 

ESA-CCI LUH2v2 

database (Hurtt et al., 

2011; Lurton et al., 

2020) 

Soil texture class 0.5° / Reynolds et al. (1999) 

Soil bulk density and 

pH  
30" / 

HWSD v1.2 

(FAO/IIASA/ISRIC/IS

SCAS/JRC,2012) 

Fertiliser application 0.5° 1 year (Lu et al., 2017) 

Manure application 5′ 1 year (Zhang et al., 2017) 

Nitrogen deposition 0.5 1 year IGAC/SPARC CCMI 

Forcing data of 

LSM-Nlateral 

-Off 

Runoff 

1° 1 day 

ORCHIDEE-Clateral 

 (Zhang et al., 2022; 

Zhang et al., under 

review) 

Drainage 

DOC and POC with 

runoff 

DOC and POC with 

drainage 

Soil temperature 

DIN with runoff and 

drainage 
1° 1 day 

ORCHIDEE-CNP  

(Sun et al., 2021) 
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DON leaching from 

manure application  

DIN and DON with 

sewage 
0.5° 5 years (Beusen et al., 2016b) 

Flow direction 

0.5° / 
(Vörösmarty et al., 

2000) Topographic index 

(ftopo) 

Evaluation 

data 

Riverine water 

discharge 
/ 1 day GRDCa 

Riverine TN and NO3
- 

concentration 
/ 

point 

measurement 
GRQAb 

Riverine TN 

concentration 
/ 

point 

measurement 
Table S1 

a Global Runoff Data Centre (GRDC) (Federal Institute of Hydrology, 2018); b Global River 256 

water Quality Archive (GRQA) (Virro et al., 2021). 257 

2.1.3. N transport and transformation in the river network 258 

LSM_Nlateral_Off simulates water discharge using a distributed routing 259 

scheme (Vörösmarty et al., 2000). As shown in Fig. 2, surface runoff (FRO) and 260 

belowground drainage (FDR), both derived from ORCHIDEE-Clateral, serve as 261 

inputs to the LSM_Nlateral_Off. FRO first feeds into the “fast” reservoir 262 

(Sfast_H2O), while FDR feeds into the “slow” water reservoir (Sslow_H2O). The 263 

delayed outflows from these reservoirs then feed into the “stream” water 264 

reservoir (Sstream_H2O). Water in the stream reservoir (Sstream_H2O) in grid cell i 265 

then flows downstream into the stream reservoir of grid cell i+1 (Fstreamout_H2O, 266 

m3 d−1).The outflow rates from the fast (Ffastout_H2O), slow (Fslowout_H2O) and 267 

stream (Fstreamout_H2O) reservoirs are calculated at a daily time-step based on a 268 

grid-cell-specific topographic index ftopo (unitless, Vörösmarty et al., 2000) 269 

(Table 1) and a reservoir-specific water turnover factor τ, which translates ftopo 270 

into a water residence time for each reservoir attached to each river segment 271 

(Eq. 1).  272 
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𝐹𝑜𝑢𝑡_𝐻2𝑂 =
𝑆𝐻2𝑂

𝜏×𝑓𝑡𝑜𝑝𝑜
          (1) 273 

where Fout_H2O (m3 d-1) represents water outflow rates from the fast (Ffastout_H2O) 274 

/slow (Fslowout_H2O) /stream (Fstreamout_H2O) reservoir; SH2O (m3) represents water 275 

stock in the fast (Sfast_H2O) /slow (Sslow_H2O) /stream reservoir (Sstream_H2O); τ 276 

represents water residence time for each reservoir, equal to 3.0 days, 25.0 days 277 

and 0.24 days for the fast, slow, and stream reservoirs, respectively (Ngo-Duc et 278 

al., 2006); ftopo represents the grid-cell-specific topographic index (unitless, 279 

Vörösmarty et al., 2000). 280 

 281 
Figure 2. Schematic plot for the reservoirs and flows of water and N in 282 

LSM_Nlateral_Off. Ssoil is the soil pool. Sfast, Sslow, Sstream are the “fast”, “slow” 283 

and stream water reservoirs, respectively. FRO and FDR are surface runoff and 284 

below-ground drainage (also called sub-surface runoff in other studies), 285 

respectively. Ffastout is the flow from fast reservoir to stream reservoir. Fslowout is 286 

the flow from slow reservoir to stream reservoir. Fupstream and Fstreamout are the 287 

upstream inputs from basin i-1 and downstream outputs to basin i+1, 288 

respectively. FD is the wet and dry deposition of DIN from the atmosphere. 289 

Following the routing scheme of water in LSM_Nlateral_Off, N 290 

contained in surface runoff (FRO) and belowground drainage (FDR) flows into the 291 

fast and slow reservoir, respectively. Subsequently, the N stocks in these 292 

reservoirs are subject to decomposition and losses via denitrification, which are 293 
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governed by the water residence time. The remaining fractions further flow into 294 

the stream reservoirs, which also receive direct N inputs from sewage (Fig. 2). 295 

Within stream reservoirs, N is transformed by biogeochemical reactions and 296 

flows from one grid cell to the next along the river routing scheme. The 297 

timescale of these biogeochemical transformation processes scales to the water 298 

residence time (and hence topography) within the river network, and the 299 

fraction of N that is not lost to the atmosphere via denitrification is ultimately 300 

exported to the coast. Biogeochemical reactions within each reservoir include 301 

the decomposition of PON and DON to DIN, and the denitrification of DIN to 302 

N gas which is assumed all released into the atmosphere (Fig. 2). The mass 303 

balance equations for the N stocks in different reservoirs are calculated as 304 

follows:  305 

𝑑𝑆𝑓𝑎𝑠𝑡_𝑃𝑂𝑁

𝑑𝑡
= 𝐹𝑅𝑂_𝑃𝑂𝑁 − 𝐹𝑓𝑎𝑠𝑡𝑜𝑢𝑡_𝑃𝑂𝑁 − 𝑅𝑓𝑎𝑠𝑡_𝑃𝑂𝑁     (2) 306 

𝑑𝑆𝑓𝑎𝑠𝑡_𝐷𝑂𝑁

𝑑𝑡
= 𝐹𝑅𝑂_𝐷𝑂𝑁 − 𝐹𝑓𝑎𝑠𝑡𝑜𝑢𝑡_𝐷𝑂𝑁 − 𝑅𝑓𝑎𝑠𝑡_𝐷𝑂𝑁     (3) 307 

𝑑𝑆𝑓𝑎𝑠𝑡_𝐷𝐼𝑁

𝑑𝑡
= 𝐹𝑅𝑂_𝐷𝐼𝑁 − 𝐹𝑓𝑎𝑠𝑡𝑜𝑢𝑡_𝐷𝐼𝑁 − 𝑅𝑓𝑎𝑠𝑡_𝐷𝐼𝑁     (4) 308 

𝑑𝑆𝑠𝑙𝑜𝑤_𝐷𝑂𝑁

𝑑𝑡
= 𝐹𝐷𝑅_𝐷𝑂𝑁 − 𝐹𝑠𝑙𝑜𝑤𝑜𝑢𝑡_𝐷𝑂𝑁 − 𝑅𝑠𝑙𝑜𝑤_𝐷𝑂𝑁     (5) 309 

𝑑𝑆𝑠𝑙𝑜𝑤_𝐷𝐼𝑁

𝑑𝑡
= 𝐹𝐷𝑅_𝐷𝐼𝑁 − 𝐹𝑠𝑙𝑜𝑤𝑜𝑢𝑡_𝐷𝐼𝑁 − 𝑅𝑠𝑙𝑜𝑤_𝐷𝐼𝑁     (6) 310 

𝑑𝑆𝑠𝑡𝑟𝑒𝑎𝑚_𝑃𝑂𝑁

𝑑𝑡
= 𝐹𝑓𝑎𝑠𝑡𝑜𝑢𝑡_𝑃𝑂𝑁 + 𝐹𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑃𝑂𝑁 − 𝑅𝑠𝑡𝑟𝑒𝑎𝑚_𝑃𝑂𝑁 −311 

𝐹𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚_𝑃𝑂𝑁           (7) 312 

𝑑𝑆𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝑂𝑁

𝑑𝑡
= 𝐹𝑓𝑎𝑠𝑡𝑜𝑢𝑡_𝐷𝑂𝑁 + 𝐹𝑠𝑙𝑜𝑤𝑜𝑢𝑡_𝐷𝑂𝑁 + 𝐹𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝑂𝑁 + 𝐹𝑠𝑒𝑤𝑎𝑔𝑒_𝐷𝑂𝑁 −313 

𝑅𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝑂𝑁 − 𝑅𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝑂𝑁                (8) 314 
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𝑑𝑆𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝐼𝑁

𝑑𝑡
= 𝐹𝑓𝑎𝑠𝑡𝑜𝑢𝑡_𝐷𝐼𝑁 + 𝐹𝑠𝑙𝑜𝑤𝑜𝑢𝑡_𝐷𝐼𝑁 + 𝐹𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝐼𝑁 + 𝐹𝑠𝑒𝑤𝑎𝑔𝑒_𝐷𝐼𝑁 +315 

𝑅𝑠𝑡𝑟𝑒𝑎𝑚_𝑃𝑂𝑁 + 𝑅𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝑂𝑁 − 𝑅𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝐼𝑁 − 𝐹𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚_𝐷𝐼𝑁           (9) 316 

where Fupstream_PON (g N d-1), Fupstream_DON (g N d-1) and Fupstream_DIN (g N d-1) 317 

represent the inflow rates of PON, DON and DIN from upstream grids, 318 

respectively; Fstreamout_PON (g N d-1), Fstreamout_DON (g N d-1) and Fstreamout_DIN (g N d-319 

1) represent outflow rates of PON, DON and DIN from the given grid to 320 

downstream grid, respectively. For each N species, the N inputs to a stream 321 

reservoir in a given grid cell (Fupstream_PON, Fupstream_DON and Fupstream_DIN) are equal 322 

to the sum of N outflow from the upstream stream reservoir in the adjacent grid 323 

cells (Fstreamout_PON, Fstreamout_PON and Fstreamout_PON), as calculated in Eqs 10-12. 324 

Rfast_PON and Rstream_PON (g N d-1) represent PON decomposition rates in the fast 325 

and stream reservoirs, respectively. Rfast_DON, Rslow_DON and Rstream_DON (g N d-1) 326 

represent DON decomposition rates in the fast, slow and stream reservoirs, 327 

respectively. Rfast_DIN, Rslow_DIN and Rstream_DIN (g N d-1) represent DIN 328 

denitrification rates in the fast, slow and stream reservoirs, respectively. 329 

We assume that N concentrations are homogeneously distributed within 330 

each reservoir of each grid and that N transfers between reservoirs simply 331 

follow that of water. N transfers are calculated as follows: 332 

𝐹𝑜𝑢𝑡_𝑃𝑂𝑁 = 𝑆𝑃𝑂𝑁 ×
𝐹𝑜𝑢𝑡_𝐻2𝑂

𝑆𝐻2𝑂
                           (10) 333 

𝐹𝑜𝑢𝑡_𝐷𝑂𝑁 = 𝑆𝐷𝑂𝑁 ×
𝐹𝑜𝑢𝑡_𝐻2𝑂

𝑆𝐻2𝑂
                         (11) 334 

𝐹𝑜𝑢𝑡_𝐷𝐼𝑁 = 𝑆𝐷𝐼𝑁 ×
𝐹𝑜𝑢𝑡_𝐻2𝑂

𝑆𝐻2𝑂
                            (12) 335 

where all S terms represent N stocks (g N) and water stocks (m3), and F terms 336 

represent flow rates of water (m3 d-1) and N (g N d-1). Fout_PON represents PON 337 

flow rates from fast (Ffastout_PON)/ stream(Fstreamout_PON) reservoirs; Fout_DON 338 

represents DON flow rates from fast (Ffastout_DON)/ slow (Fslowout_DON)/ stream 339 
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(Fstreamout_DON) reservoirs; Fout_DON represents DIN flow rates from fast 340 

(Ffastout_DIN)/ slow (Fslowout_DIN)/ stream (Fstreamout_DIN) reservoirs. The same 341 

principle applies to the S (stocks) terms. 342 

Temperature controls the decomposition rates of organic N in rivers 343 

(Ferreira et al., 2020). Following the algorithm of Xia et al. (2013), the 344 

decomposition rates of PON and DON in each reservoir are calculated using 345 

first-order kinetics of the corresponding N stock and a Q10 temperature 346 

dependence based on water temperature. 347 

𝑅𝑃𝑂𝑁 = 𝑆𝑃𝑂𝑁 × 𝐾𝑃𝑂𝑁 × 𝑄10
𝑇𝑊−𝑇𝑟𝑒𝑓1

10                       (13) 348 

𝑅𝐷𝑂𝑁 = 𝑆𝐷𝑂𝑁 × 𝐾𝐷𝑂𝑁 × 𝑄10
𝑇𝑊−𝑇𝑟𝑒𝑓1

10                       (14) 349 

KPON (0.028 d-1) represents the average PON decomposition rate at 20℃ in 350 

water (Islam et al., 2012); KDON (0.07 d-1) represents the average DON 351 

decomposition rate at the reference temperature of 20℃ in water (Xia et al., 352 

2013); Q10 is the temperature sensitivity of PON and DON decomposition rates 353 

set to 2.0 (Yang et al, 2015; Liu et al., 2021); TW is the water temperature (℃); 354 

and Tref1 is the reference temperature for PON and DON decomposition, set to 355 

20℃. RPON (g N d-1) represents PON decomposition rates in fast (Rfast_PON)/ 356 

stream (Rstream_PON) reservoirs. RDON (g N d-1) represents DON decomposition 357 

rates in fast (Rfast_DON)/slow (Rslow_DON)/ stream (Rstream_DON) reservoirs. 358 

The denitrification rates decrease with stream depth, because most 359 

denitrification happens in benthic sediments rather than in the water column, so 360 

high benthic area to water volume ratios result in high denitrification rates  361 

Aitkenhead-Peterson et al., 2005; Bernot and Dodds, 2005). In addition, 362 

denitrification rates are also controlled by temperature (Jung et al., 2014; Ma et 363 

al., 2022). The denitrification process is simulated by adapting equations from 364 

Pauer and Auer (2008): 365 
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𝑅𝐷𝐼𝑁 =
𝑆𝐷𝐼𝑁

𝑑𝑒𝑝𝑡ℎ
× 𝐾𝐷𝐼𝑁 × 𝐹𝑇_𝐷𝐼𝑁                       (15) 366 

𝐹𝑇_𝐷𝐼𝑁 = 𝑒

−(𝑇𝑊−𝑇𝑟𝑒𝑓2)2

(𝑇𝑟𝑒𝑓2)2
                 (16) 367 

𝑑𝑒𝑝𝑡ℎ = 𝑚𝑎𝑥 (𝑒2.56 × 𝑄0.423, 1.0)               (17) 368 

where RDIN (g N d-1) represents denitrification rates in fast (Rfast_DIN)/ slow 369 

(Rslow_DIN)/stream (Rstream_DIN) reservoirs; KDIN (0.15 d-1) represents the 370 

denitrification rate in water at 25℃ (Alexander et al., 2009); FT_DIN (unitless) 371 

represents the dependency of denitrification on temperature (Ma et al., 2022); 372 

Tref2 is the reference temperature for denitrification (=25℃); 
1

𝑑𝑒𝑝𝑡ℎ
 (unitless) 373 

represents the factor that simulates the role of the benthic surface area to water 374 

volume ratio, which serves as a key control factor of denitrification rates. The 375 

stream depth is simulated according to the method in Raymond et al. (2012). 376 

Therefore, aside from the availability of DIN stocks, denitrification rates are 377 

spatially and temporally dependent through the effects of water residence time 378 

(controlled by topography), temperature and water depths (controlled by 379 

discharge). Refer to Tables A1 and A2 for a summary of all variables, fluxes 380 

and processes incorporated in LSM_Nlateral_Off. 381 

2.2. Observational data 382 

Riverine water discharge from the Global Runoff Data Centre (GRDC) 383 

(Federal Institute of Hydrology, 2018) and riverine TN and NO3
- concentrations 384 

from the Global River water Quality Archive (GRQA) (Virro et al., 2021) were 385 

used to evaluate LSM_Nlateral_Off (Fig. 3). We obtained observed water 386 

discharge data from the GRDC website for 346 gauging stations with a 387 

catchment area exceeding 50,000 km². Each station has over 12 months of 388 

observational records and more than 25 observations per month (Fig. S4). For 389 

GRQA data, only time-series with more than two observations per month in one 390 

year were retained for model evaluation. For N concentrations, after removing 391 
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duplicates in the GRQA database, we obtained TN data for 3507 sites and NO3
- 392 

data for 1841 sites. Moreover, since observations of NO3
- at a given site are 393 

generally more frequent and cover a longer time span than those for TN, we 394 

used the strong correlation between these two species to estimate TN 395 

concentrations from NO3
- when only NO3

- data were available (represented by 396 

yellow dots in Fig. 3). The prediction equation applied in this study (Eq. 18, 397 

Fig. S2) was obtained based on GRQA data at 148 sites with simultaneous 398 

concentrations of both TN and NO3
- (R2 =0.78):  399 

𝐶𝑇𝑁_𝑜𝑏𝑠 = 1.33 × 𝐶𝑁𝑂3_𝑜𝑏𝑠 + 0.56               (18) 400 

where CTN_obs (mg L-1) and CNO3_obs (mg L-1) represent the observed 401 

concentrations of TN and NO3
-, respectively. 402 

The TN flow rates are equal to the water discharge rates multiplied by N 403 

concentrations. Therefore, for each GRDC site, the nearest GRQA site with 404 

reported N concentration (McDowell et al., 2021) was systematically selected to 405 

calculate the flux:  406 

𝐹𝑇𝑁_𝑜𝑏𝑠 = 𝐹𝑊_𝑜𝑏𝑠 × 𝐶𝑇𝑁_𝑜𝑏𝑠                (19) 407 

where FTN_obs (g N d-1) and FW_obs (m
3 d-1) represent observed rates of TN flow 408 

and water discharge, respectively.  409 

Since TN concentrations for several large rivers (e.g., Amazon and 410 

Chinese rivers) were missing in GRQA, we complemented this dataset by 411 

collecting additional observational TN data from peer-reviewed literature 412 

(represented by green dots in Fig. 3), resulting in the addition of 20 sites to our 413 

database, see details of observed sites in Table S1. 414 
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 415 

Figure 3. Location of observational sites for N concentrations. Pink dots 416 

represent sites with observations of total nitrogen (TN) concentrations,116 sites; 417 

yellow dots represent sites with observations of NO3
- concentrations, 53 sites; 418 

green dots represent sites with observations of TN concentrations from 419 

published literature, 20 sites (Table S1). Black stars represent sites with daily 420 

time series of water discharge and TN flow. 421 

2.3. Simulation protocol and analysis of model results 422 

2.3.1. Simulation protocol 423 

LSM_Nlateral_Off was applied to simulate the lateral transfer of PON, 424 

DON and DIN, as well as the decomposition of PON and DON, and the loss of 425 

DIN by denitrification within the river network from 1901 to 2014. The model 426 

was run at 0.5° spatial resolution and daily temporal resolution, using the 427 

downscaled terrestrial forcings as inputs (see section 2.1.2). Running 428 

LSM_Nlateral_Off on a daily step allows for the evaluation of the model’s 429 

performance in capturing not only long-term trends but also seasonality in 430 

lateral N transfers and transformations within the global river network. The 431 

model was evaluated on a daily time step by comparing the simulated and 432 

observed TN lateral transfer at three sites with long time series of observed TN 433 

flows. We also evaluated the performance of LSM_Nlateral_Off in simulating 434 

annual lateral TN transfer using observational data from 189 sites worldwide, 435 

each with records of both water discharge rates and N concentrations. The 436 
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simulated total amounts of PON, DON and DIN from land to river and from 437 

river to ocean were further compared with previously published global N 438 

models, namely IMAGE-GNM (Vilmin et al., 2018), the Frame-work for 439 

Aquatic Modeling in the Earth System (FrAMES-N) (Wollheim et al., 2008), 440 

the Mass Balance Model (MBM) (Green et al., 2004), and GlobalNEWS2 441 

(Mayorga et al., 2010).  442 

Table 1 summarises the forcing and evaluation data along with their 443 

spatiotemporal resolution and references to the gridded products and point 444 

datasets. 445 

2.3.2. Model evaluation metrics 446 

To evaluate the performance of LSM_Nlateral_Off in reproducing the 447 

spatial variations of water and N flow, the mean bias error (MBE) and the 448 

coefficient of determination (R2) were determined. R2 represents how much 449 

variation in the observations can be explained by the model. For the definition 450 

of R2, please refer to Renaud et al. (2010). MBE quantifies the degree to which 451 

LSM_Nlateral_Off overestimates or underestimates observations of water 452 

discharge and TN flow at the grid level. 453 

𝑀𝐵𝐸 =
𝑀−𝑂

𝑂
× 100%                 (20) 454 

where 𝑀 is the mean of simulated values, 𝑂 is the mean of observed values. 455 

To assess the performance of LSM_Nlateral_Off in reproducing time 456 

series of TN and water flows, the relative root mean square root (RRMSE) and 457 

Nash-Sutcliffe coefficient (NSE) were calculated. 458 

               (21) 459 
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                (22) 460 

where n represents the total number of days/months with available observations 461 

at a given site; Oj and Mj represent the observed and modelled values of 462 

water/TN flow on day/month j. The NSE can take values between 1 and -∞. An 463 

NSE of 1 indicates a perfect fit between observed and simulated values, an NSE 464 

of 0 means that using the mean observed value as a constant simulated value 465 

would lead to as much deviation between observed and predicted values as 466 

using the actual simulated values. If the NSE is negative, there is more 467 

deviation between simulated and observed values than between the observed 468 

values and their mean. 469 

2.3.3. Seasonality analysis 470 

To explore the seasonal variability of water discharge, TN flow, TN 471 

concentration and denitrification rates during 2001-2014 at the global scale, we 472 

constructed spatial maps of monthly anomalies following the method by 473 

Roobaert et al. (2019). If FV denotes the rate of water flow (km3 yr-1), 474 

denitrification (Gg N yr-1), TN flow (Gg N yr-1) or TN concentration (mg L-1) in 475 

rivers, then for each grid cell, the monthly anomaly of FV can be calculated as 476 

the difference between the FV value in a given month and the corresponding 477 

annual mean value: 478 

𝐹𝑉𝐴𝑡 = 𝐹𝑉𝑡 − 𝐹𝑉̅̅ ̅̅                   (23) 479 

where FVAt represent the anomaly of FV in month t, while 𝐹𝑉𝑡 and  480 

represent the values of FV in month t and the annual mean, respectively. 481 

The seasonality, defined as the amplitude of seasonal variations in water 482 

discharge, N flow rates, N concentrations and denitrification rates, is expressed 483 

as the root-mean-square (RMS) of the monthly FVA. 484 
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𝑠𝑒𝑎𝑠𝑜𝑛𝐹𝑉𝐴 = √
1

12
× ∑ (𝐹𝑉𝐴𝑡)212

𝑡=1                (24) 485 

3. Results and discussion 486 

3.1. Model evaluation 487 

Evaluation of the simulated water discharge using GRDC data indicates 488 

that for major rivers with drainage areas larger than 50 000 km2 spread over the 489 

globe, LSM_Nlateral_Off reproduces the magnitude and seasonal variations of 490 

water discharge well. Overall, the model simulation explains 90% of the spatial 491 

variations in the observed long-term average water discharges (Fig. 4a). The 492 

absolute values of MBE for the simulated average water discharges are mostly 493 

smaller than 50% (Fig. S3a). At 25 sites (13% of all sites), the absolute values 494 

of MBE are larger than 100%, but the annual mean water discharge at each of 495 

these sites is less than 100 km3 yr-1 (about 3200 m3 s-1), indicating that large 496 

errors tend to occur at sites where water discharge is low (Fig. S3a). The 497 

discrepancy between model simulations and observations at these sites may be 498 

caused by three factors: (1) a potential discrepancy between the stream routing 499 

scheme (delineation of catchment boundaries) defined by the 0.5° resolution 500 

forcing data and the real river network; (2) the presence of stream channel 501 

bifurcations that are poorly resolved by the model (Zhang et al., 2022); (3) 502 

biases in runoff and drainage simulated by ORCHIDEE-Clateral, which may 503 

stem from deviations in meteorological data and the parameterization of soil 504 

hydraulic properties. At some sites, such as the Columbia, Rhine and 505 

Mississippi Rivers for which continuous time series in TN flows are available, 506 

LSM_Nlateral_Off also captures the seasonal variation in water discharges well, 507 

with RRMSE ranging from 30% to 37% (Fig. 5 a1-a3). 508 

Area-averaged TN flows simulated by LSM_Nlateral_Off are generally 509 

consistent with observed TN flows at the 189 sites extracted from the GRQA 510 
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database and additional published literature. LSM_Nlateral_Off explains 77% 511 

of the observed spatial variations of long-term TN flows across sites (Fig. 4b). 512 

The absolute values of MBE for the simulated average TN flows are mostly 513 

below 50% (Fig. S3b). LSM_Nlateral_Off significantly underestimated (MBE < 514 

-100%) or overestimated (MBE > 100%) the observed TN flows at 32 sites 515 

(17% of all sites), all located in regions with relatively low water discharge 516 

levels (Fig. S3b). At 9 of these 32 sites (28%), the MBE of TN flow is very 517 

close to that of water discharge, showing that discrepancies between observed 518 

and modelled TN flows at these locations stem primarily from water discharge 519 

rather than nitrogen concentrations. The results reveal that the MBE of TN flow 520 

is relatively small in large rivers, such as at sites located in the lower reaches of 521 

the Columbia, Rhine and Mississippi Rivers, where MBE values are -25%, -522 

16% and 1%, respectively. LSM_Nlateral_Off also basically reproduces the 523 

seasonal patterns of TN flow in these rivers, with RRMSE ranging from 30% to 524 

62% (Fig. 5 ba-b3). At the Rhine River site, the NSE of TN flow is negative, 525 

revealing that although the seasonal pattern of TN flow simulated by 526 

LSM_Nlateral_Off is similar to that observed, the model does not capture 527 

accurate trends on the daily scale (Fig. 5 b2). 528 

The seasonality in water discharge is an important control factor for the 529 

seasonality in TN fluxes. Therefore, the observational data derived from GRDC 530 

was used to further assess the performance of LSM_Nlateral_Off in reproducing 531 

the monthly seasonality of water discharge. At the 346 GRDC sites with 532 

continuous measurements (Fig. S4), we computed the monthly average value, 533 

taken as the observed water discharge of that month. For the world's 20 largest 534 

rivers (Dai & Trenberth, 2002), which accounts for approximately 31% of the 535 

total global river discharge (Table S2, Fig. S4), LSM_Nlateral_Off effectively 536 

simulates both the magnitude and seasonality of water discharge (Fig. S5). The 537 

Nash-Sutcliffe Efficiency (NSE) values range from 0.07 to 0.92, with 17 out of 538 
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the 20 rivers achieving an NSE greater than 0.5 (Fig. S5). However, the model 539 

demonstrates a significantly weaker accuracy in capturing the seasonality of 540 

water discharge in some low-flow rivers, with NSE values below zero at 84 541 

(24% of the sites number contributing to 17% of the global river discharge) of 542 

the 346 GRDC sites (Fig. S6). The model's limitations in capturing seasonality 543 

are attributed to three main reasons, as discussed above. 544 

As an additional evaluation, we compared our model results against 545 

observed N concentrations and water discharges across the United States 546 

provided by the U.S. Geological Survey (USGS). Based on these data, a 547 

previous study (Scott et al., 2007) calculated the long-term (1975-2004) mean 548 

annual loads of total organic N (TON) and TON fractions (TON yield / TN 549 

yield) at 854 stations nationwide. LSM_Nlateral_Off simulates a spatial pattern 550 

for the TON fraction which closely matches that reported by Scott et al. (2007), 551 

with high values in western regions and low values in the east (Fig. S7). This 552 

suggests that LSM_Nlateral_Off not only effectively simulates TN fluxes, but 553 

also captures the organic and inorganic fractions across the United States 554 

relatively well. Moreover, the simulated DIN concentrations display similar 555 

spatial patterns as those obtained from a recent observation-based machine 556 

learning (ML) assessment (Marzadri et al., 2021) in regions such as North 557 

America, Western Europe, Eastern China, and India (Fig. S8). However, in 558 

regions such as the Amazon, Africa, and Australia, LSM_Nlateral_Off 559 

simulates lower DIN concentrations compared to the ML assessment (Fig. S8). 560 

These lower DIN concentrations are attributed to different factors. In Australia, 561 

low N inflow into rivers results in low DIN concentrations, whereas in the 562 

Amazon and tropical rainforests of Africa, high denitrification rates are 563 

primarily responsible for the low DIN concentrations in the model (Fig. 7). The 564 

ML involves a significant degree of empirical modelling, and therefore does not 565 

fully reflect real-world conditions. Therefore, this comparison cannot be 566 
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regarded as a direct evaluation of the model based on observational data. 567 

However, the consistency between the two models across most regions globally 568 

(e.g., North America, Western Europe, Eastern China, and India) suggests that 569 

LSM_Nlateral_Off overall performs reasonably well in simulating DIN lateral 570 

transfer processes. 571 

572 
Figure 4. Evaluation of LSM_Nlateral_Off. Global-scale comparison between 573 

observed and modelled annual-mean water discharge (a) and TN flow (b). Pink 574 

symbols represent sites with observations of TN concentrations from GRQA, 575 

yellow symbols represent GRQA sites for which TN concentrations were 576 

estimated from observations of NO3
- concentrations, and green symbols 577 

represent sites with observations of TN from published literature. 578 
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 579 
Figure 5. Time series of water discharge (a) and TN flow (b). (a1) and (b1) 580 

Columbia-river (46.18°N, 123.18°W); (a2) and (b2) Rhine-river (51.84°N, 581 

6.11°E); (a3) and (b3) Mississippi river (32.25°N, -91.25°W).  582 

3.2. Temporal and spatial patterns of N flows 583 

Input data for LSM_Nlateral_Off are provided by ORCHIDEE-CNP and 584 

ORCHIDEE-Clateral. Therefore, the magnitude and spatio-temporal patterns of 585 

N inflows from land to rivers are exclusively derived from these two model 586 

branches. In contrast, quantification of denitrification and N exports to oceans 587 

result from the combined influence of the input data from ORCHIDEE and from 588 

the process representation implemented in LSM_Nlateral_Off. In what follows, 589 

we investigate spatial, seasonal and decadal trends resulting from the offline 590 

coupling of these three models. 591 

3.2.1. Trends in global N flows 592 
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Averaged over the 2001-2014 period, the annual TN input from soils to 593 

rivers, TN exports to oceans and denitrification in transit amount to 67.4 Tg N 594 

yr-1, 40.8 Tg N yr-1, and 26.6 Tg N yr-1, respectively. These three N fluxes show 595 

increasing trends from 1901 to 2014. The global annual TN input to rivers 596 

increased by 82.3 %, from 36.8 Tg N yr-1 during 1901-1910 to 67.4 Tg N yr-1 597 

during 2001-2014 (Fig. 6 a). The global annual TN export to oceans increased 598 

by 50.4 % from 27.1 Tg N yr-1 to 40.8 Tg N yr-1. Most of this increase is 599 

attributed to DIN, which doubled over the simulation period, rising from 9.6 Tg 600 

N yr-1 to 20.8 Tg N yr-1, while DON exports show a much smaller but still 601 

substantial increase of 56.9% (Fig. 6b). In contrast, PON exports to oceans 602 

show a slightly decreasing trend. This decrease is mainly attributed to global 603 

greening, which enhances vegetation cover (Cortés et al., 2021; Wang et al., 604 

2022) and reduces soil erosion, resulting in lower PON inputs from the land 605 

and, thus, PON exports to oceans. The increase in global denitrification mostly 606 

follows the rise in DIN inputs, with a relative increase of 174.0 %, from 9.7 Tg 607 

N yr-1 during 1901-1910 to 26.6 Tg N yr-1 during 2001-2014 (Fig. 6a). 608 

The global TN input into rivers, TN export to oceans and denitrification 609 

in rivers all show a slight peak between 1926 and 1931 due to the relatively 610 

higher surface runoff during this period (Fig. S9). This higher runoff results 611 

mostly from meteorological forcings, as the global total amount of heavy 612 

rainfall (>25 mm d-1) was higher during this period (Fig. S9). Note that Probst 613 

and Tardy (1989) provide empirical evidence for elevated global runoff during 614 

this period and we thus consider this peak as realistic.  615 
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 616 
Figure 6. Trends in global N flows from 1901 to 2014: (a) yearly-mean TN 617 

inputs into rivers, TN exports to oceans and denitrification rates; (b) yearly-618 

mean DIN, DON and PON exports to oceans. TN: total nitrogen; DIN: 619 

dissolved inorganic nitrogen; DON: dissolved organic nitrogen; PON: 620 

particulate organic nitrogen. 621 

3.2.2. Spatial patterns in N flows and concentrations 622 

Annual mean TN input into rivers during 2000-2014 shows large spatial 623 

heterogeneity, with higher values mainly located in eastern North America, 624 

South America, Western Europe, tropical Africa, South Asia, Southeast Asia 625 

and Southeast China (Fig. 7a). When compared with 1901-1910, TN inflow into 626 

rivers increased in most areas (about 70%), with the highest increase located in 627 

China exceeding 300% (Fig. 8a). The annual mean contemporary denitrification 628 

rates (2001-2014) also exhibit large spatial heterogeneity (Fig. 7b) with high 629 

denitrification rates in large tropical and subtropical rivers, such as the Amazon, 630 

Nile and Congo rivers. Over the entire simulation period, the grid cells with the 631 

highest relative denitrification increases are mostly located in the subtropics 632 

(Fig. 8b).  633 

The TN export to oceans during 2001-2014 also varies substantially 634 

across regions (Fig. 7c). The riverine TN exports are relatively low for the 635 

Arctic Ocean, the western and southern coasts of Australia, and the coastal zone 636 

adjacent to desert areas in South America (e.g., the Atacama Desert and the 637 

Patagonian Desert), Africa (the Sahara Desert and the Namib Desert), and Asia 638 

(e.g., the Arabian Desert, the Thar Desert in India, the deserts of eastern Iran, 639 
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and the Syrian Desert) (Fig. 7c). On the contrary, the Amazon region in South 640 

America, the African rainforest region, Western Europe, South Asia, and 641 

southeast China are prominent hotspots of riverine TN exports (Fig. 7c). 642 

Unsurprisingly, TN exports to oceans have increased in most regions since the 643 

early 20th century (Fig. 8c). In several regions, such as the southeastern coastal 644 

areas of China, TN exports to oceans have even increased by more than 100% 645 

from 1901-1910 to 2001-2014 (Fig. 8c). 646 

The annual mean contemporary concentration of TN at river mouths also 647 

exhibits significant spatial heterogeneity (Fig. 7d), which differs from that of 648 

TN export to oceans (Fig. 7c). For instance, the Amazon region is one of the 649 

hotspots for TN exports, but its TN concentrations are low (<1 mg L-1), because 650 

the water discharge and denitrification rates are both high (Figs. 7b, S10 a). The 651 

highest TN concentrations (>5 mg L-1) are found in areas with intense human 652 

activity, for example the San Francisco area, Peru, Spain, Egypt (Nile River 653 

estuary) and the southeastern coastal areas of China (Bu et al., 2019; Hou et al., 654 

2022; Yang et al., 2023). 655 

The spatial distribution of changes in TN concentrations from 1901-1910 656 

to 2001-2014 differs from that of TN exports (Fig. 8c, d). For example, along 657 

the eastern coast of Amapá state in Brazil, and the western coast of Guinea, 658 

Sierra Leone, and Libya, TN exports to oceans decreased by more than 20%, 659 

while TN concentrations increased by more than 10% (Fig. 8c, d). This 660 

phenomenon is due to negative trends in water discharge from the 661 

corresponding watersheds (Fig. S10 b). In most regions, the ratio of changes in 662 

TN fluxes to changes in TN concentrations ranges between 0 and 1, indicating 663 

that TN flux changes are driven by the combined effects of changes in water 664 

discharge and TN concentrations (TN inputs into rivers) (Fig. 9). 665 
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 666 

Figure 7. Spatial patterns of annual mean N fluxes and concentrations during 667 

2001-2014: (a) TN inputs into rivers; (b) denitrification rates in rivers; (c) TN 668 

exports to oceans; (d) TN concentrations at rivers mouths. To display the spatial 669 

patterns of denitrification in rivers better, we excluded data with denitrification 670 

rates less than 0.001 GN yr-1 per grid. 671 

 672 

Figure 8. Spatial patterns of changes from 1901-1910 to 2001-2014 of: (a) TN 673 

inputs into rivers; (b) denitrification; (c) TN exports to oceans; (d) TN 674 

concentrations. 675 
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 676 

Figure 9. Ratio of changes in TN exports to changes in TN concentrations from 677 

1901-1910 to 2001-2014. 678 

3.2.3. Seasonal variability in N flows and concentrations 679 

The seasonality of TN inputs into rivers during the period 2001-2014 is 680 

most pronounced in the central United States, Europe, South Asia, Southeast 681 

Asia and southeast China (Fig. 10a). The frequency distribution of the seasonal 682 

amplitude in inputs (Fig.10a) is broadly similar to that of the mean annual 683 

inputs (Fig 7a), suggesting a seasonal variability of similar magnitude than the 684 

broad, global scale spatial variability. A similar pattern is observed for 685 

denitrification rates, with seasonal and spatial variations of comparable 686 

magnitudes (Figs. 7b, 10b).  687 

The seasonal amplitudes of TN exports to oceans during the period 2001-688 

2014 shows highest values (> 10 Gg N yr-1) along the coasts of South Asia, and 689 

southeast China, and to a lesser extent (1-10 Gg N yr-1) along the coastline of 690 

the Amazon region, the rainforest regions of Africa, Western Europe, and 691 

Mexico (Fig. 10c). As expected, a significant portion of this seasonal variability 692 

is due to river discharge (Fig. S11 a). Our results indicate that the spatial pattern 693 

of seasonal amplitudes in TN concentrations at river mouths differs from that of 694 

TN exports (Fig. 10c, d). This result is important because the ocean 695 
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biogeochemical modelling community typically uses annual mean TN fluxes 696 

derived from Global News to force their simulations (e.g., Lee et al., 2016; 697 

Stock et al., 2020; Tjiputra et al., 2020; Lacroix et al., 2021), and downscales 698 

these inputs to monthly values under the assumption that the seasonal variability 699 

of the flux is entirely driven by river discharge. Our simulations thus stress the 700 

need for models that explicitly resolve the seasonal variability of fluxes and 701 

concentrations. 702 

We also normalized the seasonality by the mean value of N flux or 703 

concentrations. For TN inputs into rivers, denitrification and TN exports, the 704 

normalized seasonal maps all show higher values in the middle and high 705 

latitudes of the Northern Hemisphere and lower values in the low latitudes and 706 

the Southern Hemisphere (Fig. S12). Moreover, the regional-scale heterogeneity 707 

in the normalized seasonality of TN concentration is much weaker than that of 708 

the TN flux (Figs. 10d, S12 d).  709 

 710 

Figure 10. Spatial distribution of the seasonal amplitude (period 2001-2014) in : 711 

(a) TN inputs into rivers; (b) TN exports to oceans; (c) rates of denitrification; 712 

(d) TN concentrations at rivers mouths.  713 

3.3. Comparison with other models 714 
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We compared the trends of global DIN input into rivers simulated by 715 

ORCHIDEE-CNP with those generated by the recently published IMAGE-716 

GNM model (Vilmin et al., 2018). Overall, both models capture a similar 717 

increasing trend of global DIN delivery from land to rivers from 1901 to 2001 718 

(Fig. 11a). During 1961-2000, the global-scale interannual variability of DIN 719 

simulated by ORCHIDEE-CNP is comparatively stronger than that simulated 720 

by IMAGE-GNM (Fig. 11a). This discrepancy may be partially explained by 721 

differences in the temporal resolution of the two models (daily for ORCHIDEE-722 

CNP, yearly for IMAGE-GNM) and the associated climate forcings. In other 723 

words, ORCHIDEE-CNP calculates the annual means from daily fluxes, 724 

whereas IMAGE-GNM does not resolve the intra-annual variability. In contrast, 725 

the organic nitrogen (ON = PON + DON) fluxes simulated by ORCHIDEE-726 

Clateral and derived from IMAGE-GNM differ significantly. The ON inflow 727 

simulated by IMAGE-GNM shows a substantial increase from 24.9 Tg N yr⁻¹ 728 

during 1901-1910 to 37.9 Tg N yr⁻¹ during 1991-2000, while ON simulated by 729 

ORCHIDEE-Clateral exhibits a weaker increasing trend over the same period, 730 

from 26.5 Tg N yr⁻¹ to 32.4 Tg N yr⁻¹. The weaker trend in ORCHIDEE-731 

Clateral can primarily be explained by the increasing DON inflow being offset 732 

by a decreasing PON inflow (Fig. 11c). The fundamental reason for the 733 

discrepancy among the two models stems from their distinct structures and 734 

algorithms. In ORCHIDEE-Clateral, the ON flows into rivers are calculated 735 

separately for the dissolved and particulate compounds using a process-based 736 

representation of the soil C stock dynamics and C:N ratios, as well as the rates 737 

of runoff and drainage. The approach is different in IMAGE-GNM which 738 

calculates the bulk ON flows (DON+PON) based on empirical formulas 739 

(Vilmin et al., 2018). Specifically, IMAGE-GNM calculates ON delivery from 740 

land to rivers with drainage based on the TN delivery rate with drainage, 741 

assuming that 50% of TN flux is in the form of ON. For ON flows into rivers 742 

with runoff, IMAGE-GNM distinguishes two runoff mobilisation pathways, i.e. 743 
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losses from recent nutrient applications in forms of fertiliser and manure, and a 744 

memory effect related to long-term historical changes in soil nutrient 745 

inventories. These two pathways both are simulated based on empirical 746 

formulas (Vilmin et al., 2018). In ORCHIDEE-Clateral, default C:N ratio in 747 

different SOM pools were used to calculate the PON erosional fluxes from soils 748 

using a process-based approach, and a constant C:N ratio (averaged values from 749 

references) was applied to simulate DON flows out of soils. The assumption of 750 

constant C:N ratio for dissolved matter in soil may contribute to the weaker 751 

trend in ON delivery to rivers simulated by LSM_Nlateral_Off, since some 752 

studies have revealed that DOC:DON ratios vary with time and land cover (Li 753 

et al., 2019; Yates et al., 2019). 754 

 755 

Figure 11. Global terrestrial N flows into rivers from 1901 to 2001 simulated by 756 

ORCHIDEE model versions and IMAGE-GNM (Vilmin et al., 2018): (a) DIN; 757 

(b) ON (DON+PON); (c) DON and PON derived from ORCHIDEE-Clateral. 758 

The simulated lateral N flows from land to rivers and N exports to oceans 759 

in this study are now compared with those simulated by other models across 760 
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different time horizons, noting that each model covers different time periods 761 

(Fig. 12). Focusing first on the global N flows from land to rivers, we find that 762 

for different time horizons, the N inputs used as forcings for LSM_Nlateral_Off 763 

(i.e., simulated by ORCHIDEE-Clateral and ORCHIDEE-CNP) are very close 764 

with those estimated by IMAGE-GNM (Vilmin et al., 2018) and FrAMES-N 765 

(Wollheim et al., 2008), with differences between our simulations and other 766 

models never exceeding 7% across different time horizons. Although the 767 

fraction of DIN in TN over 1901-1910 simulated by LSM_Nlateral_Off (27%) 768 

is slightly lower than that of IMAGE-GNM (29%), the DIN fractions simulated 769 

by these two models both show obvious increasing trends with time, 770 

LSM_Nlateral_Off and IMAGE-GNM reporting DIN fractions for the 1991-771 

2000 period reaching 48% and 43%, respectively (Fig. 12a). These results are 772 

consistent with a comprehensive cross-biome assessment of N composition in 773 

rivers that also revealed a shift in the dissolved N from highly heterogeneous to 774 

primarily inorganic N in response to human disturbances (Wymore et al., 2021). 775 

This change in the composition of TN inputs from land to rivers is primarily 776 

caused by the excess inorganic N released from agricultural (due to the 777 

utilisation of fertilisers) and urban (due to the release of sewage) areas. 778 

The global N export from rivers to oceans simulated by 779 

LSM_Nlateral_Off is also comparable to estimates from other models. During 780 

1901-1910, the global riverine N export to oceans is 29.0 Tg N yr-1, a value that 781 

falls within the range simulated by IMAGE-GNM (19.0 Tg N yr-1, Vilmin et 782 

al., 2018) and DLEM (29.4 Tg N yr-1, Tian, pers. com.) (Fig. 12b). For the most 783 

recent period (2000s), the simulated riverine N export to oceans is converging, 784 

with differences less than 10 % compared to other models such as 785 

GlobaNEWS2 (Mayorga et al., 2010), IMAGE-GNM, and DLEM (Fig. 12b). 786 

Although the global riverine TN export to oceans simulated by 787 

LSM_Nlateral_Off is close to that simulated by GlobalNEWS2 (1970-2010), 788 
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the TN export reported here contains a slightly larger fraction of DIN and a 789 

slightly lower fraction of PON compared to GlobalNEWS2 (Fig. 12b).  790 

The TN export to oceans simulated by LSM_Nlateral_Off and 791 

GlobalNEWS2 are also comparable at continental scale (Fig. 13a), with largest 792 

TN exports from Asia, and lowest exports from Australia. However, the 793 

simulated proportions of N species in the overall TN export show distinct 794 

behaviours between these two models. For example, compared to 795 

GlobalNEWS2, the DIN proportion in TN exports simulated by 796 

LSM_Nlateral_Off is larger in Asia, Africa and South America but smaller in 797 

Europe (Fig. 13a).  798 

The magnitude of TN exports simulated by LSM_Nlateral_Off and 799 

GlobalNEWS2 continues to diverge at basin scale (Fig. 13b). In 8 of the top 20 800 

basins by area, the difference between the two models is less than 50%, such as 801 

in the Congo, Mississippi, Ob, Parana, Yenisei, Changjiang, Mackenzie and 802 

Nelson basins. Larger discrepancies can however be observed in several large 803 

river systems. For instance, in the Amazon basin, the TN export simulated by 804 

GlobaNEWS2 is about 2.5 times larger than that simulated by 805 

LSM_Nlateral_Off. The evaluation of LSM_Nlateral_Off simulation results 806 

against measurements of TN flow rates in the Amazon River indicates that 807 

LSM_Nlateral_Off underestimates the TN flow in this basin (Fig. 4). At 808 

Manacapuru and Óbidos, two observation sites on the main channel of the 809 

Amazon River, the observed TN flow is 1.90 Tg N yr-1 and 2.82 Tg N yr-1, but 810 

the simulated values are 0.92 Tg N yr-1 and 1.57 Tg N yr-1, respectively. To 811 

evaluate whether this underestimation is caused by less TN inflow into rivers, 812 

we set the N transformation processes (decomposition of DON and PON, and 813 

denitrification) in rivers to zero, and found that the TN flows are 1.56 Tg N yr-1 814 

at Manacapuru and 2.35 Tg N yr-1 at Óbidos. Therefore, even with no N 815 

removal, LSM_Nlateral_Off still underestimates the observed TN flows at these 816 
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two sites, suggesting that N delivery from terrestrial ecosystems to rivers (as 817 

simulated by ORCHIDEE) is too low in the Amazon basin. In the Nile basin, 818 

the TN export simulated by LSM_Nlateral_Off is thirty times larger than that 819 

simulated by GlobalNEWS2. Observed annual exports of DIN and DON 820 

amount to 0.079 Tg N yr-1 and 0.038 Tg N yr-1, respectively (Badr, 2016). These 821 

observed values are of the same magnitude as those simulated by 822 

LSM_Nlateral_Off, 0.113 Tg N yr-1 for DIN and 0.048Tg N yr-1 for DON. This 823 

finding suggests that LSM_Nlateral_Off better captures the observed N export 824 

for this specific basin than GlobalNEWS2.  825 

It should be noted that the GlobalNEWS2 and IMAGE-GNM both have 826 

an IMAGE part to simulate N inputs into inland rivers, but were developed 827 

using different hydrological models and different methods to calculate N 828 

transport and retention along the global river network. The hydrological model 829 

embedded in GlobalNEWS2 is the Water Balance Model (WBMplus) (Fekete et 830 

al., 2010), and the NEWS models were then developed to calculate nutrient 831 

retention in streams and reservoirs (Seitzinger et al., 2005, 2010; Mayorga et al., 832 

2010). The hydrological model used in IMAGE-GNM is the PCRaster Global 833 

Water Balance (PCR-GLOBWB) (Van Beek et al., 2011), and IMAGE-GNM 834 

then applied the nutrient spiralling approach (Newbold et al., 1981) to describe 835 

in-stream retention of both N and P with a yearly time step (following 836 

Wollheim et al., 2008). 837 

In summary, the global total N input to rivers and N export to oceans 838 

simulated by the different models are comparable, but the spatial distribution of 839 

N export to oceans at finer spatial scales shows increasing discrepancies, as 840 

does the chemical speciation. This is mainly due to differences in model 841 

structures, spatial and temporal resolutions and forcing data. Although our 842 

model has been evaluated against the largest dataset of river discharge and N 843 

concentrations from the recently assembled global GRDC and GRQA database, 844 
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significant cross-model discrepancies emerge as the analysis is refined to 845 

regional patterns and individual river basins. This highlights the necessity for 846 

improvements in model structure and quality of both forcing data and 847 

evaluation data, as well as the implementation of ensemble-mean assessments, 848 

akin to the recent approach applied to constrain carbon exports to the oceans 849 

(Liu et al., 2024). 850 

 851 
Figure 12. Comparison of global TN fluxes estimated by different models: (a) 852 

global TN inputs to rivers; (b) global TN exports to oceans. IMAGE-GNM: 853 

Integrated Model to Assess the Global Environment-Global Nutrient Model 854 

(Vilmin et al., 2018); FrAMES-N: Framework for Aquatic Modeling in the 855 

Earth System (Wollheim et al., 2008); MBM: Mass Balance Model (Green et 856 

al., 2004); GlobalNEWS2: Global Nutrient Export from Watersheds 2 857 

(Mayorga et al., 2010); DLEM, Dynamic Land Ecosystem Model, unpublished 858 

(Tian, pers. com.). 859 
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 860 
Figure 13. Comparison of present-day (2001-2010) TN export to oceans 861 

simulated by LSM_Nlateral_Off and GlobalNEWS2 (Mayorga et al., 2010) at: 862 

(a) continental scale; (b) basin scale.  863 

3.4. Model limitations and priorities for future research  864 

LSM_Nlateral_Off currently relies on a simplified representation of the N 865 

processes in benthic sediments and water, without explicit simulation of the 866 

hyporheic exchange between sediments and water. The importance of these 867 

processes is estimated using a scaling factor based on water depth, which itself 868 

relies on a coarse approximation of the stream channel geometry based on 869 

empirical formulas (Raymond et al., 2012). Global-scale databases on the 870 

geomorphic properties of river channels, including river depth and width, are 871 

available (Andreadis et al., 2013) and could be used in the future to further 872 

refine the representation of N processes in river channels, including the 873 
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hyporheic exchange between sediments and water. The residence time method 874 

was used to estimate water and N transport within river networks. This method 875 

is simple and has been widely used in large scale simulations of fluvial water, 876 

carbon and N transports (Beusen et al., 2015; Jepsen et al., 2019; Zhang et al, 877 

2022). However, it may not fully capture the seasonality of water and N flows 878 

accurately in some regions (Fig. 5 a2 & b2). To improve the accuracy of 879 

simulating fluvial water and N transport, the residence time method currently 880 

used in LSM_Nlateral_Off could be replaced with hydrological kinetic 881 

equations in future versions of the model. 882 

The current version of LSM_Nlateral_Off also has several limitations in 883 

terms of biogeochemistry. One limitation is the use of a constant C:N ratio to 884 

simulate DON fluxes from soils to rivers. Research has shown that the C:N ratio 885 

varies over time and across different land cover types (Li et al., 2019; Yates et 886 

al., 2019). The use of a constant C:N ratio may thus reduce the accuracy and 887 

informativeness of the estimated DON flux. Addressing this limitation is an 888 

urgent priority for future research.  889 

At present, few studies have accounted for the effects of PON deposition 890 

and resuspension on lateral N transfer in rivers because of the challenge of 891 

representing these processes at the global scale. Moreover, PON deposition is 892 

mainly controlled by the rate of sediment deposition, a process which is not 893 

represented in the current model version. Therefore, PON deposition has not 894 

been simulated either. Recent results from ORCHIDEE-Clateral suggest that 895 

about 22% of POC entering the global river network is deposited with 896 

sediments before reaching the coast (Zhang et al., under review). Assuming a 897 

similar fraction of deposited PON, global PON export to oceans simulated by 898 

LSM_Nlateral_Off could be approximately 20% lower (about 2 Tg N yr -1) than 899 

estimated here. 900 
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The role of autotrophic production is another process currently omitted. 901 

Autotrophs (aquatic macrophytes, algae, cyanobacteria, bryophytes, some 902 

protists, and bacteria) in freshwater systems take up DIN from the water column 903 

(King et al., 2014) and may play a significant role in N cycling within rivers 904 

(Wachholz et al., 2024). In future model developments, the role of autotrophic 905 

production on N retention should thus be considered, although the large 906 

dominance of the heterotrophic metabolism on a global scale suggests that in-907 

situ aquatic production is a second-order control on N cycling (Battin et al., 908 

2023). The transformation of PON to DON is also not included in the current 909 

version of LSM_Nlateral_Off. A previous study suggests that the instream 910 

transformation of POC to DOC is limited (about 0.3%) (Zhang et al., 2022). It 911 

can thus be assumed that the fraction of PON transformed to DON is also rather 912 

negligible. Nevertheless, we plan to incorporate this transformation process into 913 

our model in the next phase of our research. 914 

In the present version of LSM_Nlateral_Off, river-floodplain dynamics 915 

and channel erosion are currently not represented, because of the incomplete 916 

understanding of how these processes affect lateral N transfer and the lack of 917 

reliable parameters from field studies to quantify their impacts at global scale. 918 

Floodplain inundation not only facilitates N inputs into river, but also 919 

significantly influences N retention efficiency in rivers (Martí et al., 1997; 920 

Hanrahan et al., 2018), and N cycling (e.g., nitrification and denitrification) in 921 

flooded soils (Sánchez-Rodríguez et al., 2019; Hu et al., 2020). For instance, in 922 

the Jiulong River watershed in southeast China, flood events exported 47% and 923 

42% of the annual land-derived ammonium (NH4
+) and NO3

-, respectively, 924 

although they only occurred 24% of the time (Gao et al., 2018). This highlights 925 

the critical role of flood events in N transport and cycling, emphasizing the need 926 

to incorporate floodplain processes in future model development. 927 
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LSM_Nlateral_Off includes the major sources of riverine N with runoff 928 

and drainage from natural, agricultural and urban ecosystems (Fig. 1). Yet, 929 

several sources are still missing, for example atmospheric N deposition directly 930 

onto rivers and N release from aquaculture (Filoso et al., 2003; Bouwman et al., 931 

2013; Beusen et al., 2016a; Gao et al., 2020), suggesting that the N exports to 932 

oceans simulated by LSM_Nlateral_Off might be conservative. On the other 933 

hand, N retention and recycling in lakes and artificial reservoirs are currently 934 

missing, which have the potential to decrease lateral N flows because they offer 935 

ideal conditions for N burial in sediment or permanent loss via denitrification 936 

(Saunders & Kalff, 2001; Harrison et al., 2009; Akbarzadeh et al., 2019). The 937 

absence of these processes in the current model may lead to an overestimation 938 

of N exports to oceans. 939 

The forcing data used by the LSM_Nlateral_Off (Table 1) introduces 940 

additional uncertainties into the simulation results. The routing scheme of water 941 

and N is driven by a map of streamflow direction at 0.5◦ spatial resolution 942 

(Vörösmarty et al., 2000, https://doi.org/10.1016/S0022-1694(00)00282-1). 943 

There are obvious discrepancies between this routing scheme and the real river 944 

network (Zhang et al., 2022). This deviation of flow direction induces 945 

uncertainties in the simulated riverine water discharge and N flow because the 946 

flow direction directly determines the area of each catchment and the routing of 947 

the river.  948 

Finally, although LSM_Nlateral_Off effectively reproduces the 949 

magnitude and seasonal variations of water and N transfer from land to rivers 950 

and oceans (Figs. 4 & 5), spatial and temporal biases in observational data also 951 

affect the evaluation of model performance. Most observations of riverine N are 952 

distributed in North America, South America and Europe, highlighting the 953 

crucial need to collect more measurements in other regions of the world, 954 

especially in Africa. In addition, despite the strong correlation between TN and 955 
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NO3
- concentrations, the application of an empirical equation (Eq. 18) to 956 

estimate TN from NO3
- introduces additional uncertainties in the observational 957 

dataset (Pisani et al., 2017; Niu et al., 2022). 958 

4. Conclusions  959 

We developed a global N lateral transfer model from land to oceans 960 

through the river network, incorporating the decomposition of DON and PON 961 

and denitrification of DIN during fluvial transport. Evaluations using 962 

observational data from GRDC and GRQA indicate that LSM_Nlateral_Off 963 

reproduces observed rates and seasonal variations of water discharge and N 964 

flow well. The global simulation of LSM_Nlateral_Off shows that global TN 965 

inputs into rivers, TN exports to oceans and riverine denitrification rates 966 

increased significantly over the last century. In particular, the TN exports to 967 

oceans increased from 27.1 Tg N yr-1 during 1901-1910 to 40.8 Tg N yr-1 during 968 

2001-2014, with DIN contributing 80% to the TN increase. Our results reveal 969 

significant spatial heterogeneity in the global distribution of N inputs, 970 

transformation and exports to oceans, with East Asia and Southeast Asia 971 

identified as hotspots of N lateral transfers and their increase. The seasonal 972 

amplitude of TN export is of similar magnitude to the large-scale spatial 973 

heterogeneity in TN fluxes. Although the global and continental-scale TN 974 

exports to oceans simulated by LSM_Nlateral_Off are similar to that of another 975 

widely used model (GlobalNEWS2), their spatial distributions at the basin scale 976 

reveal significant discrepancies. One key strength of LSM_Nlateral_Off is its 977 

ability to resolve N processes at the daily timescale, using a framework fully 978 

compatible with land surface model (LSM) outputs. This compatibility enables 979 

the model to account for the effects of climate change, atmospheric composition 980 

changes, land-use change, and agricultural practices (e.g., manure and fertiliser 981 

use) in a fully consistent way. 982 



44 

 

LSM_Nlateral_Off has however its own limitations and we plan to further 983 

enhance its capabilities with additional processes (e.g. autotrophy, variable C:N 984 

ratios, erosion-deposition on riverbed), additional sources (e.g. aquaculture, 985 

direct N deposition) and interconnections with other (semi)-aquatic and benthic 986 

systems (hyporheic zone, lakes, reservoirs, floodplains). Furthermore, additional 987 

observational data will be collected to further calibrate and evaluate 988 

LSM_Nlateral_Off. Last but not least, LSM_Nlateral_Off is currently being 989 

dynamically embedded into ORCHIDEE (Vuichard et al., 2019), the land 990 

surface scheme of the IPSL Earth System Model. This coupling opens new 991 

avenues towards fully coupled simulations of the land-ocean-atmosphere N 992 

cycle. Additionally, the current offline version of our model could also be easily 993 

coupled to other LSMs representing N cycling in terrestrial ecosystems, 994 

enabling broader applications and cross-model comparisons. 995 

  996 
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Appendices 997 

Table A1. Abbreviation used in the text. 998 

Abbreviation Meaning unit 

FDR_DIN leaching rates of DIN with drainage g N d-1 

FDR_DON leaching rates of DON with drainage g N d-1 

FRO_DIN leaching rates of DIN with runoff g N d-1 

FRO_DON leaching rates of DON with runoff g N d-1 

FRO_PON erosion rates of PON with runoff g N d-1 

Fsewage_DIN DIN inflow rates from sewage g N d-1 

Fsewage_DON DON inflow rates from sewage g N d-1 

Ffastout_H2O outflow rates of water from fast reservoirs to stream reservoirs m3 d-1 

Ffastout_DIN outflow rates of DIN from fast reservoirs to stream reservoirs g N d-1 

Ffastout_DON outflow rates of DON from fast reservoirs to stream reservoirs g N d-1 

Ffastout_PON outflow rates of PON from fast reservoirs to stream reservoirs g N d-1 

Fslowout_H2O outflow rates of water from slow reservoirs to stream reservoirs m3 d-1 

Fslowout_DIN outflow rates of DIN from slow reservoirs to stream reservoirs g N d-1 

Fslowout_DON outflow rates of DON from slow reservoirs to stream reservoirs g N d-1 

Fstreamout_H2O outflow rates of H2O to downstream reservoirs m3 d-1 

Fstreamout_DIN outflow rates of DIN to downstream reservoirs g N d-1 

Fstreamout_DON outflow rates of DON to downstream reservoirs g N d-1 

Fstreamout_PON outflow rates of PON to downstream reservoirs g N d-1 

Rfast_DIN denitrification rates in fast reservoirs g N d-1 

Rfast_DON decomposition rates of DON in fast reservoirs g N d-1 

Rfast_PON decomposition rates of PON in fast reservoirs g N d-1 

Rslow_DIN denitrification rates in slow reservoirs g N d-1 

Rslow_DON decomposition rates of DON in slow reservoirs g N d-1 

Rstream_DIN denitrification rates in stream reservoirs g N d-1 

Rstream_DON decomposition rates of DON in stream reservoirs g N d-1 

Rstream_PON decomposition rates of PON in stream reservoirs g N d-1 

Sfast_H2O water stock in fast reservoir m3 

Sfast_DIN DIN stock in fast reservoir g N 

Sfast_DON DON stock in fast reservoir g N 

Sfast_PON PON stock in fast reservoir g N 

Sslow_H2O water stock in slow reservoir m3 

Sslow_DIN DIN stock in slow reservoir g N 

Sslow_DON DON stock in slow reservoir g N 

Sstream_H2O water stock in stream reservoir m3 

Sstream_DIN DIN stock in stream reservoir g N 

Sstream_DON DON stock in stream reservoir g N 

Sstream_PON PON stock in stream reservoir g N 

TW water temperature ℃ 

FT_DIN dependency of denitrification on temperature unitless 
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depth depth of rivers m 

Q water discharge km3 yr-1 

Table A2. Values of the key parameters used in LSM_Nlateral_Off to simulate 999 

the lateral transfer of N. 1000 

Parameter Value Description Source 

τfast 3.0 days 
A factor which translates the topographic 

index into the water residence time of the 

“fast” reservoir (Eq. 1) 

Ngo-Duc et al., 2006 

τslow 25.0 days 
A factor which translates the topographic 

index into the water residence time of the 

“slow” reservoir (Eq. 1) 

Ngo-Duc et al., 2006 

τstream 0.24 days 
A factor which translates the topographic 

index into the water residence time of the 

“stream” reservoir (Eq. 1) 

Ngo-Duc et al., 2006 

KPON 0.028 d-1 the average PON decomposition rate at 

20℃ in water (Eq. 13) 
Islam et al., 2012 

KDON 0.07 d-1 the average DON decomposition rate at 

20℃ in water (Eq. 14) 
Xia et al., 2013 

KDIN 0.15 d-1 the average denitrification rate in water at 

25℃ (Eq. 15) 
Alexander et al., 2000 

Q10 2.0 the temperature sensitivity of PON and 

DON decomposition rates (Eqs. 13-14) Liu et al., 2021 

Zang et al., 2020 
Tref1 20 ℃ the reference temperature for PON and 

DON decomposition (Eqs. 13-14) 

Tref2 25 ℃ the reference temperature for denitrification 

(Eq. 16) 
Ma et al., 2022 
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Code and data availability. The source code of the LSM_Nlateral_Off model 1002 

is available online(https://zenodo.org/records/13309551). All forcing and 1003 

validation data used in this study are publicly available online. The specific 1004 

sources for these data can be found in Table 1. 1005 
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