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Abstract. The increase in the number and quality of numerical moisture tracking tools has greatly improved our 

understanding of the hydrological cycle in recent years. However, the lack of observations has prevented a direct validation 

of these tools, and it is common to find large discrepancies among the results produced by them, especially between Eulerian 

and Lagrangian methodologies. Here, we evaluate two diagnostic tools for moisture tracking, WaterSip and UTrackthe 

Dirmeyer and Brubaker, (1999) methodology, using simulations from the Lagrangian model FLEXPART. We assess their 15 

performance against the Weather Research and Forecasting (WRF) model with Eulerian Water Vapor Tracers (WRF-

WVTs). Assuming WRF-WVTs results as a proxy for reality, we explore the discrepancies between the Eulerian and 

Lagrangian approaches for five precipitation events associated with atmospheric rivers and proposeassess some physics-

based adjustments to the Lagrangian tools. Our findings reveal that UTrack, constrained by evaporation and precipitable 

water data, has a slightly better agreement with WRF-WVTs than WaterSip, constrained by specific humidity data. As in 20 

previous studies, we find a negative bias in the contribution of remote sources, such as tropical ones, and an overestimation 

of local contributions. Quantitatively, the root-mean-square-error (RMSE)mean absolute error skill score (MAESS) with 

respect to WRF-WVTs for contributions from selected source regions is 5.550.74 for WaterSip and 4.640.77 for UTrackthe 

Dirmeyer and Brubaker, (1999) diagnostic tool, highlighting UTrack's narrowly superior performance. The implementation 

ofImplementing our  simple and logical corrections leads to a significant improvement in both methodologies, effectively 25 

reducing the RMSE by over 50 % and bridging the gap between Eulerian and Lagrangian outcomes  as the skill score 

improves to 0.84 and 0.87, respectively. Although these modifications may need to be adjusted for other types of 

precipitation events, our results demonstrate that Lagrangian techniques are a viable and compatible alternative to Eulerian 

water vapor tracers, and that the main discrepancies between the different methodologies can be derived from the obviation 

of basic physical considerations that may be easily straightened out. Our results suggest that the major discrepancies between 30 

the different methodologies were not rooted in their inherently different nature, but in the obviation of basic physical 

considerations that may be easily straightened out. 
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1 Introduction 

Water is one of Earth’s most important resources, and its availability and distribution are crucial to the future of the different 

ecosystems, including humans. Given its importance and scarcity, it is vital to understand how water is transported between 35 

different regions of our planet (Oki and Kanae, 2006). Water can be transported within a catchment through rivers and 

groundwater flow. However, the transport of water between basins, or from ocean to land, is mostly done via the 

atmosphere, through what is known as the atmospheric branch of the water cycle. To investigate the latter, researchers have 

developed different moisture tracking methods that make it possible to analyse where moisture contributing to precipitation 

has previously evaporated (see Gimeno et al., 2012, for a review). Apart from analytical approaches (Trenberth, 1999; 40 

Dominguez et al., 2006; Rios-Entenza and Miguez-Macho, 2014; Trenberth, 1999), the most used models to this end are 

numerical or computational routines. Within this group, two main classes can be distinguished: Eulerian water vapor tracers, 

e.g., (Koster et al., 1986; Yoshimura et al., 2004; Sodemann et al., 2009; Insua-Costa and Miguez-Macho, 2018; Koster et 

al., 1986; Sodemann and Stohl, 2009), and Lagrangian transport models moisture source diagnostics, (Dirmeyer and 

Brubaker, 1999; Stohl and James, 2004; Sodemann et al., 2008; Stohl and James, 2004). The classification can be based on 45 

alternative criteria, e.g. whether the moisture tracking is performed simultaneously with the computation of meteorological 

fields, such as wind or specific humidity (online), or not (offline). Additionally, the tracking can be either forward or 

backward, depending on whether the moisture is tracked forward or backward in time. Despite the diversity of 

methodologies, most academics often use a single model, and the few works in which multiple methods have been tested 

show that results can be highly discrepant may not be in agreement, (Cloux et al., 2021; van der Ent et al., 2013; Winschall 50 

et al., 2014; Cloux et al., 2021).  

 

The aforementioned techniques have been particularly used to identify moisture sources in precipitation events associated 

with atmospheric rivers (ARs). ARs are structures of enhanced moisture and intense water vapor transport in the atmosphere, 

typically located in the pre-cold frontal region of an extratropical cyclone (Zhu and Newell, 1998; Ralph et al., 2005Gimeno 55 

et al., 2014), which can eventually cause extreme rainfall (Ralph et al., 2006).  However, few studies address this problem 

with a moisture tracking methodology, e.g., (Eiras-Barca et al., 2017; Hu and Dominguez, 2019; Liberato et al., 2013; 

Ramos et al., 2016), and even fewer go beyond the identification of moisture sources to quantify them. There are studies 

focused on computing the origin of moisture within ARs and moisture sources for precipitation using Eulerian water vapor 

tracers (Sodemann and Stohl, 2013; Eiras-Barca et al., 2017; Hu and Dominguez, 2019), Lagrangian techniques (Liberato et 60 

al., 2013; Ramos et al., 2016) or both (Bonne et al., 2015). However, those studies in which they quantify the relative 

importance of different moisture sources focus on individual cases, so the debate on the origin of moisture in ARs is not yet 

completely closed. This is reflected in the definition of AR given in the Glossary of Meteorology, where it is indicated that 

the sources of moisture can be tropical and/or extratropical (Ralph et al., 2018). 

 65 
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In this context, the goal of this paper is to compare and adjust two Lagrangian methodologies for the computation of 

moisture sources for precipitation (or precipitation sources) focusing on AR-related rainfall events. The strategy we adopt is 

to run the Lagrangian models on atmospheric data from simulations of so that the results are aligned with those provided by 

the Weather Research and Forecasting (WRF) model with Water Vapor Tracers (WRF-WVTs; Insua-Costa and Miguez-

Macho, 2018), and introduce physically based modifications so that the results are aligned with those provided by the latter 70 

tool. focusing on AR-related rainfall events. The rationale for this approach is simple. Online Eulerian water vapor tracers 

are widely considered the most accurate technique for moisture tracking because, being coupled to a meteorological model, 

they consider in detail account for all the physical processes that affect moisture in the atmosphere affecting atmospheric 

moisture that are resolved or parameterized by the model. In the case of WRF-WVTs, they are internally consistent, showing 

an almost exact performance within the “model world” (Insua-Costa and Miguez-Macho, 2018), i.e. they constitute synthetic 75 

observations generated from the model simulation. Furthermore, in the absence of direct observations, results provided by 

WRF-WVTs are particularly suitable to be considered as reference when comparing with other methods, as long as the 

simulated atmosphere behaves like the real one and follows it closely. Their disadvantage, however, is that they are 

computationally expensive, and therefore their application over long time periods or in many case studies is often unfeasible . 

Additionally, the amount of information they offer is limited, as the moisture source to be tagged needs to be predefined. In 80 

contrast, Lagrangian methods involve more uncertainty but are much more computationally efficient and provide gridded 

information, but they are sensitive to a range of hypotheses and parameter choices, which significantly increases their 

uncertainty. Achieving a Lagrangian moisture source diagnostictracking methodology that mimics the WRF-WVTs results 

would therefore imply having a very accurate and at the same time flexible tool that can be applied to a large number of 

ARs, our goal for the future, but probably also to other types of weather or climate phenomena. Importantly, WRF-WVTs 85 

have been fully validated (Insua-Costa and Miguez-Macho, 2018), showing an almost exact performance within the “model 

world”, so that, in the absence of direct observations, we believe that the results provided by WRF-WVTs are particularly 

suitable to be considered as synthetic observations when comparing with other methods.  

 

The strategy of using water vapor tracers as ground truth versus Lagrangian diagnosticsmodels  has been previously used in 90 

several studies. For example, in van der Ent et al., (2013) the outcomes of a tagging tool implemented in the MM5 model are 

taken as ground truth to analyse two other offline methods. Winschall et al., (2014) employed a moisture tagging technique 

integrated into the COSMO weather prediction model and compared the results with those of as ground truth to evaluate the 

WaterSip moisture source diagnosticmethod (Sodemann et al., 2008), which used air particle trajectories from the 

Lagrangian LAGRANTO model (Sprenger and Wernli, 2015)particle dispersion model FLEXPART (Pisso et al., 2019). 95 

More recently, Cloux et al., (2021) used this same Lagrangian diagnostic tool to compute precipitation sources, but with 

trajectories generated with FLEXPART-WRF (Brioude et al., 2013), and compared the results with those of WRF-WVTs. 

While Winschall et al., (2014) show the complementarity of the results provided by the Eulerian and Lagrangian approaches, 

in Cloux et al., (2021) However, these previous studies were limited to highlighting they specifically highlight the large 
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discrepancies between the results provided by Lagrangian and Eulerian tools, althoughbut  they did not provide 100 

improvements tothat would  reconcile the different methodologies. 

 

In our case, the FLEXPART-WRF model is employed to generate back trajectories of air parcels contributing to 

precipitation in five AR events, and two widely used we assess two of the most widely used Lagrangian diagnostic tools for 

estimating moisture sources are assessed: WaterSip and the Dirmeyer and Brubaker, (1999) methodologyUTrack 105 

(Tuinenburg and Staal, 2020). Our focus is on understanding the origins of discrepancies between the outcomes of these 

methodologies and those derived from WRF-WVTs, with the aim of introducing physics-based adjustments to them that 

minimize these differences. Our framework is particularly well suited for this validation, as both the moisture tracking with 

WRF-WVTs and the calculation of air particle trajectories with FLEXPART-WRF are driven by the same WRF-simulated 

atmospheric fields. Additionally, we validate the proposed modifications under a different scenario where trajectories are 110 

computed using the FLEXPART model (Pisso et al., 2019) forced with data from the ERA5 reanalysis (Hersbach et al., 

2020), instead of WRF. We do this because the vast majority of FLEXPART users, as well as users of other Lagrangian 

models, force their simulation with reanalysis data.  

 

In what follows, we first present the AR cases studied (Section 2.1) and the Eulerian and Lagrangian methodologies used to 115 

calculate precipitation sources (Sect. 2.2 and Sect. 2.3). Section 3 then includes a series of analysis, focusing on the 

comparison of the results produced by the Lagrangian methodologies with those provided by the WRF-WVTs model. 

Finally, Sect. 4 provides a summary and the conclusions of this work. 

2 Methods 

2.1 Selected AR cases 120 

In this section we introduce the five precipitation events selected, all of them caused by the landfall of an AR and well 

documented in the literature. We chose cases from all over the world, not just from a specific region. In Fig. 1 we show both 

the integrated water vapor and accumulated precipitation fields from WRF simulations (see Sect. 2.2) for these cases. Black 

boxes in this figure highlight the areas most affected by rainfall (Table 1). A more detailed description of these episodes can 

be found in Sect. S1 in the Supplement. 125 
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Figure 1: Integrated water vapor (left) during the selected AR-related precipitation events (left) and accumulated 

precipitation (right) during the entire rainfall episodes (right) South Africa (a and b), Iberian Peninsula (c and d), Andes (e 130 

and f), US West Coast (g and h), and Greenland (i and j) AR-related precipitation events. The black boxes are the regions in 

which precipitation will be tracked. 



7 

 

cases. Black boxes in this figure highlight the areas most affected by rainfall (Table 1). A more detailed description of these 

episodes can be found in Sect. S1 in the Supplement. 

ti Δt (h) λ1 (°) λ2 (°) 𝜙1 (°) 𝜙2 (°) 

1985-07-05 00 55 -35.0 -32.0 18.0 21.0 

1987-10-14 00 49 40.0 44.0 -9.0 -6.0 

2006-06-05 06 67 -38.0 -34.0 -74.0 -70.0 

2007-12-02 12 49 45.0 49.0 -125.0 -120.0 

2007-12-09 12 49 60.0 64.0 -49.0 -43.0 

 135 

 

case ti Δt (h) λ1 (°) λ2 (°) 𝜙1 (°) 𝜙2 (°) PWRF (mm) PERA5 (mm) 

South Africa 1985-07-05 00 55 -35.0 -32.0 18.0 21.0 45.9 51.7 

Iberian Peninsula 1987-10-14 00 49 40.0 44.0 -9.0 -6.0 91.9 92.8 

Andes 2006-06-05 06 67 -38.0 -34.0 -74.0 -70.0 127.3 124.7 

US West Coast 2007-12-02 12 49 45.0 49.0 -125.0 -120.0 88.3 102.7 

Greenland 2012-07-09 12 49 60.0 64.0 -49.0 -43.0 36.4 43.9 

Table 1: Starting date and time (ti) and duration (Δt) of the rainfall events associated to the five ARs studied, together with 

the coordinates defining the region where precipitation will be tracked (black boxes in Fig. 1): λ1, λ2 (latitudes) and 𝜙1, 𝜙2 

(longitudes). The last two columns show the average precipitation in the region simulated by WRF (PWRF) and in the 

reanalysis (PERA5). 140 

 

The first rainfall event considered affected South Africa in July 1985. Figure 1a and 1b clearly show that the event was 

linked to an AR, as already indicated by other authors (Blamey et al., 2018). The second AR affected the northwest region of 

the Iberian Peninsula (Fig. 1c and 1d) and was associated with the infamous extratropical cyclone coined as the “Great 

Storm” for the catastrophic impacts it caused in the United Kingdom. Moisture sources for this AR-related precipitation 145 

event were previously analysed using the WRF-WVTs tool in Eiras-Barca et al., (2017). The third case selected corresponds 

to an AR that impacted central Chile and the Andes (Fig. 1e and 1f), resulting in floods and damage in the region, and was 

analysed in Viale et al., (2013). The fourth AR considered (Fig. 1g and 1h) was associated with the well-known Great 

Coastal Gale of 2007, affecting the US West Coast. The moisture sources for this event were also investigated in Eiras-Barca 
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et al., (2017) using the WRF-WVTs model. Finally, the last AR studied hit Greenland (Fig. 1i and 1j) leading to a severe ice 150 

and snow melting episode, (Mattingly et al., 2018). 

2.2 WRF-WVTs 

As previously mentioned, the moisture tracking model used as a proxy for reality in this study is WRF-WVTs, (Insua-Costa 

and Miguez-Macho, 2018), a moisture tagging tool implemented in the WRF model version 4.3.3, (Skamarock et al., 2021). 

Here WRF is run at a spatial resolution of 20 km and 38 vertical levels in two different semi-hemispherical domains (Fig. 2), 155 

depending on whether the AR of study occurs in the northern or southern hemisphere. Initial and boundary conditions come 

from the ERA5 reanalysis. We use a spectral nudging technique (Miguez-Macho et al., 2004) to prevent large-scale 

atmospheric fields (waves longer than around 1000 km) from deviating significantly from the reanalysis. In our case, only 

winds, temperature and geopotential height are nudged. Spectral nudging ensures an accurate representation of the 

atmosphere throughout the simulation period, even several days after the simulation has started. This aspect is particularly 160 

important in our tracking experiments, since we start our simulations 30 days before the beginning of the rainfall  episode 

(Table 1) to allow enough time for the moisture to evaporate. The underlying reason for this long spin-up time is that 

probability density functions for atmospheric residence time of water vapor are positively skewed (van der Ent and 

Tuinenburg, 2017van der Ent et al., 2013). Finally, the main parameterizations used were the Yonsei University (YSU) for 

the boundary layer (Hong et al., 2006), the WRF single-moment-6-class (WSM6) for microphysics (Hong and Lim, 2004), 165 

and the Kain-Fritsch for convection (Kain, 2004), which are required to use the moisture tagging capability. 

 

The WRF-WVTs tool is an Eulerian, online and forward moisture tracking technique, as the water vapor tracers are coupled 

to the meteorological model, and the latter needs to be run forward in time. As clarified in Insua-Costa et al., (2022), to track 

moisture coming from a source region S in the WRF-WVTs framework it is necessary to modify the source term in the WRF 170 

prognostic equation for moisture (QFX): 

𝑇𝑅𝑄𝐹𝑋 = 𝑄𝐹𝑋 · 𝑀,                    (1) 

where M is a binary array designating the region S with values of 1 and the rest with 0. In our case QFX does not come from 

the evaporative flux simulated by WRF land surface scheme, but we assimilate it from the ERA5 reanalysis. Specifically, if 

E represents the assimilated evaporation interpolated onto the model grid, ρw denotes the water density and ΔT is the time 175 

interval in the reanalysis, then the moisture flux from the surface QFX can be expressed as: 

𝑄𝐹𝑋 = −
𝜌w𝐸

𝛥𝑇
.                     (2) 

The negative sign accounts for the different criteria for positive surface fluxes between WRF and ERA5. If ΔT were large, a 

time interpolation would also be needed. Finally, the tool tracks moisture until it precipitates, so a new variable representing 

tracer precipitation, i.e. originating from the source region S is defined (TPS). Consequently, the fraction of rainfall in a 180 

specific region R coming from S can be determined as 
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𝐹𝑆 =
∑ 𝑇𝑃𝑆(𝑖,𝑗)(𝑖,𝑗)∈R

∑ 𝑃(𝑖,𝑗)(𝑖,𝑗)∈R
∀(𝑖, 𝑗) ∈ 𝑅,                   (3) 

where P is total precipitation and regions R for the different ARs are defined in Table 1 and plotted in Fig. 1 as black boxes.  

 

WRF-WVTs can track not only moisture evaporated from S, but also moisture advected from S, by changing the evaporative 185 

flux QFX by the specific humidity q in Eq. (1). In this case the source is three dimensional (3-D) and in the former, two-

dimensional (2-D). We consider 11 source regions in each domain (Fig. 2), selected to maximize the contribution from the 2-

D sources (nine in total). We only use two 3-D sources at the model domain boundaries, in order to track all moisture 

originating from outside the model domain (red lines in Fig. 2). For additional information on the WRF-WVTs simulations, 

we refer to Sect. S2 in the Supplement. 190 
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Figure 2: The two simulation domains and the nine 2-D moisture sources analysed for each of them, along with the two 3-D 

sources at the domain boundaries (red lines). Northern Hemisphere cases use the configuration in a), while Southern 

Hemisphere ones use that in b). 195 

2.3 Lagrangian techniquesmoisture source diagnostics 

The two Lagrangian moisture tracking methodssource diagnostics we use, as previously commented, operate as post-

processing routines for the Lagrangian particle dispersion model FLEXPART (Pisso et al., 2019), widely utilized in studies 

dedicated to understanding the origin and transport of atmospheric humidity (Sodemann et al, 2009; Drumond et al., 2014; 

Ramos et al., 2016; Sodemann and Stohl, 2009). This model is prepared to readingest input data from the European Centre 200 

for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) and the United States National Center of 

Environmental Prediction (NCEP) Global Forecast System (GFS). Additionally, an adapted version of FLEXPART, known 

as FLEXPART-WRF (Brioude et al., 2013), is enabled to process output data from the WRF model. We will start using 

FLEXPART-WRF to generate the air parcel trajectories and then extend our comparison with WRF-WVTs to FLEXPART 

constrained with ERA5 (from now on, FLEXPART-ERA5). Both FLEXPART-ERA5 and FLEXPART-WRF provide hourly 205 

information about the 3-D position, specific humidity, pressure, density and temperature of the parcel, together with the 

atmospheric boundary layer (ABL) height. Except for the position of the parcel and the ABL height, the other variables are 
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obtained by interpolating ERA5 or WRF to the position of the parcels. While FLEXPART-WRF input data were described 

in the previous section (they are exactly the WRF 3-hourly output data), in our case FLEXPART-ERA5 reads assimilates 

hourly data from the ERA5 reanalysis on a 0.5° × 0.5° grid and across the 70 vertical model levels closest to the surface. In 210 

both cases parcels are released using the domain filling option over the black boxes in Fig. 1, such that they are vertically  

distributed following the density profile. Additional details about FLEXPART-ERA5 and FLEXPART-WRF simulations are 

given in Sect. S2 in the Supplement. 

 

The first Lagrangian methodology moisture source diagnostic we employ, WaterSip, was introduced inby Sodemann et al., 215 

(2008), and it is now implemented in several moisture tracking frameworks (Fernández-Alvarez et al., 2022; Keune et al., 

2022). This method assumes It starts by assuming that the atmospheric column over the region where precipitation occurs is 

filled with air parcels, and that their trajectories contain information about their location and specific humidity at 6-hourly 

intervals for the previous days, in our case 30 days. For each parcel WaterSip calculates the contribution of the moisture 

gained at each time step to the amount of water that the parcel loses in the last iteration. This loss is then assumed to 220 

represent the observed precipitation when aggregated over all parcels. Although both FLEXPART and FLEXPART-WRF 

output are hourly, we only use 3-hourly data, since a very high temporal resolution can introduce noise into the WaterSip 

diagnostic, leading to systematic biases (see Fig. S7 in the Supplement for further details). 

 

More specifically, the Using this information, WaterSip method begins by identifying where each parcel uptakes water, by 225 

computing the difference in specific humidity between consecutive time steps, 𝛥𝑞parcel,𝑡 = 𝑞(𝑟parcel,𝑡 , 𝑡) − 𝑞(𝑟parcel,𝑡−1, 𝑡 −

1).  A positive difference is interpreted as evaporation, while a decrease in humidity is linked to precipitation. This 

interpretation relies on the following approximation for the surface freshwater flux E-P in a given area A, introduced by 

Stohl and James, (2004): 

𝐸 − 𝑃 ≈
1

𝐴
∑ 𝑚parcel

Δ𝑞parcel,𝑡

Δ𝑡parcel∈𝐴 ,                               (4) 230 

where mparcel is the parcel mass. In Sodemann et al., (2008), apart from the specific humidity increase, additional criteria are 

imposed to determine whether a moisture increment is actually linked to surface evaporation or notuptake is actually 

occurring or not. These are (1) requiring that the specific humidity increase exceeds a minimum threshold, that we set here to 

 Δ𝑞 = 0.205 g kg-1 in a 6-hourly interval, and (2) it occurs within the ABL. This ensures that moisture increases above the 

ABL are not attributed to surface evaporation. Both filters were introduced to eliminate noise and non-physical increments. 235 

However, some subsequent studies (e.g., Fremme and Sodemann, 2019) have ignored the ABL filter, arguing that parcels 

above the ABL can still be indirectly influenced by surface evaporation through moist convection or turbulence. Therefore, 

we refer to the basic WaterSip configuration as the one in which only criterion (1) applies. 
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Once the uptake points are identified, the contribution of each positive moisture increment is initialized to Δ𝑞parcel,𝑡  and 240 

linked to the uptake point, calculated as This allows to identify the uptake points for each parcel by attributing the selected 

moisture increments to the mid-point of the parcel position (𝑟parcel,𝑡 + 𝑟parcel,𝑡−1)/2. WaterSip then proceeds forward in time, 

linearly discounting each moisture uptake 𝛥𝑞parcel,𝑡 every time a subsequent specific humidity decrease is observed. The 

method then proceeds forward in time, applying a discounting procedure when a decrease in specific humidity is observed. 

This procedure involves reducing previous contributions proportionally to the amount of water remaining in the parcel 245 

originating from these contributions. Specifically, if 𝑡′ > 𝑡 corresponds to the first specific humidity decrease after t for a 

given parcel (Δ𝑞parcel,𝑡′ < 0), the initial contribution Δ𝑞parcel,𝑡 is updated and reduced to Δ𝑞parcel,𝑡
𝑡′

 as follows: 

Δ𝑞parcel,𝑡
𝑡′

= Δ𝑞parcel,𝑡 (1 +
Δ𝑞

parcel,𝑡′

𝑞(𝑟parcel,𝑡′−1,𝑡′−1)
) .                 (5) 

After reaching Once the most recent time step is reached (i.e., at the precipitation event), a spatial distribution for the 

moisture origin of each parcel is obtained. The final stage of the methodology involves selecting only those parcels that 250 

contribute to precipitation and weighting the spatial distributions by the final humidity loss, thus obtaining the moisture 

sources for precipitation. For the selection of these parcels, a threshold of 80% is applied to the relative humidity (RH), 

ensuring the exclusion of unsaturated parcels that could hardly have contributed to the precipitation.. Obviously, parcels with 

a final humidity increase are also discarded. For a detailed mathematical description of the method, see Sect. S3.1 in the 

Supplement. 255 

 

WaterSip has been used in other studies with some modifications with respect to the original methodology introduced in 

Sodemann et al., (2008). Some subsequent works (Fremme and Sodemann, 2019) have ignored the ABL filter for identifying 

moisture uptakes arguing that parcels above the ABL can still be indirectly influenced by surface evaporation through 

convection. As this is the configuration mostly used nowadays, this will be for us the basic WaterSip configuration. A less 260 

common  modification is to filter specific humidity decreases, such that previous contributions are only discounted if a 

specific humidity decrease occurs and the relative humidity of the parcel is higher than 80 % (Dütsch et al., 2018; Cheng and 

Lu, 2023). This should not be confused with the relative humidity filter applied at the most recent time step used to select 

parcels contributing to the precipitation event, as in the case of Dütsch et al., (2018) and Cheng and Lu, (2023) the criterion 

is applied en route and used to filter humidity decreases, not parcels. Finally, WaterSip has also been shown to be sensitive 265 

to the choice of the minimum specific humidity increment. Here, we initially use the recommended and most common setup:  

Δ𝑞 = 0.05 g kg-1 for 6-hourly trajectories. Note that the time resolution of the trajectories is degraded from 1 to 6 hours, as 

using a very high temporal resolution can introduce noise into the WaterSip diagnostic, leading to systematic biases (see 

Sect. 3.2.1 for further details). 

 270 
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The second type of Lagrangian moisture source diagnostictrajectory-based moisture tracking method  we employ was 

originally introduced by Dirmeyer and Brubaker, (1999), and is currently widely used  in the framework of the UTrack-

atmospheric-moisture modeltool (Tuinenburg and Staal, 2020). The same approach is also used by other studies, such as 

Holgate et al., (2020), so we will refer to it as the Dirmeyer and Brubaker, (1999) methodology (hereafter, the DB99 

methodology). Instead of the more common forward version, here we use the backward one (Staal and Koren, 2023). Unlike 275 

WaterSip, the latterUTrack  does not attribute moisture sources based on the specific humidity of air parcels, but using 

evaporation and precipitable water fields. When evaporation occurs at a parcel’s location, a fraction of its moisture (equal to 

the ratio of evaporation to precipitable water) is attributed to that location, and the parcel’s moisture content is updated 

accordingly. This process continues backward in time until 99 % of the parcel's moisture has been allocated, with a 

maximum duration of 30 days in our case. At the end of the calculation, a spatial distribution for the moisture origin of eac h 280 

parcel is obtained, similar to WaterSip. When aggregating results from all parcels, as all of them account for total rainfall 

amount, the precipitation sources are obtained. An important difference with WaterSip is that the DB99 methodology is 

supposed to calculate the parcel trajectories itself. When doing that, parcels are initially released over the region where 

precipitation occurs at a random, humidity-weighted vertical level, so that the contribution of each parcel is weighted by the 

humidity profile, instead of the water lost in the last time step, as in WaterSip. However, in our case we use FLEXPART-285 

ERA5 and FLEXPART-WRF trajectories at hourly resolution and implement only the diagnostic tool to compute the 

moisture sources for precipitation. Thus, since in our simulations parcels are vertically released following the density prof ile, 

we weight the contribution of each parcel by its specific humidity to match the DB99 methodology.in this case the 

contribution of each parcel is weighted by the humidity profile, instead of the water lost in the last time step. Another 

difference with WaterSip is that UTrack performs the calculation of the parcel trajectories itself. However, we use an 290 

adaptation of UTrack to work with FLEXPART and FLEXPART-WRF trajectories.  For a detailed explanation of this 

method, we again refer to Sect. S3.1 in the Supplement.  

 

Finally, in order to compare both Lagrangian moisture source diagnosticsWaterSip and UTrack  with WRF-WVTs, their 

output fields - representing the amount of evaporated water resulting in precipitation - must be aggregated to the selected 295 

source regions and then divided by total precipitation, in order to calculate the rainfall fractions FS, as in Eq. (2). This allows 

us to assess each Lagrangian methododel by using the Root Mean Square Error with respect to WRF-WVTs,  

RMSE𝑚 = √
1

𝑁
∑ (𝐹𝑆𝑖

WVTs − 𝐹𝑆𝑖

𝑚)
2𝑁

𝑖=1 ,                  (6) 

where N is the number of sources and 𝐹𝑆𝑖

WVTs , 𝐹𝑆𝑖

𝑚  the precipitation fractions for WRF-WVTs and for the evaluated 

Lagrangian methododel, respectively. Given that this metric is very sensitive to outliers, the Mean Absolute Error (MAE) 300 

and its associated score, the Mean Absolute Error Skill Score (MAESS), are also used to obtain an average rating: 

MAE𝑚 =
1

𝑁
∑ |𝐹𝑆𝑖

WVTs − 𝐹𝑆𝑖

𝑚|
𝑁
𝑖=1 ,   MAESS = 1 −

MAE𝑚

MAE𝑟
 ,                                                                                                       (7) 
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where MAEr is the MAE if all rainfall fractions were equal to 1/N. As usual with a skill score, the closer to 1 means that the 

results of the Lagrangian diagnostic are closer to those of WRF-WVTs. Note that we use the MAESS and not the coefficient 

of determination as skill score because the latter leads to negative values in our analysis, and this can be problematic when 305 

averaging over all AR cases. 

3. Results 

In this section the main results of this study are presented. In Sect. 3.1 the most basic configurations of WaterSip and the 

DB99 methodologyUTrack  are assessed by comparing their outputs with those provided by the WRF-WVTs tool. Next, in 

Sect. 3.2 some physics-based adjustments are introduced in the Lagrangian methodologies with the intention of minimising 310 

the discrepancies with the WRF-WVTs results. Finally, in Sect. 3.3 we test the introduced modifications when the 

trajectories are generated by FLEXPART-ERA5, with input data from the ERA5 reanalysis., coming also the other fields 

that the diagnostic tools need from the same reanalysis, instead of WRF simulations. 

3.1 Basic results for WRF-WVTs vs WaterSip and UTrack DB99 (Dirmeyer and Brubaker, 1999) 

Figure 3 illustrates the rainfall fractions from WRF-WVTs for the five precipitation events introduced before, and for the 315 

eleven source regions considered. The results are categorized into Northern Hemisphere and Southern Hemisphere cases, as 

the selected source regions are identical for ARs occurring in the same hemisphere. For the Iberian Peninsula, US West 

Coast, and South Africa events, the most important contributions are from the extratropical oceanic areas where the ARs 

developed. Conversely, in the Andes case the primary contribution is from the Tropical Pacific. In these four cases, more 

than 75 % of the precipitation originates from oceanic sources. However, a different pattern is observed in the Greenland 320 

case, where there is a remarkable continental contribution from North America, reducing the oceanic precipitation fraction to  

below 50 %. This is consistent with previous studies showing that ARs in polar regions can exhibit unique features (Guan 

and Waliser, 2019) and that moisture sources in AR-related precipitation events can be highly variable. 

 

As depicted in Figure 3, the Eulerian WRF-WVTs technique does not account for 100 % of the precipitation. This is because 325 

a small portion of the rain may originate from evaporation that occurred more than 30 days before the precipitation event. 

This fraction of rain with untraceable origins by WRF-WVTs varies from case to case. Since both Lagrangian models 

typically attribute the entire 100 % of precipitation in their basic configurations, we will scale the results shown in Figure 3 

for comparison purposes. In cases where WaterSip or UTrack do not account for 100 % of the precipitation, the bias will 

also be calculated after adjusting for these precipitation fractions. 330 
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Figure 3: Precipitation fractions (%) in the different rainfall events originating from the selected sources, computed using the 

WRF-WVTs model. To the left, Northern Hemisphere (NH) cases. To the right, Southern Hemisphere (SH) cases. The last 

row shows the sum of all contributions. 335 
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We start the comparison with WRF-WVTs by using the most basic configurations of the Lagrangian methodologiesWaterSip 

and UTrack diagnostic tools, described in Sect. 2.3. Figure 4a presents the results for the WaterSip diagnostic tool. A 

significant bias is observed in certain contributions, particularly evident in those of the main tropical and extratropical 

oceanic source regions for each case. There is a clear  tendency for WaterSip to underestimate tropical and overestimate 340 

extratropical contributions, something that has already been observed in previous studies (Cloux et al., 2021; Winschall et 

al., 2014). For the Iberian Peninsula and, South Africa and Andes cases, biases are high for the main sources, of around 10 

%, with a RMSE (see Fig. 5) of 3.80 % and 4.83 %4.51, 5.77 and 3.29, respectively. The Greenland case presents worse 

results, as WaterSip overestimates the fraction of precipitation originating from the North Atlantic by almostmore than  40 

%, leading to a RMSE of 12.1 %13.5. However, the US West Coast and Andes cases does show bettergood results, with a 345 

maximum biases of 2.75 % and 2.55 %, respectively1.54% in the Tropical Pacific contribution and a RMSE of 0.72. Overall, 

the average RMSE is 5.20 %5.55, while the average MAESS is 0.740 (see Table S1 in the Supplement).  

 

Fig. 4b displays the results for the DB99 UTrack methodology. The lighter colors in this panel indicate a reduction in the 

bias of precipitation fractions compared with WaterSip results, especially for the NH cases. This improvement is reflected in 350 

the RMSE, which ranges from 2.00 in the Iberian Peninsula case to 6.26 in the South Africa case (Fig. 5). The average 

RMSE for UTrack is 4.64, with an average MAESS of 0.77, indicating a better performance relative to WaterSip. 

Comparing to WaterSip, the biases are larger for the US West Coast and Andes cases, smaller for the Iberian Peninsula and 

Greenland cases, and similar for the South Africa case. The average RMSE is smaller, 4.64 %, mainly due to the poor 

performance of WaterSip in the Greenland case. However, there still persists Again, an underestimation of tropical 355 

contributions is observed, particularly evident in the Southern Hemisphere cases. For example, for the South Africa rainfall 

episode the estimated contribution from the Tropical Atlantic is 12.25 %14.88, far from the “true” value of 28.75 % 

shown29.6 which arises from scaling the contribution shown in Fig. 3. Both the better agreement and theThis  

underestimation of tropical contributions have alreadyhas also been documented in the literature. Specifically, the rainfall 

fractions computed using the UTrack-atmospheric-moisture tool for the 2021 European floods by Staal and Koren, (2023) 360 

closely align with the WRF-WVTs fractions calculated in Insua-Costa et al., (2022), with the primary discrepancy being in 

the tropical contribution.in Staal and Koren, (2023) they compute the rainfall fractions using the UTrack-atmospheric-

moisture model for the 2021 European floods and compare their results to the WRF-WVTs fractions calculated in Insua-

Costa et al., (2022). Although the results are quite similar, the differences in the North Atlantic and tropical contributions are 

larger than 10 %, as in Fig. 4b. 365 
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Figure 4: Bias in precipitation fraction (%) obtained using the basic configurations of the WaterSip and DB99 UTrack 

modelsmoisture source diagnostics, for trajectories generated with WRF input data (FLEXPART-WRF). Biases are 

computed subtracting the “true”' outcomes of WRF-WVTs from the corresponding values of WaterSip and UTrackof 370 

WaterSip and DB99. 
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3.2 Improvements in the Lagrangian moisture source diagnosticsethodologies 

3.2.1 WaterSip 

The most remarkable conclusion extracted from Fig. 4a is that both WaterSip and the DB99 methodology haspresent a 

systematic underestimation of tropical contributions in AR-related precipitation events. While this discrepancy could be 375 

attributed to potential systematic errors in trajectory calculations, we will proceed under the assumption that these 

calculations are correct and instead focus on exploring the inherent capabilities of WaterSip itself to address this issue. 

Specifically, we conjectureexplore the hypothesis that the non-physical humidity fluctuations along the trajectories may 

account for the observed underestimation of tropical contributions and, more broadly, of remote sources. The problem of 

non-physical humidity fluctuations in WaterSip was already recognized in the original study of Sodemann et al., (2008), and 380 

is the reason behind the introduction of the minimum specific humidity Δ𝑞 to filter moisture uptakes. To explain it,how they 

contribute to the underestimation of remote sources, let us assume an air parcel that at a certain time step increased its 

specific humidity in 2.0 g kg-1, and that it experiments a non-physical decrease of 0.05 g kg-1 followed by another non-

physical increase of 0.05 g kg-1, such that it returns to its original value. Although these two fluctuations seem to offset each 

other, the original uptake of 2.0 g kg-1 is now reduced to 2.0(1-0.05/2.0)=1.95 g kg-1. If another non-physical decrease 385 

occurs, this value is updated to 1.95(1-0.05/2.0)=1,90 g kg-1. Thus, iIf these fluctuations continue to occur, we are 

multiplying the initial value by a number smaller than 1 many times (as many as time steps3-hour intervals  in 30 days), so 

this original contribution clearly ends up dropping well below its true value. In other words, we hypothesize that non-

physical negative changes in specific humidity penalize much earlier contributions in WaterSip, i.e. remote sources, because 

the error they cause accumulates over time. this shows that non-physical negative changes in specific humidity penalize 390 

much earlier contributions in WaterSip, i.e. remote sources, as the error caused by a single fluctuation affects all previous 

contributions, so that the early moisture uptakes will be affected by many more non-physical changes. 
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 395 

Figure 5: RMSE for the five AR-related precipitation events considered in this study (upper panel), and average of all of 

them (below). Three different configurations of the WaterSip methodology are evaluated: the most basic one (No ABL), 

neglecting increments above the ABL (ABL), and discarding decreases below a minimum relative humidity (RH).RMSE for 

the five AR-related precipitation events (panel a) and average of all of them (panel b) in the three tested configurations of 

WaterSip, with the standard values of the specific humidity threshold and time step. On the right, average RMSE for a range 400 

of values of these parameters, in the case of the most basic configuration (No ABL, panel a), neglecting increments above 

the ABL (ABL, panel b), and discarding decreases below a minimum relative humidity (RH, panel c). 
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In the past, efforts have focused on reducing spurious positive uptakes by imposing a minimum threshold in specific 

humidity increases and only considering moisture gains below the ABL height., as discussed in the methodology.  In our 405 

case, together with the specific humidity increment threshold of Δ𝑞 = 0.05 g kg-1, we introduce an additional criterion to 

identify non-physical decreases. We require a minimum relative humidity of 80 % immediately before a decrease in specific 

humidity occurs. However, as discussed in the methodology, recent studies propose to shift the focus to non-physical 

decreases by requiring a minimum relative humidity of 80 % immediately before a decrease in specific humidity occurs 

(Dütsch et al., 2018; Cheng and Lu, 2023). If this is not the case, previous contributions are not reduced due to this decrease. 410 

Interestingly, this is the same criterion that is typically used to detect air parcels contributing to precipitation in the final time 

step (see Sect. 2.3), but it has never been tested en-route.This should reduce the non-physical decreases in specific humidity, 

as requiring a minimum relative humidity of 80 % has been a common parameterization of the existence of clouds and 

precipitation in the past, so we are attempting to filter out moisture decreases not associated with precipitation. Thus, 

according to our hypothesis, the underestimation of tropical contributions observed in Fig. 4a should be reduced. 415 

 

Figure 5a shows the RMSE for the precipitation fractions computed using the WaterSip methodology, assuming that the true 

values are those derived from WRF-WVTs (Fig. 3), while Fig. 5b shows the average of all of them. The values shown by the 

reddark green  bars (“No ABL”) have already been discussed above as they correspond to the basic configuration of 

WaterSip. We now present the results also for the configuration in which we discard moisture uptakes above the ABL height 420 

(“ABL”; orangelight green) and for the configuration in which we consider the RH en-route criterion to filter specific 

humidity decreases en-route (“RH”; salmonblue). In the last two cases, we computed the precipitation fractions dividing by 

the attributed precipitation, as this is typically much lower (“ABL” configuration) or higher (“RH” configuration) than the 

precipitation simulated by WRF or in the reanalysis. Consistent with the findings of Cloux et al., (2021), a modest 

improvement is observed for the “ABL” configuration, as the average RMSE is reduced from 5.55 20 % to 5.06 %. 425 

However, this behavior is not the same for all cases, as for some of them the error increases significantly (South Africa and 

Iberian Peninsula cases), while in the Andes case the RMSE decreases markedly from 2.55 %3.29  to 0.9851.57 %. In 

contrast, our the “RH” configurationmodification  results in a more substantial improvement, as reflected by the average 

RMSE (3.06 %2.98  versus 5.06 %). The improvement is especially important in the South Africa, Iberian Peninsula and 

Greenland cases, where the contribution of the extratropical Atlantic was initially overestimated by 135 %, 120 % and 3840 430 

%, respectively. When applying the proposed modification, these biases are almost halvedreduced by about 50 %. For the 

other two cases, the results of the original configuration were already good, and remain approximately the same after 

applying the “RH” modification. It should be noted that these improvements could not have been obtained by simply 

increasing the time step further to 6 h, as in that case the average RMSE would only drop to 5.04 (Table S2 in the 

Supplement) and would slightly increase to 3.25 if combined with our proposed modification. In terms of skill score (Table 435 

S1 in the Supplement), the “RH” configuration clearly outperforms the original and the “ABL”, as the average MAESS is 

significantly higher (0.84 versus 0.70 and 0.72). To check if a similar improvement could be achieved by simply changing 
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the minimum specific humidity Δ𝑞 and the time step of the diagnostic tool, Fig. 5c, 5d and 5e present the average RMSE in 

the “No ABL”, “ABL” and “RH” configurations for a range of values of these two parameters. In the case of the specific 

humidity threshold, the change is minimal, but the modification of the time step can have a significant effect. Specifically, 440 

by reducing it to 3 h the average RMSE remains similar, but by reducing it further to 1 h the results worsen significantly, as 

evident from the darker colors in the top row of Fig. 5c, 5d and 5e. This aligns with the hypothesis of the effect of specifi c 

humidity fluctuations on the underestimation of remote contributions, as increasing the temporal resolution may introduce 

many more non-physical changes. 

 445 

To better illustrate these results, we further examine the moisture sources for two of the selected AR-related precipitation 

events, specifically, the South Africa and Greenland cases. In Fig. 6 the precipitation sources for these events are depicted 

using the WaterSip methodology. Fig. 6a and 6c (left) present the results using the basic, “No ABL”, configuration, while 

panels Fig. 6b and 6d (right) correspond to the “RH” experiment. Clearly, tThe spatial distributions of these moisture sources 

reveal a much more pronounced dominance of local sources in the “No ABL” situation, in contrast to the “RH” setup. This is 450 

particularly evident in the Greenland case, where in the basic configuration the moisture source field only marginally 

penetrates into North America, despite being the second largest contribution according to WRF-WVTs is essentially over the 

North Atlantic, as the contribution from this source is overestimated by almost 40 %. Conversely, the situation improves 

markedly when employing the proposed relative humidity thresholdwith the “RH” configuration: the moisture field is less 

intense over the North Atlantic and penetrates further into other regions, such as North America. In both cases, the tropical 455 

contributions increase and the extratropical ones decrease, coming closer to the results provided by WRF-WVTs (black and 

red text in Fig. 6). The bias remains after the en-route relative humidity correction, but is much smaller. Analogous results 

are included in Fig. S9 in the Supplement for the other rainfall events. 
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 460 

 

Figure 6: Precipitation sources for the South Africa (a and b), and Greenland events (c and d), computed with the WaterSip   

moisture source diagnosticmethodology. In panels (a) and (c) the most basic configuration is used, while in panels (b) and 
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(d) we show the results of the “RH” configuration. The fraction of precipitation coming from the tropics and the extratropics 

is shown in black for each case, and the red box shows these same contributions from WRF-WVTs. 465 

3.2.2 DB 99 (Dirmeyer and Brubaker, 1999) UTrack 

Our analysis indicated that the DB99 methodology, like WaterSip, suffers from underestimation of tropical and, in general, 

remote contributionsin the case of UTrack, the underestimation of tropical contributions was notably lower than in the 

WaterSip methodology, but still significant. In a similar approach to that in the previous section, we take the accuracy of the 

trajectories generated by FLEXPART-WRF for granted and focus on the capabilities of the Lagrangian tool itself to 470 

overcome this limitation. Our hypothesis now is that the way in which the air parcels to be released are selected is behind the 

biases found. Given that UTrack's the initial (that is, at the precipitation event) vertical distribution of particles is 

proportional to atmospheric humidity, parcels in the lower troposphere are expected to play a more significant role in the 

UTrack calculation of moisture sources for precipitation. However, parcels at these lower atmospheric levels hardly 

contribute to precipitation since they are generally not over-saturated, i.e. they are outside the cloud level.  This factor is 475 

crucial, as it is well known that moisture origin can change greatly with altitude (e.g. Hu and Dominguez, 2019).  Particles 

that actually contribute to precipitation could be selected as in WaterSip, taking into account their change in specific 

humidity. However, the DB99 diagnostic Utrack only works with evaporation and precipitable water fields, and to maintain 

consistency with this, we decided to use another approach, based on finding a threshold height zb, below which it is assumed 

that Lagrangian particles are not actually contributing to rainfall. The parcels at low levels can obviously rise if an updraft is 480 

present and end up contributing to rainfall, but this will be at later time steps, and it is then that they will be considered. 

Thus, particles are released as usual at the time and location of the precipitation event, but those below zb are excluded from 

the analysis. Moreover, only parcels close to saturation are considered, namely, those with relative humidity higher than 980 

% at this initial stage. In short, we conjecture that the basic UTrack configuration of this methodology gives too much weight 

to the lower level air parcels, which usually contain local moisture, and hence the under-estimation of remote sources. For a 485 

more technical discussion of this issue, we refer to Sect. 3.2 in the Supplement. 
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Figure 7: Variation of the RMSE with a threshold height zb for parcel release in each AR-related rainfall event. True values 

are from WRF-WVTs, and predicted values are computed with the DB99 methodologyUTrack, excluding parcels whose 490 

initial height is below zb and relative humidity below 80 %. In red, the RMSE for the original configuration including all 
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parcels (empty dots) and applying the relative humidity filter (filled dots). The dashed line indicates the 2 km threshold 

selected. In red, the RMSE for the original UTrack configuration including all parcels. 

 

In Fig. 7 we show the variation of the RMSE with zb for the different precipitation events. The original configuration of 495 

UTrack corresponds to the red points, i.e., zb = 0 km. Our findings indicate a decrease in RMSE as zb increases, The original 

configuration corresponds to the red empty dots, i.e., zb = 0 km, where parcels from the whole atmospheric column are 

allowed to contribute to the moisture sources calculation. The filled dots at zb = 0 km consider the relative humidity filter to 

select the parcels, and this is also applied for all other values of the threshold height. Our findings indicate a initial decrease 

in RMSE when applying the relative humidity filter, and a continuous decrease as zb increases,  reaching a minimum at a 500 

value that is case-dependent.- Notably, for the South Africa, US West Coast and Greenland cases, the optimal zb ranges 

around 2 to 2.25 km, aligning with the typical lower boundary of mid-level clouds. This altitude, however, could be sensitive 

to the type of event, meaning that precipitation events not associated with ARs may show a different optimal threshold. The 

situation for the Iberian Peninsula and Andes cases is different, as the variation of the RMSE with zb seems to follow a 

different pattern. Nevertheless, setting zb to 2 km results in a decrease in RMSE for all cases, including the latter two. The 505 

maximum bias is more than halved decreases by more than 50 % in the South Africa, US West Coast Tropical Pacific and 

Greenland cases, while for the Iberian Peninsula and Andes cases this maximum reduction is less significant it is reduced by 

42 % and 23 % (Fig. S8 in the Supplement). The improvement is further supported by the MAESS (Table S1 in the 

Supplement), as this metric is higher for all events when the proposed modifications are introduced. In some cases, such as 

the US West Coast, the score is exceptionally high, 0.96, indicating a strong alignment with the WRF-WVTs results. On 510 

average, the RMSE decreases from 4.64 % to 2.30 %, while the MAESS increases from 0.77 to 0.87. Consequently, we infer 

that excluding parcels released below 2 km at the rainfall event in the DB99UTrack  calculation of precipitation origins is a 

good approach to rectify the underestimation of remote sources in the case of AR-related precipitation events. 
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 515 

Figure 8: Precipitation sources for the South Africa (a and b), and Greenland events, (c and d), computed with the DB99 

methodologyUTrack. In panels a) and c) the most basic configuration is used, while in panels (b) and (d) parcels below 2 km 

are not considered. The fraction of precipitation coming from the tropics and the extratropics is shown in black for each case, 

and in the red box for WRF-WVTs. 
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 520 

As with WaterSip, to better illustrate the comparison between the modified and unmodified versions of Utrackthe DB99 

methodology, we examined the spatial distribution of moisture sources for two events, the South Africa and Greenland 

cases.  Figure 8a and c show the results from the basic configuration (“Whole Column”), where all parcels are included in 

the moisture sources calculation, while Fig. 8b and d represent the scenario where only parcels released above 2 km are 

considered (“Above 2 km”) and the relative humidity filter is applied. We also computed the proportions of precipitation 525 

originating from tropical and extratropical regions (black and red text in Fig. 8). In the South Africa case (top), the modif ied 

configuration (“Above 2 km”) shows less intense moisture uptakes in the oceanic area closest to the target region, indicating 

a reduced dominance of local sources. The latter is supported by the proportion of rainfall of tropical origin, which increases 

from 23.2 % to 38.1 %, closely aligning with the “true” value of 43 % provided by WRF-WVTs. In the Greenland case 

(bottom), we can observe a reinforcement of the contributions from North America and the Tropical Atlantic when excluding 530 

parcels below 2 km. Particularly in the case of tropical contributions, there is also a significant improvement, from 18.3 % to 

23.6 %, thus approaching the 32.1 % of WRF-WVTs. Obviously, as tropical contributions improve, extratropical 

contributions also improve for both cases. IFinally, it is worth noting that the bias reduction is consistent across different 

sources for all cases analysed, as explicitly shown in Fig. S8 and S10 in the Supplement. 

 535 

Finally, an important difference can be observed by comparing the results for the Greenland case in Figures 6 and 8. In the 

case of WaterSip (even in the “RH” configuration) there is an important contribution from the northernmost part of the North 

Atlantic source (above 45º N), whereas this contribution is much less important in the case of the DB99 methodology. Our 

selection of source regions when comparing with WRF-WVTs overlooks this difference, and this could make our results not 

valid. However, by looking at the precipitation sources fields for all cases in Figures S8 and S9 in the Supplement we 540 

observe that only for the Greenland case there are important differences between the fields computed with the two different 

approaches. Moreover, we recomputed the RMSEs in Figures 5 and 7 with a finer (and more complex) selection of source 

regions, such that the ocean where the AR is located for each case is divided in four regions, instead of two. The results, 

shown in Figure S12 in the Supplement, demonstrate that the modifications we analyze and propose here provide also the 

best configuration with this new selection of source regions. 545 

3.3 Extension to ERA5 

Figure 9 presents the biases in precipitation fraction for both basic and enhanced configurations of WaterSip and the DB99 

methodologiesUTrack, with trajectories generated by the FLEXPART-ERA5 model using input data from the ERA5 

reanalysisdata. Specifically, Fig. 9a and b display results for the basic configurations, analogous to those in Fig. 4, but with 

FLEXPART-ERA5 trajectories. The high correlation between both figures (4 and 9) shows that the results with FLEXPART 550 

are very similar to those obtainede results with trajectories from FLEXPART-WRF. As in Fig. 4, there is a clear negative 

bias for tropical sources and a positive bias for extratropical sources. Now these biases are much more evident in the case of 
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the DB99 methodology than in WaterSip.Contrary to the results observed with FLEXPART-WRF trajectories, the basic 

WaterSip configuration is now better than UTrack.  This is reflected in Tables S1 and S23 of the Supplement, where the 

average RMSE of WaterSip remains almost unchanged (from 5.20 %55 to 4.98 %5.38), but that of the DB99 methodology 555 

UTrack increases significantly from 4.64 % to 5.72 %4.64 to 5.93, mainly due to a worse performance in the Iberian 

Peninsula and Andes cases. On the other hand, Fig. 9c and d show the biases of the modified versions of both 

methodologiesWaterSip and Utrack, respectively. The improvements are again evident, as practically all biases are reduced, 

especially the most important ones. For instance, for WaterSip the biases in the main extratropical sources (North and South 

Atlantic) are reduced from 15-340 % to below 10 %. In the case of the DB99 moisture source diagnostic Utrack the 560 

improvements are even more remarkable, as the maximum bias goes from around 20 % to around 5 %. In terms of RMSE 

(Table S32 in the Supplement) the improvement for WaterSip goes from 5.384.98 % for the basic configuration to 3.252.82 

% for the modified one, and from 5.935.72 % to 2.162.04 % for Utrackthe DB99 methodology. This improvement is also 

evident in terms of the MAESS (Table S23 in the Supplement). Overall, the similarity in behavior to that observed with 

FLEXPART-WRF outcomes suggests that our modifications are also effective when using ERA5 input data. 565 
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Figure 9: Bias in the precipitation fraction (%) obtained using the basic (a and b) and modified (c and d) configurations of 

the WaterSip  (left) and the DB99 UTrack (right)  modeldiagnosticss, for trajectories generated with FLEXPART forced 

with ERA5 input data (FLEXPART-ERA5). Biases are computed subtracting the “true” outcomes of WRF-WVTs from the 570 

corresponding values of the Lagrangian methodologiesWaterSip and UTrack. 



32 

 

4. Summary and conclusions 

In this study we have assessed the performance of WaterSip (Sodemann et al., 2008) and UTrack the DB99 methodology 

(Dirmeyer and Brubaker, 1999), two of the most used Lagrangian tools for moisture trackingmoisture source diagnostics, by 

comparing their results with the WRF-WVTs model tool in the context of AR-related precipitation events. Calculations are 575 

performed with the same WRF output data, for which WRF-WVTs results can be considered as synthetic 

observationsreference. The main objective was to obtain a computationally efficient Lagrangian methodology compatible 

with WRF-WVTs, potentially serving as a substitute for the Eulerian technique in global or climatological applications. 

 

Initially, we evaluated the most basic and commonly used configurations of the WaterSip and UTrack DB99 diagnostics. In 580 

the case of WaterSip, we observed important biases in the estimation of tropical and, more broadly, remote contributions, 

while there was an overestimation of local sources, especially of the oceanic region adjacent to where the AR makes landfall. 

These findings are in line with those documented in the literature (e.g. Winschall et al., 2014; Cloux et al., 2021). 

Quantitatively, when allowing specific humidity increments above the ABL (“No ABL” configuration), an average RMSE of 

5.55 20 % was obtained, being the average skill score considered in this study (the MAESS) equal to 0.704. When not 585 

attributing these increments (“ABL” configuration), we obtained an average RMSE of 5.06 % and average MAESS of 0.712. 

The similarity in MAESS between these configurations indicates only a minor correction in the “ABL” setupconfiguration, 

although for some specific cases, like the Andes case, the improvement is noteworthy. For  the DB99 methodologyUTrack, 

the initial results were slightly better, with an average RMSE of 4.64 and an average MAESS of 0.77. Despite this, there was 

also a remarkable underestimation of tropical contributions, particularly in certain cases. These finding are also consistent 590 

with those reported in previous studies (Insua-Costa et al., 2022; Staal and Koren, 2023). 

 

We then evaluated some physics-based modifications to try to enhance the compatibility of the results produced by the 

WaterSip and DB99 diagnosticsUTrack  with those of WRF-WVTs. In the case of WaterSip, we assessed a modification 

already applied in Dütsch et al., (2018) and Cheng and Lu, (2023):we proposed  not reducing previous contributions when a 595 

specific humidity decrease occurs and the parcel is not close to saturation. Numerically, only decreases in specific humidity 

that occur when the relative humidity is above a certain threshold are considered for the calculation of moisture sources for  

precipitation. In the case of the DB99 methodologyUTrack, as moisture sources are highly dependent on altitude, we 

proposed excluding from the calculations those parcels released below 2 km at the time and location of the precipitation 

event, trying to avoid parcels below cloud level, i.e. not contributing to rainfall. In this case we acknowledge that the 600 

proposed changes may depend on the type of precipitation event analyzed. Both modifications lead to a notable improvement 

of the results, as the average RMSE drops to 2.983.06 % (WaterSip) and 2.30 % (DB99UTrack), so it is approximately 

halvedreduced by over 50 %. Finally, we also validated our modifications using input data from ERA5 reanalysis, the 
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standard setting of both WaterSip and UTrackthe DB99 methodology, and our results show that the proposed modifications 

also work well in this case.  605 
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Figure 10: Average tropical contribution (%) obtained using the basic and modified configurations of the WaterSip (bluish 

colors) and the DB99 methodology UTrack (greenish colours), for trajectories generated with WRF input data (left) and 610 

ERA5 input data (right), in comparison with those obtained with WRF-WVTs (dark red). 

 

Importantly, on average there is an important rectification of the underestimation of tropical contributions, as highlighted in 

Fig. 10. The contributions of Watersip and the DB99 diagnosticsUtrack, which were initially in the range of 20-30 % on 

average, now approach 40 exceed 35 %, with a maximum value of 44.5 %, very close to the WRF-WVTs 40.62.4 %. 615 

Therefore, after the modifications introduced, although there may be important differences for specific cases, when 

averaging the results for a set of cases, the conclusions drawn in terms of the partitioning of the contribution of tropical and 

extratropical moisture would be very similar for the three methodologies. This is particularly relevant when studying ARs, as 

the debate remains as to whether or not they are mostly fed by tropical moisture. Based on our findings, we conclude that 

these Lagrangian moisture tracking methodologiessource diagnostics can serve as viable alternatives to WRF-WVTs or other 620 

similar methods, particularly in global or climatological studies where computational efficiency is a priority. Most 

interestingly, the results of the different methodologies have converged by introducing only two simple and logical (non-

artificial) modifications, which suggests that further validation in the future could lead to an extraordinarily high degree of 

agreement between them. 

 625 
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