Changes in extreme precipitation patterns over the Greater		Deteteu: greater
Antilles, and teleconnection with large-scale sea surface	(Deleted: Caribbean
temperature		
•		
Carlo Destouches ^{1,2} , Arona Diedhiou ² , Sandrine Anquetin ² , Benoit Hingray ² , Armand Pierre ¹ , Dominique Boisson ¹ Adermus Joseph ¹		Formatted: English (US)
¹ Universite d'Etat d'Haïti, Faculté des Sciences, LMI CARIBACT, URGéo, Port-au-Prince, Haïti		
² Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, F-38000 Grenoble, France		
Correspondence to: Carlo Destouches(carlo.destouches@univ-grenoble-alpes.fr)		
Abstract:		
This study examines changes in extreme precipitation over the Greater Antilles and their correlation with large-scale		Deleted: greater
sea surface temperature (SST) for the period 1985 to 2015. The data used for this study were derived from two satellite		Deleted: Caribbean
products: Climate Hazards Group InfraRed Precipitation (CHIRPS) and NOAA DOISST (Daily Optimum		
Interpolation Sea Surface Temperature version 2.1) with resolutions of 5 km and 25 km, respectively. Then, change		
in the characteristics of six(6) extreme precipitation indices defined by the WMO ETCCDI (World Meteorological		
Organization Expert Team on Climate Change Detection and Indices) is analyzed, and Spearman's correlation		
coefficient has been used and evaluated by t-test to investigate the influence of a few large-scale SST indices: (i)		
Caribbean Sea Surface Temperature (SST-CAR); (ii) Tropical South Atlantic (TSA); (iii) Southern Oscillation Index		
(SOI); (iv) North Atlantic, Oscillation Index (NAO). The results show that at the regional scale, +NAO contributes		Deleted: ern
significantly to a decrease in heavy precipitation (R95p), daily precipitation intensity (SDII), and total precipitation		
(PRCPTOT), whereas +TSA is associated with a significant increase in daily precipitation intensity (SDII). At an		
$island\ scale,\ in\ Puerto\ Rico\ and\ southern\ Cuba,\ the\ positive\ phase\ of\ +TSA,\ +SOI,\ and\ +SST-CAR\ is\ associated\ with$		
an increase in daily precipitation intensity (SDII) and heavy precipitation (R95p). However, in Jamaica and northern		
Haiti, the positive phases of +SST-CAR and +TSA are also associated with increased indices (SDII, R95p). In		
addition, the SST warming of the Caribbean Sea surface temperature and the positive phase of the Southern Oscillation		
(+SOI) is associated with a significant, increase, in the number of rainy days (RR1) and the maximum duration of		Deleted: ly
consecutive rainy days (CWD) over the Dominican Republic and in southern Haiti.	$\langle \langle$	Deleted: s
Keywords: Caribbean region; Greater Caribbean; Extreme precipitation; Climate variability; Sea surface temperature	X	Deleted: with
	(Deleted: ¶
τ		
	1	Deleted: ¶
1		

48 **1 Introduction**

I

49	Over the past three decades, the climatic hazards to which the Caribbean Basin has been exposed include recurrent	
50	cyclonic and hydrometeorological hazards, characterized by increasing intensities (Joseph, 2006). The economic cost	
51	of 250 storms and floods over 40 years, (1970 to 2009) for 12 Caribbean countries amounted to US\$19.7 billion in	Deleted: a 40-year period
52	2010, representing an annual average of 1% of gross domestic product (GDP) (Burgess et al., 2018). The most dreadful	
53	damage caused by these hydroclimatic events includes George in 1998, with 1,000 victims in the Dominican Republic	
54	and losses estimated at 14% of GDP, equivalent to approximately half the exports made that year (Naciones Unidades,	
55	Comision Economica para America Latina, y el Caribe, 1988); Matthew in Haiti (October 2016), with over 500 dead,	Deleted: economica
56	128 missing, 439 injured and 2.1 million people affected, including 895,000 children(De Giogi et al., 2021), Also,	Deleted: Latima
57	Hurricane Dorian caused property damage estimated at 2.5 billion USD when it came to rest over the Bahamas as a	Deleted:
58	Category 5 storm in September 2019, rendering nearly 3,000 homes uninhabitable and causing extensive damage to	
59	hospitals, schools, and fisheries (Panamerican Health Organisation, 2019). A severe drought episode affected the	
60	island of <u>the</u> Caribbean from October 2019 to mid-2020, causing water shortages, bushfires, and agricultural losses.	
61	In Saint Vincent and the Grenadines, the 2020 drought was considered the worst of the 50 years (Nurse, 2020). The	
62	Inter-American Development Bank predicts that the Caribbean could face climate-related losses of over \$22 billion	
63	per year by 2050 (Inter-American Development Bank, 2014).	Formatted: English (US)
64	In response to the climate extremes that are further weakening the island states of the Caribbean region, already in a	
65	situation of extreme socio-economic precariousness, several studies have been carried out in parallel to understand	
66	the associated physical processes and anticipate the evolution of these extreme climatic events. Research into the	Deleted: events
67	Caribbean climate goes back to the second half of the twentieth century and has focused mainly on rainfall patterns	
68	(Curtis et al., 2008), as well as on the overall description of rainy seasons (Griffiths et al., 1982).	
69	A more detailed study of the climate of the Caribbean was performed in 2001 and 2002 using indices derived from	
70	daily data to detect climate change (Peterson et al., 2001; Frich et al., 2002). This approach, which uses indices defined	
71	by the World Meteorological Organization's group of experts to characterize precipitation and temperature extremes,	
72	has enabled several studies to examine the state of climate extremes over the Caribbean (Stephenson et al., 2014;	
73	McLean et al., 2015). The results of these previous assessments agree that the frequency and intensity of climate	
74	extremes (heavy rainfall, drought spell, wet spell) over the Caribbean have increased over the last 30 years (Stephenson	Formatted: Font color: Text 1
75	et al., 2014; Peterson et al., 2002a; Beharry et al., 2015; Dookie et al., 2019), and will continue to do so until the end	Formatted: Font color: Text 1
76	of the century(Taylor et al., 2018; Vichot-Llano et al., 2021; Hall et al., 2013; Almazroui et al., 2021; McLean et al.,	
77	2015).	
70		
/8	Climate teleconnections, the remote forcing of a region far from the source of disturbance, whether simultaneous or	
/9	time-lagged (Mariami et al., 2018; Rodrigues et al., 2021), are generally derived from variations in sea surface	
80	temperature (SST) or atmospheric pressure at seasonal to interdecadal scales. Several of these have been shown to	
81	play a major role in modifying global weather patterns (Hurrell et al., 1995; Martens et al., 2018).	

2

Deleted: ¶

87	Previous studies have also shown the effect of east-west gradients in SST anomalies in the tropical Pacific and Atlantic	
88	on precipitation in the Caribbean, with a tendency for a warm Atlantic and a cold Pacific to favor precipitation in the	
89	Caribbean (Taylor et al., 2002a; Gimeno et al., 2011). Studies, (Enfiel et al., 2001; IPCC, 2007) also found that the	
90	monthly AMO (Atlantic Multidecadal Oscillation) index is an SST signal in the North Atlantic that influences the	
91	decadal-scale variability in precipitation. In addition, Peterson et al. (2022), analyzed the link between SST,	
92	temperature, and precipitation extremes over the Caribbean using ground-based observations. They showed that the	
93	extreme precipitation index (SDII) averaged over the Caribbean has a strong correlation with SST over the Caribbean	//
94	and the entire tropical North Atlantic Ocean. The work of Stephenson et al. (2014) examined the influence of the	/
95	Atlantic Multidecadal Oscillation (AMO) on extreme precipitation from a ground-based observation network in the	M.
96	Caribbean. These results show that the AMO influences the variability of extreme temperature and precipitation	
97	events, However, considering that the effects of teleconnections caused by large-scale SSTs on weather are expected	
98	to become more extreme in the future due to climate change (Mariami et al., 2018), further research is needed on other	
99	SST indices such as NAO, SOI, TSA, SST-Car, for which no in-depth studies have been carried out,	
100	In this context, this study aimed to examine the remote impact of the tropical Pacific Ocean, Atlantic Ocean, and the	
101	Caribbean Sea on observed changes in the tropical islands of the Greater Antilles, particularly the links between	
102	extreme precipitation indices and large-scale sea surface temperature indices. This paper is organized into five	
103	sections: Section 1 presents the study area and the associated climatology. Sections 2 and 3 describe the spatio-	
104	temporal variability of extreme precipitation indices at regional and local scales and the influence of SST indices on	
105	extreme precipitation. The last sections (4-5) present the discussion and conclusion.	
106		

107 2 Study Area, and Data

108 2.1 Study area

I

10	9	The Greater Antilles is a region between North and South America made up of four islands bordered by the Caribbean	
11	0	Sea to the south and the Atlantic Ocean to the east (Fig.1). These islands include Cuba, Hispaniola, Jamaica, and	1
11	1	Puerto Rico. They have a monthly rainfall cycle characterized by two peaks: the first in May and the second between	47
112	2	September and October (Giamini et al., 2000). The climatology of monthly rainfall in the Greater Antilles is strongly	4/
11	3	influenced by the subtropical North Atlantic anticyclone (Davis et al., 1997), Jow-level jet (CLLJ), characterized by	V.
114	4	two peaks; the first in January and the second in July (Cook and Vizy, 2010). This jet plays a key role in transporting	1
11:	5	moisture to the Caribbean (Mo et al., 2005), They were also influenced by the intertropical convergence zone (ITCZ)	4
11	6	(Hastenrath, 2002), with maximum precipitation in May (sup.fig.1b). Heavy autumn rainfall in the Greater Antilles	4
11′	7	(supl.fig.ld) is generally associated with North Atlantic tropical cyclones, 85% of which are of high intensity and	47
11	8	originate from African easterlies (Agudelo et al., 2011; Thorncroft and Hoges, 2001) under warm Atlantic basin	47
11	9	conditions, The spatial distribution of the total annual precipitation in the Greater Antilles, particularly on the islands,	Γ,
12	0	is not homogeneous due to the complexity of topography (Moron et al 2015, Cantet, 2007). Precipitation is relatively	_

3

	Deleted: in
	Deleted: AMO
	Deleted: (
1	Deleted: et al.
$\langle \rangle$	Deleted: ,
$\langle \rangle$	Deleted:)
ો	Deleted: air
$\langle \gamma \rangle$	Deleted: (
$\langle \rangle$	Deleted: et al.
Ì	Deleted: ,
A	Deleted: ;
	Deleted: however, further research is needed. In addition, the effects of teleconnections caused by large-scale SST on weather conditions are expected to become more extreme in the future due to climate change (Mariami et al., 2018).
1	Deleted: the aim of this study was

Deleted: area

ĺ	Deleted: peaks:
1	Deleted: November
1	Deleted:
1	Deleted: the easterly winds of the intertropical zone, and the trade winds (Cook et al., 2010).
1	Deleted:
]	Deleted: et al.,
1	Deleted: 2
1	Deleted: et al.
1	Deleted: . The total annual precipitation in the Greater Antilles depends on land-sea interactions (breezes) and topography (fig.1a)
]	Deleted: because
2	Deleted: , 2015

Deleted:

high (2,000-24,000< mm/year) at higher altitudes and in wind-exposed areas (supl.fig.1b). In contrast, annual
precipitation can reach 500 mm/year in leeward areas (Daly et al., 2003).

154	۲		Deleted: ¶
155	2.2 Satellite data		
156	This study was conducted using two satellite datasets: NOAA DOISST Sea surface temperature data and CHIRPSv2		
157	data. The CHIRPSv2 data (Climate Hazards Group Infrared Precipitation with Stations data version 2) are quasi-		
158	global daily precipitation data (50S-50N) with a resolution of 0.050, available over a period from 1981 to 2022(Funk		
159	et al., 2015). Based on the techniques used by NOAA for estimating precipitation in the thermal infrared (Love et al.,		
160	2004), the CHIRPSv2 database was built from precipitation estimates based on cold cloud duration observations, and		
161	a fusion incorporating monthly CHPClim (Funk et al., 2015a) (Climate Hazards Group Precipitation Climatology		
162	(CHPClim) precipitation data, and in situ data from ground observation networks. TRMM 3B42v7 (Tropical Rainfall		
163	Measuring Mission Multi-Satellite Precipitation Analysis) satellite products were also used to calibrate and reduce the		
164	bias in the estimates. The results of global and regional validation studies showed that $CHIRPS$ <u>v2</u> can be used to		
165	quantify the hydrological impacts of decreasing rainfall and increasing air temperatures in the Greater Horn of Africa		
166	(Funk et al., 2015). In addition, the performance of CHIRPSv2, evaluated over certain regions of the Americas, has		
167	demonstrated its ability to reproduce the mean climate as well as its capacity to estimate extreme precipitation events		Deleted: events
168	(Rivera et al., 2019). Furthermore, in Colombia, the best results were obtained on a daily and monthly scale over the		Deleted: or example
169	Magdalena River Basin, (Baez-Villanueva et al., 2018). CHIRPSv2 data are suitable for our study, as they perform		Deleted: (the largest in Colombia)
170	well in the Caribbean (Centella-Artolla al., 2020), and in the study by Bathelemy et al.(2022), it was shown that Chips		
171 172	perform well in estimating heavy precipitation based on the 90 th percentile(Bathelemy et al., 2022), Sea surface temperatures (SST) are very important for monitoring and assessing climate change (IPCC, 2013). They	$\overline{\left\langle \cdot \right\rangle}$	Deleted: CHIRPS data are suitable for our study, as their performance over the Caribbean, particularly the Greater Antilles, has shown their ability to estimate heavy precipitation (Bathelemy et al., 2022).
173	can be derived either from observations from floating or moored buoys (Smith et al., 1996), from satellite observations	/	Formatted: Superscript
174	(Merchant et al., 2014), or from a mixture (in situ + satellite) (HadSST, Rayner et al., 2003) and (DOSST, Reynold et		
175	al., 2007). In this study, NOAA DOISST (Daily Optimum Interpolation Sea Surface Temperature version 2.1) data		
176	were used; these are also daily sea surface temperature data derived from a combination of in situ sea surface		Deleted: are
177	temperature (SST) data obtained from ships and buoys and sea surface temperatures obtained from the Advanced Very		
178	High-Resolution Radiometer (AVHRR)(Reynold et al., 2007; Huang et al., 2021). This satellite product is the result		Deleted: High Resolution
179	of a global file of 0.250-degree grid points, available over the period 1981-2020. In addition, it has been widely used		Deleted:)(
180	for climate assessment and monitoring, notably as part of the reanalysis of the NOAA/NCEP climate prediction system		
181	(Saha et al., 2010). Work by Huang et al.(2021a) has revealed that NOAA DOISST performs well in terms of bias		
182	compared with buoy and Argo observations, as well as with the eight SST products.		
183	Υ		Deleted: ¶
184		1	Deleted: 1
1	4	/	

197 3. Methodology

211

198 The World Meteorological Organization's Expert Team on Climate Change Detection and Indices (ETCCDI) has 199 defined 27 indices to characterize extreme precipitation and temperature events in terms of frequency, amplitude, and 200 duration (Peterson et al., 2001). Although the proposed method includes numerous indices based on percentiles, with 201 thresholds set to assess extremes that generally occur a few times a year and not necessarily high-impact events, it has 202 paved the way for numerous research projects in the Caribbean (Stephenson et al., 2014; McLean et al., 2015). Six 203 extreme precipitation indices (see Table 1 for details) were calculated: total annual precipitation (PRCPTOT), number 204 of rainy days (RR1), intensity of rain events (SDII), and heavy precipitation (R95p), calculated with a threshold 205 corresponding to the 95th percentile of the daily precipitation distribution, maximum number of consecutive wet days (CWD), and maximum number of consecutive dry days (CDD). 206

The spatiotemporal evolution of extreme precipitation in the Greater Antilles was investigated by analyzing the interannual variability of extreme precipitation index anomalies over a long period (1985-2015) and the change in percentage variations in extreme precipitation indices at decadal timescales. To characterize the percentage variations, we chose the (Pij) index, which is already used in the study by An et al. (2023), whose equation is presented hereafter.

 $P_{ij} = (\frac{P_{i(j+1)}}{P_{ij}} - 1) \times 100$

(1)

212 Where Pij is the average extreme precipitation index for the j-th decade at the i-th location, and Pi(j+1) is the average 213 extreme precipitation index for the (j+1)-th decade at the i-th location.

214 Previous studies have shown that precipitation in the Caribbean, particularly in the Greater Antilles, is influenced by

the surface temperature of the Atlantic Ocean and tropical Pacific (Gimeno et al., 2011; Enfiel et al., 2001). Thus, to

216 investigate the impact of these basins on extreme precipitation over indices, we selected four large-scale SST indices,

namely the Southern Oscillation Index (SOI), the North Atlantic Oscillation (NAO) (Jones et al., 1997), the Tropical
 South Atlantic Anomaly Index (TSA) and the Caribbean Sea Surface Temperature Anomaly Index (SST-CAR).

South Atlantic Anomaly Index (TSA) and the Caribbean Sea Surface Temperature Anomaly Index (SST-CAR).
 Details of these indices can be consulted online; https://psl.noaa.gov/data/climateindices/list/#Nina34.

220 Analysis of the relationship between two variables is often of great interest for data analysis in research. It generally 221 consists in characterizing the form and intensity of the link (relationship) between variables using a correlation 222 coefficient. For two variables, X and Y, this coefficient is interpreted as: i)linear linkage, the correlation coefficient is 223 positive when X and Y values change in the same direction, that is, an increase in X leads to an increase in Y; ii)linear 224 linkage, the correlation coefficient is negative when X and Y values change in the opposite direction, that is, an 225 increase in X leads to a decrease in Y (or vice versa); iii) non-linear monotonic linkage, the correlation coefficient is 226 positive when X and Y change in the same direction as in (i), but with a small slope (Lewis-Beck, 1995; Sheskin, 227 2007).

Deleted: To provide countries with information on extreme weather events, a group of World Meteorological Organization experts (ETCCDI: Expert Team on Climate Change Detection and Indices) defined 27 indices to characterize extreme precipitation and temperature events in terms of their frequency, amplitude, and duration (Peterson et al., 2001)

Deleted: (6)

Deleted: Table 1

Deleted: in relation to

ſ	Deleted: (
(I	Deleted: et al.
ſ	Deleted: ,
F	Formatted: English (US)
(I	Deleted: where
F	Formatted: English (US)

Deleted: Then, as the variability of precipitation in the region is known to be linked to SST in the tropical Pacific and Atlantic(Gimeno et al., 2011; Enfiel et al., 2001), we selected four large-scale SST indices, namely the Southern Oscillation Index (SOI), the North Atlantic Oscillation (NAO)(Jones et al., 1997), the Tropical South Atlantic Anomaly Index (TSA), and the SST over the Caribbean Sea (SST-CAR), and investigated the teleconnection between these indices and the precipitation extremes in the region. Detailed descriptions and estimates of these SST indices are available in (https://psl.noaa.gov/data/climateindices/list/#Nina34). Formatted: c-pjlv, Font: 10 pt, English (US) Formatted: Hyperlink, Font: 10 pt, English (US) Formatted: Font: 12 pt Field Code Changed Formatted: Justified, Line spacing: 1,5 lines Deleted:

			A Benetican 1
53	In the literature, Pearson's and Spearman's correlation coefficients are often the most widely used to measure the	1	Deleted:
54	strength or degree of linkage between two variables. In this study, we used Spearman's non-parametric rank correlation		Deleted: S
55	coefficient (rho) to assess the interannual link between extreme precipitation over indices and global SSTs indices.		Formatted
56	This non-parametric method was chosen because it does not require a normal distribution for the variables. Also,		Deleted: C
57	Spearman outperforms Pearson's linear coefficient in the case of outliers. On the other hand, linear trends can be		Formatted
58	detected using Pearson or Spearman tests, but the latter is preferable for monotonic non-linear relationships (Gauthier,	M//	Deleted: .
59	2001; Von Storch and Zwiers, 1999), Spearman's correlation has already been used in several studies to assess the	M//	Formatted
0	links between teleconnection patterns and precipitation. (Ríos-Cornejo et al., 2015; Khadgarai et al., 2021).	I/	Formatted
			Formatted
1	Spearman's correlation coefficient is calculated using the following equation:	/ ///	Formatted
			Formatted
2	$r_{spearman} = \frac{\sum_{i=1}^{n} (R_i - R) (S_i - S)}{\sum_{i=1}^{n} (R_i - R)^2 R_i (S_i - S)} $ (2)		Formatted
	$\sum_{i=1}^{r} (R_i - R)^2 \sum_{i=1}^{r} (S_i - S)$	<	Formatted
	Where r spearman is the correlation coefficient. Ri=rang (Xi), Si=rang (Yi) are respectively the data ranks of		Formatted
	Variables X and Y (X: Extreme precipitation index Y: Large-scale SST index)		Formatted
			Formatted
	To test the significance of the relationship, whether the two variables are correlated or not, we use the t-test for a		Formatted
	threshold of 0.05 or less. This involves testing the two hypotheses (H_{ij} and H_{i}) based on the value of t to deduce the		Formatted
	probability of observing a result that deviates as much as expected from the correlation. The formula for calculating		Formatted
	the value of t using Spearman's correlation is as follows:	Notes and a second s	Formatted
		numu 1	Formatted
	$t_{1-2} = \frac{-r_{spearman}}{\sqrt{n-2}} \sqrt{n-2} $ (3)		Formatted
	$\int 1 - r_{spearman}^2$	1	Formatted
	Where:		Formatted
	n-2: degrees of freedom.		Deleted: w
	<u>n: sample size</u>		Deleted: t
	4 Decelte		Deleted: 0
	4 Results		Formatted
	4.1 Changes in precipitation extreme indices		Formatted
	Interannual changes in extreme presinitation indices over the Greater Antilles are shown in Fig. 2. As shown in Fig.		Formatted
	2a the period from 1985 to 1994 was generally marked by a decline in total annual precipitation. This decline was		Formatted
	24, the period from 1205 to 1227 was generary marked by a decline in total annual precipitation. This decline was		Formatted
	associated with a decrease in average rannan mensity (Fig. 2c) and a reduction in the length of well and dry spells		Formatted
	(Fig. 2c, 21). On the other hand, the period from 1995 to 2004 was mainly characterized by a decrease in the number of respectively $(f_{12}, 2_{13})$ and $(f_$		Formatted
	of fainy days (19.20), associated with an increase in the average intensity of precipitation (fig. 2c) and in the		Deleted:
	controlution of heavy precipitation (iig. 2d). Furthermore, during the period 2003-2013, an increase in the contribution		Formatted
	or neavy precipitation was observed until 2012(ng.2q). This was associated with an increase in the number of rainy devices $2h$ or increase in the supress		Formatted
	uays(11g.20), an increase in the average intensity of precipitation(fig.2c) and in the length of wet episodes(fig.2e).		Deleted:
	6	1	

Deleted: The teleconnection between SST and extreme	<u> </u>
5	٦ []
Deleted: Such an analysis with	
Deleted: Spearman correlation has already been carried	¢[2]
Formatted	([3]
Deleted: Chen et al., 2015; Sunilkumar et al., 2016	
Formatted	([4]
Deleted: . This coefficient was interpreted over a clos	°([5]
Formatted	([6]
Formatted	([7]
Formatted	([8]
Formatted	([9]
Formatted	[10]
Formatted	[11]
Formatted	[12]
Formatted	[13]
Formatted	[14]
Formatted	[15]
Formatted	[16]
Formatted	[17]
Formatted	[18]
Formatted	[19]
Formatted	[20]
Formatted	[21]
Formatted	[22]
Formatted	[23]
Formatted	[24]
Formatted	[25]
Deleted: where	
Deleted: that is,	
Deleted: really	
Deleted: 0	
Formatted	[26]
Formatted	[27]
Formatted	[28]
Formatted	[29]
Formatted	[30]
Formatted	[31]
Formatted	[32]
Deleted: ¶	
Formatted	[33]
Formatted	[34]
Formatted	[35]
Deleted: 1	

308 Fig. 3 shows the annual change in percentage between two consecutive decades of precipitation indices over the 309 Greater Antilles (1985-2015). As shown in fig. 3(a, d2), there was an increase in total annual precipitation 310 (PRCPTOT) in southeastern Cuba. This was associated with an increase in the number of rainy days (RR1) (fig.3(b, 311 d2) and the average intensity of precipitation per rainy day (SDII) (fig.3(c, d2)). These results were also observed in 312 Puerto Rico, with an increase in total annual precipitation associated with an increase in RR1 (fig.3(a, d2), 3(b, d2)). 313 In addition, a decrease in total annual precipitation (PRCPTOT) was observed on the island of Hispaniola (Dominican 314 <u>Republic and Haiti, except for the southern part</u> (fig.3(a, d2)). This was associated with a decrease in the average 315 rainfall intensity per wet day (SDII) (fig.3(c, d1)). This decrease in the SDII was also recorded in Puerto Rico (fig.3(c, d1)). 316 $\frac{d2}{d2}$). For heavy precipitation (R95p), as shown in fig.3(d, d2), an increase was observed in the southeastern part of 317 Cuba, whereas the whole island (Cuba) was affected in general by a decrease in wet sequences (CWD) (fig.3(e, d2)) 318 and dry sequences (CDD) (fig.3(f, d2)). A decrease in heavy precipitation (R95p) was observed in the central and 319 western regions of Haiti (fig.3(d, d2)). This was accompanied by an increase in wet sequences (CWD) over Haiti 320 (fig.3(e, d2)). The Dominican Republic was also affected by this increase in wet sequences (CWD) (fig.3(e, d2)).

321 Variations in extreme precipitation indices under the influence of variables such as NAO, SOI, TSA, and SST-CAR 322 were analyzed over the Greater Antilles. The influences of large-scale variables were classified as positive, negative, positive, significant, negative, or significant, as shown in figure 4. The results obtained by taking the intersections of 323 324 the table in fig. 4 presented show the values of the correlation coefficient (with its significance *) between the extreme 325 precipitation indices (PRCPTOT, RR1, SDII, R95p, CWD, and CDD) and the influencing variables (NAO, SOI, TSA, 326 and SST-CAR). Thus, the table in fig. 4 shows, that NAO has a negative effect on all extremes, while the other SST-327 CAR are positive, except for the number of rainy days (RR1) and the number of consecutive rainy days (CWD). 328 However, the positive phase of the +TSA index had a positive and significant effect on the average rainfall intensity 329 per wet day (SDII), for which a correlation coefficient of 0.37 was obtained. Similarly, with the ONA index, a negative 330 and significant effect (P<0.05) was observed on total annual precipitation (PRCPTOT), average precipitation intensity 331 (SDII), and heavy precipitation (R95p), for which correlation coefficients of 0.49, 0.40, and 0.47, respectively, were 332 obtained.

At a local scale, the results show that teleconnections have had positive and significant effects on extreme precipitation indices over the last 30 years in the countries of the Caribbean region, particularly in the Greater Antilles. The spatial extent of significance is indicated by the symbols (*). Thus, the double symbol (**) represents regions with a significant surface area greater than 50% of the surface area, while the symbol (*) is used for a significant surface area less than 50%. The figures (with a threshold at $p_{\leq} \leq 0.05$; fig. 5, 6, 7, 8) show the regions or countries over which positive and significant effects were observed for the Greater Antilles.

Fig. 5 and suppl. Table 1 shows the effect of the TSA index on extreme precipitation indices (PRCPTOT, RR1, SDII,
 R95p, CWD, and CDD) in the Greater Antilles. The results show that South Atlantic tropical warming, corresponding

Deleted: The observed changes in total annual precipitation (PRCPTOP), number of rainy days (RR1), rainfall intensity (SDII), contribution of heavy rainfall (R95p), and maximum duration of consecutive rainy days (CWD) and dry days (CDD) in the Greater Antilles over the three decades (1985-1994, 1995-2004, 2005-2015) are shown in fig. 2. The first decade of 1985-1994 was generally marked by a decline in total annual precipitation (fig.2a), associated with a decrease in the number of rainy days (fig. 2b), a decrease in the average rainfall intensity (fig. 2c), a decrease in the contribution of heavy rainfall (fig. 2d), and in the length of wet and dry spells (fig. 2e, 2f). The second decade 1995-2004, was mainly characterized by an increase in rainfall associated with an increase in rainfall intensity, the contribution of heavy rainfall, and the length of dry spells. The last decade 2005-2015, was characterized by a wet period (until 2012) followed by a dry period. Except for 2008-2009, the wet period was generally associated with positive anomalies of all indices, whereas the last dry period exhibited negative anomalies in all indices except during rainy days. which showed a weak change.

Deleted: %
Deleted: a
Deleted: c
Deleted: These results were also observed in Jamaica
Deleted: c
Deleted: Haiti and the Dominican Republic
Deleted: c
Deleted: f
Deleted: s
Deleted: T
Deleted: s
Deleted: show

Deleted: Thus, a double symbol (**) indicates that the effect extends over a wide area, whereas the effect is limited to that bearing a single symbol (*)

Deleted: P

🖉 Deleted: ¶

270	to the mariation where a failer (TCA) index the a mariation and similar and affine (**) and the task formula mariated in		
378	(Decentron) and the positive phase of the +1SA index, has a positive and significant effect ($\frac{1}{1}$) on the total annual precipitation		
3/9	(PRCP101) and neavy precipitation (R95p) in Puerto Rico (ing.3a, 5b; suppl. taole1d). In Jamaica, it was also		
380	associated with an increase in total annual precipitation (PRPCP101) and heavy precipitation (R95p) (fig.3a, 50;		Deleted: in Puerto Rico
381	suppl. table1d). In Haiti, more specifically in the northern part, the increase in the average daily rainfail intensity		
382	(SDII) was also associated with +1SA warming (fig.5e; suppl. table1d). In northwest Cuba, this positive phase of		
383	+1SA also had a positive and significant effect (**) on mean rainfall intensity per day (SDII) (fig.5e; suppl. table1d).		
384	Conversely, in southeastern Cuba, a positive effect was observed for heavy rainfall (R95p) (fig.5b; suppl. table1d).		
385	Fig. 6 and suppl. Table <u>la</u> shows the effects of warming of the Caribbean Sea surface temperature (SST-Car anomaly,		Deleted: 2
386	averaged over 14-16N, 65-85 °W) on extreme precipitation in the Greater Antilles. In southern Haiti, an increase in		
387	total annual precipitation (PRCPTOT) and the number of rainy days (RR1) was observed as the SST-Car warmed		
388	(fig.5a, 5c; suppl. table1a). In the same region, this increase was also observed for heavy rainfall (R95p) (fig.6b; Suppl.		Deleted: T
389	table 1a). In eastern Haiti, particularly in Santo Domingo, the positive phase of ± SST-Car is associated with an increase		
390	in the duration of wet sequences (CWD) and the number of rainy days (RR1) (fig.6c, 6d; suppl. table1a). In		Deleted: c
391	southeastern <u>Cuba</u> , especially on the Caribbean coast, warming of SST-Car is associated with an increase in total	and the second second	Deleted: c
392	annual precipitation (PRCPTOT) and heavy precipitation (R95p) (fig.6a, 6b; suppl. table1a). An increase in heavy		Deleted: Cuba
393	precipitation (R95p) during the positive phase of + SST-Car was also observed in Puerto Rico (fig.6c; Suppl. table1a).		
394	Fig. 7 and suppl. Table 1c, shows, the results of the effect of SOI on extreme precipitation indices (PRCPTOT, RR1,		Deleted: table1
395	SDII, R95p, CWD, and CDD) in the Caribbean region, particularly on the islands forming the Greater Antilles. In		Deleted: show
396	Puerto Rico, as shown (fig.7a, 7b; suppl. table1c), the positive phase of the +SOI index was associated with an increase	No. of Concession, Name	Deleted: carab
397	in total annual precipitation (PRCPTOT) and heavy precipitation (R95p). In Haiti, specifically in the south, this		(Deleted: id beetles
398	positive phase of the +SOI index was associated with an increase in the number of rainy days (RR1), including the		
399	duration of wet sequences (CWD) (fig.7c, 7d; suppl. table1c). In Santo Domingo, this is associated with an increase		
400	in the duration of wet sequences (CWD) (fig.7d; suppl. table1c). In southeastern Cuba, this is associated with an		
401	increase in the average intensity of precipitation per rainy day (SDII) and heavy precipitation (R95p) (fig.7e, 7b; suppl.		
402	table1c).		
403	Fig. 8 and suppl. Table 1h, shows, the results of the effect of the NAO index on extreme precipitation indices	~	Deleted: table1
404	(PRCPTOT, RR1, SDII, R95p, CWD, and CDD) in the Greater Antilles. The condensed results for different phases	and the second	(Deleted: show
405	of the NAO index are presented in Supplementary Table 1b. In contrast to the results for the other large-scale SST		
406	indices, the positive phase of the +NAO index was only associated with an increase in the number of rainy days (RR1)		Deleted: ESS
407	over Cuba. This increase was greater for coasts facing the Caribbean Sea (fig.8c; Suppl. Table).		Deleted: table1b
408	Υ		Deleted: ¶
409			
410			Deleted:
1			
1	8		
1	Y		

427 5. Discussion

428 <u>The results of this study showed that extreme precipitation over the period 1985-2015 was influenced by four large-</u> 429 scale sea surface temperature indices (NAO, SOI, TSA, SST-Car). On the other hand, on a local scale, notably over a 430 few regions, the effects of this influence on certain precipitation indices were statistically significant, while on other 431 precipitation indices, non-significant effects were observed. To shed more light on these results, we discuss the 432 following points: i) Impact of sea surface pressure anomalies (NAO, SOI); ii) Impact of sea surface temperature 433 anomalies (TSA, SST-Car).

434 5.1 Impact of sea surface pressure anomalies (NAO, SOI)

435 In this study, the influence of the Atlantic Ocean over the Greater Antilles is assessed using two large-scale SST

436 indices (NAO, Hurrell (2003)) and TSA. The phases (positive and negative) of the NAO index have been shown to

437 affect circulation in the Northern Hemisphere (Thompson et al., 2000). Also, this index is a measure of the meridional

438 pressure gradient between the NASH and the Icelandic low (Visbeck et al., 2001). Nevertheless, in this study, the

439 results show that the NAO has a negative effect on all extreme precipitation over indices in the region (fig.4). In other

440 words, the fluctuation of the NAO index and extreme precipitation over indices change in opposite phases, i.e. the

441 negative (or positive) phase of the NAO is linked to the positive (or negative) phase of the precipitation indices.

442 However, on a local scale (Fig. 8), notably in Cuba and southern Haiti, the positive effect of NAO+, corresponding to

443 a weakening of the subtropical anticyclone (Wallace et al., 1981; North Atlantic Oscillation, 2023) and leading to very

444 wet conditions in the Caribbean, particularly in the Greater Antilles (Giannini et al., 2000; Mo et al., 2005), is

445 associated with an increase in the number of rainy days (RR1). These results are consistent with those of Jury et al.

446 (2007), for whom the NAO exerts a certain influence on rainfall in the southeastern Caribbean.

447 In the case of the SOI index (fig.7), studies have already shown that ENSO influences precipitation patterns in several 448 regions, notably in South and North America (Ropelewski et al., 1987). However, studies (Giannini et al. 2000; Giannini et al. 2001a; Giannini et al. 2001b; Rodriguez-Vera et al., 2019) have shown that, on an interannual scale, 449 450 ENSO is one of the most important factors influencing precipitation in the Caribbean. These results are consistent 451 with those of our study. The influence of ENSO was assessed on extreme precipitation indices (figure 7) using the 452 SOI index. For example, the positive phase of the +SOI index (sign of La Niña), characterized by abnormally cold 453 ocean waters in the eastern tropical Pacific, led to an increase in total annual precipitation (PRCPTOT) and heavy 454 precipitation (R95p) in Puerto Rico (fig. 7a, 7b). It has also led to an increase in the number of rainy days (RR1), 455 including the duration of wet sequences (CWD) in southern Haiti (fig. 7c, 7d), while in southeastern Cuba, it is 456 associated with an increase in mean rainfall intensity per rainy day (SDII) and heavy precipitation (R95p) (fig. 7b, 457 7e). This influence could be explained by the fact that La Nina brings wet conditions to the Caribbean (Klotzbach, 458 <u>2011).</u>

Formatted: Font color: Auto, English (US)

Formatted: Font color: Auto, English (US) Formatted: Font color: Auto, English (US)

Deleted: The results concerning the effect of the Atlantic Occan, tropical Pacific, and Caribbean Sea on extreme precipitation indices show that extremes are influenced differently by the occans and the Caribbean Sea. Moreover, at a local or regional scale, the correlation coefficients measuring trends in this influence are not statistically significant. To clarify these results, we separately discuss the effects of indices (NAO and SOI) and sea surface temperature anomalies (SST-Car, TSA) on extreme precipitation indices.

Deleted: Effect

Deleted: In this study, the effects of the Atlantic Ocean on the Greater Antilles are measured using two indices (NAO and TSA) defined over two ocean areas in two hemispheres. For the Northern Hemisphere, it has been shown that the phases (positive and negative) of the NAO index affect circulation on a Northern Hemisphere scale (Thompson et al., 2000).

Deleted: NAO index results show that the effect produced by the negative phase, corresponding to a weakening of the subtropical anticyclone (Wallace et al., 1981; North Atlantic Oscillation, 2023) and leading to very wet conditions over the Caribbean, particularly the Greater Antilles (Mo et al., 2005; Mestas-Nuñez et al., 2007), is associated with a negative effect on all regional extremes

Deleted: In other words, the NAO index evolves with extremes in the opposite direction, that is, the negative (positive) phase of the NAO is linked to the positive (negative) phase of the precipitation indices. This indicates that the extreme precipitation indices are modulated by the positive and negative phases of the North Atlantic Oscillation (NAO).

Deleted:

At a local scale, the effect is observed on all extremes, except for the number of rainy days (RR1). Despite less favorable conditions for precipitation, because the +NAO index is in a positive phase, an increase is recorded on the southern coasts of Cuba and Haiti, whose coastline is the Caribbean Sea. ¶

Deleted:

496	Υ	 Deleted: In the case of the SO)I, s cha
497	5.2 Impact, of sea surface temperature anomalies (TSA, SST-Car)	have a considerable impact on particularly around the Pacific	i tei c an
498	The evolution of temperature anomalies in the South Atlantic (TSA average over 0-20S, 10E-30W) and Caribbean	(Ropelewski et al., 1987). How are also a concern, as the SOI	ind
499	Sea (SST-Car SST average 14-16N, 65-85W) presented in suppl. Fig. 3 is marked by increasing warming in the	over the tropical Atlantic (Ser	vai
500	Atlantic and Caribbean Sea over the period 1985-2015. In the Caribbean, warming has intensified over the past three	The positive phase of the +SO decrease in the zonal pressure)I ii gra
501	decades in both seasons (DJF and MAM) (suppl. fig.2). Thus, the +SST-Car phase in the Caribbean is associated with	leading to persistent cooling in	n th
502	an increase in all extremes at the regional scale, apart from the mean rainfall intensity per wet day (SDIL) (fig. 4).	regional scale. However, at a l	loca
503	Similarly, on a local scale, considering all islands, it leads, to an increase in the number of consecutive rainy days	associated with cold waters in to an increase in the total annu	the ual
504	(CWD), as well as in the number of consecutive rainy days on the island of Hispaniola (Haiti and Santo Domingo)	and heavy precipitation (R95p) ii
505	(fig. 6c, 6d). The increase in heavy precipitation (R95p) in Puerto Rico, southeast Cuba, and Haiti is also due to	duration of wet sequences (CV	ain WD
506	abnormally warm conditions + SST-Car in the Caribbean Sea(fig. 6b), These results are in line with previous research	as in the average intensity of p (SDII) and heavy precipitation	preo n (F
507	on the influence of sea surface temperature on precipitation in the Caribbean, particularly in the Greater Antilles	An increase in the duration of	we
508	(Wang et al., 2007; Wang et al., 2008; Wu et al., 2011), Also, for the link between extreme precipitation and SSTs, it	in line with previous studies s	nqu hov
509	has been shown that the average rainfall intensity per wet day (SDII) averaged and heavy precipitation (R95p) over	to favor precipitation in the Ca Wu et al. 2011: Peterson et al	arit 1 2
510	the Caribbean has a strong correlation with the warm phase of the Caribbean Sea (Peterson et al., 2002). In contrast,	Deleted: Effect	
511	the positive +TSA phase (TSA averaged over 0-20S, 10E-30W), which corresponds to warmer sea surface	Deleted: are	_
512	temperatures (SST) in the southern tropical Atlantic (TSA), is associated with a southward shift of the ITCZ (Philander	Deleted:)	
513	et al., 1996) and a weakening of the southeasterly (SE) trade winds (Nobre and Shukla, 1996), This phase, which is	Deleted: lead	
514	also associated with higher precipitation in northeastern Brazil (Utida et al., 2019), influenced precipitation indices	Deleted: Domingo)	
515	over the Greater Antilles, particularly in Puerto Rico and central Cuba, where it led to an increase in heavy	Deleted:	
516	precipitation (R95p) (fig.5b). On the other hand, in south-eastern Cuba and north-western Haiti, this phase was	Deleted: The increase in heav	ур На
517	associated with an increase in rainfall intensity per wet day (SDII)(fig.6e), These results are compared with those of	warm + SST-Car conditions in	n th
518	the study by Utida et al. (2019), in which the influence of TSA on precipitation was assessed. The results of this study	Deleted: , and on the link bety	wee
519	show that the warm phase + TSA is associated with an increase in precipitation in southeastern Cuba. These findings	Deleted: For example	ces
520	are consistent with my own, namely that TSA influences southeastern Cuba,	Deleted: I	
		Deleted: over	
521		Deleted: a	
522	5 Conclusion	Deleted: the positive +TSA pl 10E-30W) is associated with v	has war
523 524	This work provides a relevant analysis of the evolution of extreme precipitation and its link with global teleconnections over the Caribbean, particularly the Greater Antilles, over the period 1985-2015. Extreme precipitation indices	leading to a southward shift of 1996) and a weakening of the (Schneider et al., 2014; Nobre	f th sou
525 526	(PRCPTOT, RR1, R95p, CWD, and CDD) defined by the World Meteorological Organization Expert Team on Climate Change Detection and Indices (ETCCDI) were calculated. Next, the links between large-scale SST oscillation	Deleted: This warm phase inf over the Greater Antilles, nota precipitation intensity (SDII)	lue ably ove
527	indices (NAO, SOI, TSA, and SST-CAR) and extreme precipitation indices (PRCPTOT, RR1, R95p, CWD, and CDD)	Deleted: These results are cor	mpa

528 were evaluated and tested using Spearman's correlation coefficient. The results show that warming in the tropical 529 South Atlantic (TSA), the Caribbean Sea (mean SST 14-16N, 65-85 W), and cooling in the eastern tropical Pacific

studies have shown that the anges (El Niño, La Niña) mperature and precipitation, nd Indian oceans ver, the peri-Atlantic regions dex is associated with tures and trade wind flows n (1991); Zebiak (1993)). ndex, manifested by a adient and trade wind flow, ne central equatorial Pacific, se in all extremes on a al scale, this positive phase, e eastern Pacific (Niña), lead precipitation (PRCPTOT) n Puerto Rico. It also lead to y days (RR1), including the) in southern Haiti, as well cipitation per rainy day (895p) in southeastern Cuba. t sequences (CWD) is also e region. These results are wing that a cold Pacific tends bbean (Gimeno et al., 2011; 2002). ¶

precipitation (R95p) in Puerto iti is also due to abnormally ne Caribbean. en sea surface temperature se (mean TSA over 0-20S, rmer sea surface rn tropical Atlantic (TSA), ne ITCZ (Philander et al., utheast (SE) trade winds

nd Shukla,1996) ences the precipitation indices y the average daily

er the entire region. T(... [36]) ared with those of a previous study (Utida et al., 2019) in which a correlation was fr ... [37] Formatted: English (US)

Deleted:

602 603 604 605 606 607 608 609 610 611 612 613	 (Niña) have positive effects on all extreme precipitation indices. Except for the number of rainy days (RR1) and rainy episodes (CWD), for which negative correlations were observed. However, the significant effects on extremes were greatest at the island scale in the Greater Antilles. For example, in southeastern Cuba and Puerto Rico, there was an increase in heavy precipitation (R95p) and average rainfall intensity per wet day (SDII) associated with the positive phase of the indices (SOI, TSA, and SST-Car), whereas in Jamaica and northern Haiti, there were only two indices (TSA and SST-Car). The number of rainy days (RR1) and the maximum duration of consecutive rainy days (CWD) showed a significant upward trend over southern Haiti and the Dominican Republic, in line with the positive phase of the Southern Oscillation (SOI) and warming east of the Caribbean Sea surface. These results further improve our knowledge of the impact of certain global teleconnections on extreme precipitation in the Greater Antilles. They also highlight the most relevant teleconnection indices (SOI, SST-Car (average SST-Car SST 14-16N, 65–85 W), and TSA) to be considered as part of the impact study in the region, to limit damage to key economic sectors such as agriculture, biodiversity, health, and energy. 		Deleted: The results show that warming in the southern tropical Atlantic (TSA), the Caribbean (mean SST-Car SST 14-16N, 65–85 W), and cooling in the eastern Pacific (Niña) have positive and significant effects on extreme precipitation indices.
614			
615	6 Author contribution	<(Deleted: ¶
616	Concentralization C.D. A.D. S. A. mathedalague C.D. A.D. S. A. Oniginal draft proposition (CD) regions and addition	(Formatted: English (US)
610	Conceptualization. C.D, A.D, S.A, methodology. C.D, A.D, S.A, Original draft preparation. CD, review and entiting.		
617	all the authors.		
618	7 Competing interests		Formatted: English (US)
619	The authors of this paper declare that they have no conflicts of interest.	,	
620 621	Y 9 Einanaial sunnarts		Deleted: ¶
622		······	Formatted: English (US)
623	This research was carried out with the support of the following institutions: 1) ARTS PhD grant from the Institut de	((00)
624	Recherche pour le Développement (IRD); 2) Antenor Firmin PhD grant from the French Embassy in Haiti; 3)		
625	CARIBACT International Joint Laboratory; 4) CLIMEXHA Project (Anticipation of Extreme CLIMATE events in		
626	HAITI for sustainable development).		
627 628	0 Data availability	(Emmeddad a nilu Earth Dalid E
629	The CHIRPS (Climate Hazards Group Infrared Precipitation with Stations data version 2) satellite data used in this		Formatted: c-pjiv, Font: Boid, French
630	study are available online at https://data.chc.ucsb.edu/products/CHIRPS-2.0/. NOAA OISST v2.1 data can also be	(Formatted: Default Paragraph Font, Font: Not Bold, French
631	accessed online at: (https://www.ncdc.noaa.gov/oisst/optimum-interpolation-sea-surface-temperature-oisst-v21).		
632			
633			
634	Υ		Deleted: ¶
		(
		Å	Deleted: 1
i i	11	1	
	-	1	

645 Bibliography

	T	
646	Agudelo, P.A., Hoyos, C.D., Curry, J.A., Webster, P.J.: Probabilistic discrimination between large-scale environments	Deleted: Agudelo, P.A., Hoyos, C.D., Curry, J.A., Webster,
647	of intensifying and decaying African easterly waves. Clim. Dyn. 36, 1379–1401. https://doi.org/10.1007/s00382-010-	P.J., 2011. Probabilistic discrimination between large-scale
648	<u>0851-x, 2011.</u>	waves Clim Dyn 36 1379–1401
649		https://doi.org/10.1007/s00382-010-0851-x.¶
650	Almazroui, M., Islam, M.N., Saeed, F. et al. Projected Changes in Temperature and Precipitation Over the United	
651	States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst Environ 5, 1–24,	Almazroui, Mansour, M. Nazrul Islam, Fahad Saeed, Sajjad Saeed Muhammad Ismail Muhammad Azhar Ehsan
652	https://doi.org/10.1007/s41748-021-00199-5, 2021.	Ismaila Diallo, et al. "Projected Changes in Temperature and
653		Precipitation Over the United States, Central America, and
654	An, D., Eggeling, J., Zhang, L. et al. Extreme precipitation patterns in the Asia–Pacific region and its correlation with	the Caribbean in CMIP6 GCMs." <i>Earth Systems and</i>
655	El Niño-Southern Oscillation (ENSO). Sci Rep 13, 11068, https://doi.org/10.1038/s41598-023-38317-0, 2023.	https://doi.org/10.1007/s41748-021-00199-5.
656		
657	Baez-Villanueva, O.M., Zambrano-Bigarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J.D., Thinh, N.X.: Temporal	An, D., Eggeling, J., Zhang, L. et al. Extreme precipitation
658	and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmos. Res., 213, 34–50,	El Niño-Southern Oscillation (ENSO). Sci Rep 13, 11068
659	https://doi.org/10.1016/j.atmosres.2018.05.011, 2018.	(2023). https://doi.org/10.1038/s41598-023-38317-0.¶
660		
661	Bathelemy K., Brigode P., Boisson D., and Tric E., 'Rainfall in the Greater and Lesser Antilles' Performance of tive	Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Ribbe, L.; Nauditt A : Giraldo-Osorio ID : Thinh NX Temporal
662	gridded datasets on a daily timescale, Journal of Hydrology: Regional Studies, 43,101203,	and spatial evaluation of satellite rainfall estimates over
663	<u>nttps://doi:10.1016/j.ejrn.2022.101203_2022.</u>	different regions in Latin-America. Atmos. Res. 2018, 213,
665	Pohami S.L. Clarke D.M. & Kumaningh, K., Variations in automa temperature and magnitude for a Caribbaan	34–50.
666	island: Trinidad Theor Appl Climatal 122, 782, 707, https://doi.org/10.1007/s00704.014.1220.0.2015	Bathelemy R., Brigode P., Boisson D., and Tric E., "Rainfall
667	Istand: Trinidad: Theor Appr Chinator 122, 785–797, https://doi.org/10.1007/s00704-014-1550-9, 2015.	in the Greater and Lesser Antilles: Performance of five
668	Burgass C.P. Taylor M.A. Spencer N et al. Estimating damages from climate related natural disasters for the	gridded datasets on a daily timescale," Journal of
660	Daribbeen at 1.5 °C and 2.°C alobal warming above proindustrial levels. Reg Environ Change 18, 2207–2312	https://doi:10.1016/j.ejrh.2022.101203.
670	https://doi.org/10.1007/s10113-018-1423-6.2018	Formatted: English (US)
671		(Formatted: English (US)
672	Cantet, P.: Mapping the mean monthly precipitation of a small island using kriging with external drifts. Theor Appl	
673	Climatol 127, 31–44, https://doi.org/10.1007/s00704-015-1610-z, 2017.	Formatted: English (US)
674		
675	Centella-Artola A, Bezanilla-Morlot A, Taylor MA, Herrera DA, Martinez-Castro D, Gouirand I, Sierra-Lorenzo M,	
676	Vichot-Llano A, Stephenson T, Fonseca C, et al. Evaluation of Sixteen Gridded Precipitation Datasets over the	
677	Caribbean Region Using Gauge Observations. Atmosphere, 11, 1334, https://doi.org/10.3390/atmos11121334, 2020.	
678		
679	Chen, Y., H. Liu, J. An, U.: Görsdorf, and F. H. Berger. : A Field Experiment on the Small-Scale Variability of	
680	Rainfall Based on a Network of Micro Rain Radars and Rain Gauges. J. Appl. Meteor. Climatol., 54, 243-255,	
681	https://doi.org/10.1175/JAMC-D-13-0210.1, 2015.	
682		
683	Cook, K.H., Vizy, E.K.: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Clim.	
684	23, 1477–1494, https://doi.org/10.1175/ 2009JCLI3210, 2010.	
685		
686	Curtis, S., and D. W. Gamble. "Regional Variations of the Caribbean Mid-Summer Drought." Theoretical and Applied	
687	<u>Climatology 94, 25–34, https://doi.org/10.1007/s00704-007-0342-0, 2008.</u>	
688		
689	Daly, U., Helmer, E.H., Quiñones, M.: Mapping the climate of Puerto Rico. Vieques Culebra. Int. J. Clim. 23, 1359–	
690	<u>1381. https://doi.org/10.1002/joc.937, 2003.</u>	
691		

Deleted:

(... [38])

722	Ríos-Cornejo, D., Penas, A., Álvarez-Esteban, R., del Río, S.: Links between teleconnection patterns and precipitation			
723	in Spain, Autospheric Research, 156, 14-28, https://doi.org/10.1016/j.autosres.2014.12.012, 2015.			
725				
726	Davis, R.E., Hayden, B.P., Gay, D.A., Phillips, W.L., Jones, G.V.: The North Atlantic subtropical anticyclone. J. Clim.			
727	10, 728-744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2, 1997.			
728				
729	De Giorgi, A., Solarna, D., Moser, G., Tapete, D., Cigna, F., Boni, G., Rudari, R., Serpico, S.B., Pisani, A.K.,			
730	Montuori, A., et al. Monitoring the Recovery after 2016 Hurricane Matthew in Haiti Via Markovian Multitemporal Pagion Dasad Modeling, Parnete Sons, 12, 2500, https://doi.org/10.2200/rs12172500, 2021			
732	Kegion-Dased Modeling. Kemole Sens. 15, 5507, https://doi.org/10.5570/18151/5507, 2021.			
733	Dookie, N., Chadee, X.T. & Clarke, R.M.: Trends in extreme temperature and precipitation indices for the Caribbean			
734	small islands: Trinidad and Tobago. Theor Appl Climatol 136, 31-44, https://doi.org/10.1007/s00704-018-2463-z,			
735	2019.			
736				
737	Enfield, D.B., Mestas-Nunez, A.M. and Trimble, P.J.: The Atlantic Multidecadal Oscillation and Its Relation to			
738	Rainfall and River Flows in the Continental U.S. Geophysical Research Letters, 28, 2077-2080,			
739	http://dx.doi.org/10.1029/2000GL012745, 2001.			
740				
741	Funk, C., Peterson, P., Landsteld, M. et al. The climate hazards intrared precipitation with stations—a new			
742	environmental record for monitoring extremes. Sci Data 2, 150066, https://doi.org/10.1058/sdata.2015.66, 2015.			
743	Funk C. Verdin A. Michaelsen J. Peterson P. Pedreros D. and Husak G. A global satellite-assisted precipitation			
745	climatology, Earth Syst. Sci. Data(2015a), 7, 275–287, https://doi.org/10.5194/essd-7-275-2015, 2015.			
746				
747	Frich P., Alexander, L. V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A.M.G., and Peterson, T.: Observed			
748	Coherent Changes in Climatic Extremes during the Second Half of the Twentieth Century, Clim. Res., 19, 193-212,			
749	http://dx.doi.org/10.3354/cr019193, 2002.			
750				
751	Gauthier, T.D.: Detecting trends using Spearman's rank correlation coefficient. Environ. Forensic 2, 359–362.			
752	http://dx.doi.org/10.1006/enfo. 2001.0061, 2001.			
754	Giannini A. Kuchnir V. and Cana M.A. : Interannual Variability of Caribbaan Bainfall ENSO and the Atlantia	1	Farmattal English (US)	
755	Ocean L Climate 13 297-311 https://doi.org/10.1175/1520-0442/2000)013<0297/IVOCRE>2.0.CO:2.2000		Formatted: English (US)	
756	Occurrer. Chinare, 15, 257-511, paper denorg 10,1175/1220 0112(2000)012-022711 OCRE 2000012, 20001	\leq	Formatted: English (US)	
757	Giannini, A., Y. Kushnir, and M. A. Cane, Seasonality in the impact of ENSO and the North Atlantic High on	7	Formatted: English (US)	
758	Caribbean Rainfall, Phys. Chem. Earth (B), 28(2), 143-147, https://doi.org/10.1016/S1464-1909(00)00231-8, 2001a.		Formatted: English (US)	
759		(Formatted: English (US)	
760	Giannini, A., Cane, M.A., and Kushnir Y.: Interdecadal Changes in the ENSO Teleconnection to the Caribbean	(Formatted: English (US)	
761	Region and the North Atlantic Oscillation. J. Climate, 14, 2867–2879, https://doi.org/10.1175/1520-	(Formatted: English (US)	
762	<u>0442(2001)014<2867:ICITE1>2.0.CO;2,2001b.</u>	······	Formatted: English (US)	
764	Gimena L. V. Magaña, and D. B. Enfield. Introduction to special section on the role of the Atlantic warm nool in the			
765	climate of the Western Hemisphere J Geonhys Res. 116 D00001 doi:10.1029/2011JD016699.2011			
766				
767	Griffiths, J.F, and Driscoll, J.M.: Survey of climatology. Columbus, OH: Charles Merril, 1982.			
768				

Deleted: ¶

13

I

769 770	Huang, B., Liu, C., Freeman, E., Graham, G., Smith, T., and Zhang, H.: Assessment and Intercomparison of NOAA Deily, Optimum Interpolation See Surface Temperature (DOISST) Varian 2.1 J. Climete 34, 7421 7441	
771	https://doi.org/10.1175/JCLI-D-21-0001.1, 2021.	
772		
773		
774	Hall, T.C., Sealy, A.M., Stephenson, T.S. et al. Future climate of the Caribbean from a super-high-resolution	
776	atmospheric general circulation model. Theor Appl Climatol 113, 2/1–287, https://doi.org/10.1007/s00704-012-0779- 7, 2013	
777	<u>1,2010.</u>	
778	Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H.: Mise à jour des grilles à haute résolution des observations	
779	climatiques mensuelles-l'ensemble de données CRU TS3.10. J. Climatol., 34, 623-642.https://doi-	
780	org.insu.bib.cnrs.fr/10.1002/joc.3711, 2014.	
781	Hartmark S. The intertential commencer and affect on the Device multiple to the Device 1 22 247 256	
782	Hastenrain, S.: The intertropical convergence zone of the eastern Pacific revisited. Int. J. Climatol. 22, 34/–350, https://doi.org/10.1002/joc.739.2002	
784	<u>nupsi/unitieg.10.1002/j00.757,2002.</u>	
785		
786	Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. Zhang. Improvements of the	
787	Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Climate, 34, 2923-2939,	
788	https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.	
789	Hurrall IW Decadel trands in the north atlantic accillation, racional temperatures and precipitation. Science	
791	269.676-679. https://doi.org/10.1126/science.269.5224.676. 1995.	
792		
793	Inter-American Development Bank. Climate change and IDB: building resilience and reducing emissions; regional	
794	study: LAC small island developing states, 2014.	
795		
796	IPCC. Climate Change 2007. Synthesis Report. Working Group, I, II and III contributions to the Fourth Assessment	
798	Keport. http://www.ipcc.cn, 2007.	
799	IPCC. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535	
800	<u>pp, 2014.</u>	
801		
802	Jones, P.D., Jónsson, T. and Wheeler, D.: Extension to the North Atlantic Oscillation using early instrumental pressure	
803 804	observations from Gibraitar and South-west feeland. Int. J. Climatol. 17, 1455-1450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-IOC203>3.0 CO:2-P1997-1997	
805	<u>mps//doi/org/10.1002/(orei/10/1-0000(1)//1115/1415/./MD-300205/5.0.00,2411//,1//1.</u>	
806	Joseph, P.: La Caraïbe, données environnementales. Coordonné par Joseph P. Karthala, Paris, et Géode (Groupe de	
807	recherche Géographie, développement, environnement de la Caraïbe), Éditions KARTHALA. 458p, 2006.	
808		
809	Jury, M., B. A. Malmgren, and A. Winter: Subregional precipitation climate of the Caribbean and relationships with ENSO and NAO. J. Coopling. Rep. 112, D16107, doi:10.1020/2006/D007541, 2007.	
811	ENSO and NAO. J. Geophys. Res., 112, D10107, doi:10.1029/20003D007541, 2007	Formatted: English (US)
812	Khadgarai, S., Kumar, V., Pradhan, P.K.: The Connection between Extreme Precipitation Variability over Monsoon	
813	Asia and Large-Scale Circulation Patterns. Atmosphere, 12, 1492. https://doi.org/10.3390/atmos12111492, 2021.	
814		
815	Mariani, M., Holz, A., Veblen, T. T., Williamson, G., Fletcher, MS., & Bowman, D. M. J. S. Climate change	
816	ampifications of climate-fire teleconnections in the Southern Hemisphere. Geophysical Research Letters, 45, 50/1– 5081. https://doi.org/10.1020/2018GU078204_2018	
01/	<u>2001. https://doi.org/10.1027/20100L070277, 2010.</u>	Deleted:
	14	
1		

818		
819	Martens, B., Waegeman, W., Dorigo, W.A. et al. Terrestrial evaporation response to modes of climate variability. npj	
820	Clim Atmos Sci 1, 43, https://doi.org/10.1038/s41612-018-0053-5, 2018.	
821		
822	Merchant, C.J., and Coauthors. Sea surface temperature datasets for climate applications from phase 1 of the European	
823	Space Agency Climate Change Initiative (SST CCI). Geosci. Data J., 1, 179–191, https://doi.org/10.1002/gdj3.20,	
824	2014.	
825		
826	McLean, Natalie Melissa., Stephenson, Tannecia Sydia., Taylor, Michael Alexander., and Campbell, Jayaka Danaco.	
827	"Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones." Advances in	
828	Meteorology, 2015, 1–18, https://doi.org/10.1155/2015/425987, 2015.	
829		
830		
831	Mo, K. C., M. Chelliah, M. L. Carrera, R. W. Higgins, and W. Ebisuzaki. Atmospheric Moisture Transport over the	
832	United States and Mexico as Evaluated in the NCEP Regional Reanalysis. J. Hydrometeor., 6, 710-728,	
833	https://doi.org/10.1175/JHM452.1, 2005.	
834		
835		
836	Moron, V., Frelat, R., Jean-Jeune, P.K., Gaucherel, C.: Interannual and intra-annual variability of rainfall in Haiti	
837	(1905-2005). Clim. Dyn. 45, 915-932., https://doi.org/10.1007/s00382-014-2326-y, 2015.	
838		
839	Naciones Unidades, Comision economica para America Latima y el Caribe, 1988, Repuplica Dominica: evaluacion	
840	de los danos ocasionados por el huracan Georges, 1998, sus implicaciones para el desarrollo del pais, 91p.	
841		
842	Nobre, P. and Shukla, J.: Variation of Sea Surface Temperature, Wind Stress and Rainfall over the Tropical Atlantic	
843	and South America. Journal of Climate, 9, 2464-2479, http://dx.doi.org/10.1175/1520-0442,1996.	
844		
845	North Atlantic Oscillation, NOAA's Climate Prediction Center. Accessed December 8, 2023.	
846		
847	Lewis-Beck MS. Data Analysis: An Introduction. Thousand Oaks, CA: Sage Publications, 1995.	
848		
849	Love, T. B., Kumar, V., Xie, P. & Thiaw, W. A 20-year daily Africa precipitation climatology using satellite and	
850	gauge data. In Proceedings of the 84th AMS Annual Meeting, Conference on Applied Climatology, Seattle, 2004.	
851		
852		
853	Peterson, T. C., C. Folland, G., Gruza., W, Hogg., A.: Mokssit, and N. Plummer, Report of the activities of the	
854	Working Group on Climate Change Detection and related rapporteurs, World Meteorl. Organ. Tech. Doc. 10/1, 143	
855	pp., Comm. tor Climatol., World Meteorol. Organ., Geneva, 2001.	
856		
857	Peterson, I. C., et al., kecent changes in climate extremes in the Caribbean region, J. Geophys. Res., 107, 4601,	
858	<u>nups://doi.org/10.1029/2002JD002251, 2002.</u>	
839	Distandar S. C. H. D. Cy. D. Lambart C. Li, T. Halman, D. Ley, M. and Decomputed D. C. Will of MCCZ.	
861	rimanuer, S. G. H., D. Gu, D., Lambert, G., Li, I., Halpern, D., Lau, N., and Pacanowski, K.C. : Why the HUZ Is Mostly North of the Equator I. Climate 0, 2058 2072 https://doi.org/10.1175/1520	
862	$\frac{1000}{100} \frac{100}{100} 1$	Formatted: English (US)
002 862	<u>04442(1770)007~2730; W1111V11V/2.0.00,2 1970.</u>	Formatted: English (US)
864	Dayner N & Parker D F Horton F R Folland C K Alavandar I V Dawall D D Kant F C and Karler A.	
865	Global analyses of sea surface temperature sea ice and night marine air temperature since the late nineteenth century.	
866	I Geonbus Res 108 4407 https://doi.org/10.1029/2002ID002670.2003	
000	<u>a. Ocophys. Res., 100, 7707, https://doi.org/10.102//2002JD002070, 2003.</u>	Deleted: 1
	15	
1		

867		
868		
869	Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S and M. G. Schlax. Daily high-resolution blended	
870	analyses for sea surface temperature. J. Climate, 20, 5473-5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.	
871		
872		
873	Rivera, J. A., Hinrichs, S., and Marianetti, G.: Using CHIRPS dataset to assess wet and dry conditions along the	
874	semiarid central-western Argentina, Adv. Meteor., 8413964, https://doi.org/10.1155/2019/8413964, 2019.	
875		
876		
877	Rodrigues M. Peña-Angulo, D. Russo, A. Zúñiga-Antón, M. & Cardil, A. Do climate teleconnections modulate	
878	wildfire-prone conditions over the Iberian Peninsula? Environ Res Lett 16, 044050, https://doi.org/10.1088/1748-	
879	minine promotion stretche formatine entrance. Entrance. Eest 16, 011000, impair donorg 1011000, 1110- 9326/abe25d 2021	
880	<u>/////////////////////////////////////</u>	
881	Ronalawski C. F. at Halpart M.S.: Global and ragional scale pracinitation and temperature patterns associated with	
887	Repetewstre. Fret Halpert, M.S. Global and regional scale precipitation and temperature parents associated with	
002	Li Milo-soudieni Oscinatori, Mori, Wea, Kev., 115, 1000-1020, Milp.//dx.doi.org/10.11/5/1520-	Formatted: English (US)
003	0493(1967)113×1000.0AR3FF-2.0.CO,2, 1987.	
004	Sele S. and Counterer. The NOED Objects Economic System Description, Dell Amer. Motors, Soc. 01, 1015, 1057	
005	Sana, S., and Coautions. The NCFF Clinice Forecast System Reanarysis. Buil. Amer. Meteor. Soc., 91, 1015–1057,	
886	<u>nttps://doi.org/10.11/3/2010BAMS3001.1,2010.</u>	
88/		
888	Sheskin DJ.: Handbook of Parametric and Nonparametric Statistical Procedures. 4th ed. Boca Raton, FL: Chapman	
889	<u>& Hall/CRC; 2007.</u>	
890		
891	Smith, T. M., Reynolds, R.W., Livezey, R.E., and Stokes, D.C.: Reconstruction of Historical Sea Surface	
892	Temperatures Using Empirical Orthogonal Functions. J. Climate, 9, 1403–1420, https://doi.org/10.1175/1520-	
893	<u>0442(1996)009<1403:ROHSST>2.0.CO;2., 1996.</u>	
894		
895	Stephenson, Tannecia S., Vincent, Lucie A., Allen Theodore, Van Meerbeeck Cedric J., McLean Natalie, Peterson	
896	Thomas C., Taylor, Michael A., et al. "Changes in Extreme Temperature and Precipitation in the Caribbean Region,	
897	1961–2010." International Journal of Climatology 34, 2957–71, https://doi.org/10.1002/joc.3889, July 2014.	
898		
899	Khadgarai, S., Kumar, V., Pradhan, P.K.: The Connection between Extreme Precipitation Variability over Monsoon	
900	Asia and Large-Scale Circulation Patterns. Atmosphere 2021, 12, 1492. https://doi.org/10.3390/atmos12111492,	
901	2021.	
902		
903	Klotzbach, Philip J.: "The influence of El Niño-Southern Oscillation and the Atlantic multidecadal oscillation on	
904	Caribbean tropical cyclone activity". In: Journal of Climate 24.3, pp. 721-731, doi: 10.1175/2010JCL13705.1, 2011.	Formatted: English (US)
905		
906	Taylor, Michael A., Clarke, Leonardo A., Cantella, Abel., Bezanilla, Arnoldo., Stephenson, Tannecia S., Jones,	
907	Jhordanne., Campbell, Jayaka D., Vichot, Alejandro., and Charlery, John. "Future Caribbean Climates in a World of	
908	Rising Temperatures: The 1.5 vs 2.0 Dilemma." Journal of Climate 31, 2907-26. https://doi.org/10.1175/JCLI-D-17-	
909	0074.1, April 2018.	
910		
911	Taylor, M. A., D. B. Enfield, and A. A.: Chen, Influence of the tropical Atlantic versus the tropical Pacific on	
912	Caribbean rainfall, J. Geophys. Res., 107(C9), 3127, doi:10.1029/2001JC001097. 2002.	
913		
-		
		Deleted: ¶

914	Thompson, D. W. J., and Wallace, J. M.: Annular modes in the extratropical circulation Part I: Month-to-month,	Formatted: English (US)
915	variability, J. Climate, 13, pp. 1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2,	Formatted: English (US)
916	2000.	
917		
918	Thorncroft, C., Hodges, K.: African easterly wave variability and its relationship to Atlantic tropical cyclone activity.	Formatted: English (US)
919	J. Clim. 14, 1166–1179, https://doi.org/10.1175/1520-0442(2001)014<1166: AEWVAL2.0.CO;2, 2001.	Formatted: English (US)
920		
921	Utida, G., Cruz, F., Etourneau, J. <i>et al.</i> Tropical South Atlantic influence on Northeastern Brazil precipitation and	
922	11CZ displacement during the past 2300 years. Sci Rep 9, 1698. https://doi.org/10.1038/s41598-018-58003-6, 2019.	Formatted: English (US)
923	Vishat Llana Alaiandra, Martinaz Castra Danial, Dazanilla Marlat, Arnolda, Cantalla Artala, Abal, and Giarai	Formatted: English (US)
924	Victor-Liano, Arejandro., Martinez-Castro, Danier., Dezannia-Moriol, Arnoldo., Centena-Artoia, Aber., and Gorgi Filinno. "Projected Changes in Precipitation and Temperature Regimes and Extremes over the Caribbean and Central	
926	America Using a Multinarameter Ensemble of RegCM4" International Journal of Climatology 41 1328–50	
927	https://doi.org/10.1002/ioc.6811.2021.	
928		
929	Visbeck, Martin H et al.: "The North Atlantic Oscillation: past, present, and future". In: Proceedings of the National	
930	Academy of Sciences 98.23, pp. 12876–12877, 2001.	Formatted: English (US)
931		
932	Von Storch, H., Zwiers, F.C.: Statistical Analysis in Climate Research. Cambridge University Press, Cambridge 0 521	
933	<u>45071 3,1999.</u>	
934		
935	Wang, C., Enfield, D.B., Lee, S., and Landsea, C.W.; annual and the Atlantic Warm Pool on Western Hemisphere	Formatted: English (US)
936	Summer Rainfall and Atlantic Hurricanes. J. Climate, 19, 3011–3028, https://doi.org/10.11/5/JCL13//0.1,2006,	Formatted: English (US)
937	Wang C. S. Log and D. D. Enfield, Immast of the Atlantic Warm Deal on the Symmetry Climate of the Western	Formatted: English (US)
930	Wang, C., S. Lee, and D. B. Enneid, impact of the Atlantic Wann Foot on the Summer Chinate of the Western Hemisphere I Climate 20 5021–5040 https://doi.org/10.1175/ICI.14304.1.2007	Formatted: English (US)
940		Formatted: English (US)
941	Wallace, J. M., and Gutzler, D.S.: Teleconnections in the Geopotential Height Field during the Northern Hemisphere	Formatted: English (US)
942	Winter. Mon. Wea. Rev., 109, 784-812, https://doi.org/10.1175/1520-0493(1981)109<0784: TITGHF>2.0.CO;2,	Formatted: English (US)
943	<u>1981.</u>	Formatted: English (US)
944		
945		
946		
947		
948		
949		
950		
951		

I

Deleted: ¶

ļ	Deleted: <object></object>
//	Formatted: English (US)
И	Formatted: Line spacing: Multiple 1,15 li

Figure 1. Location of study area. The figures show (a) the altitude of the four islands making up the Greater Antilles and (b) average annual rainfall.

Deleted: ¶

080			
081	L		Deleted: <object></object>
082		Constant of the second	Formatted: English (US)
083			Formatted: English (US)
084)	Deleted: 1
	23		

			1	~	- Dal	stad. D
ID	Index Name	Indices definition		Units	s Den	
		Number of days with precipitation amount ≥ 1 mm.	•	-///	For	matted: Font: Not Bold, English (US)
		Let RRij be the day daily precipitation amount on		$\langle \rangle \rangle$	For	matted: Font: Not Bold
RR1	Total wet days index	Let RRI be the day daily precipitation amount on		days	For	matted: Font: Not Bold
		day 1 in period j. Count the number of days where:	·	// //	For	matted: Font: Not Bold, English (US)
		$\underline{RRij \ge 1 \text{ mm}}_{\bullet}$		// /	For	matted: Font: 10 pt
		Annual total precipitation on wet days. Let RRij be		///	For	matted: Justified
		the daily precipitation amount on day i in period j. If	•	$\langle \rangle \rangle$	Dele	eted: W
PRCPTOT	Annual total precipitation on a wet day	I represent the number of days in I, then:		'n'n	For	matted: Font: 10 pt
		$PRCPTOT_{I} = \sum_{i=1}^{l} RR_{ii}$		$\langle \rangle$	Dele	eted: Number of wet days ≥ 1 mm
		$\frac{1}{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$	_	$\overline{//}$	Dele	eted: rainfall
		Simple daily rainfall intensity index: Let RR _{ij} be the	-	$\langle \rangle \langle$	Dele	eted: wet day
SDII	Simple daily rainfall intensity index	1 mm in period i If W represents the number of wet	m	ım/da	For	matted: Justified
		$\sum_{w=1}^{W} RR_{wi}$		1	For	matted: Justified
		$\frac{\text{days in j, then: } \text{SDII}_{j=} \frac{2W-1-W}{W}}{W}$				
	Consecutive wet days	Maximum number of consecutive days wet days.			For	matted: Justified
CWD		Let RRij be the daily day precipitation amount on		days	3	
		day 1 in period J. Count the largest number of				
		consecutive days where: $RRij \ge 1 mm$			Dele	eted: with daily rainfall ≥ 1 mm
	Consecutive dry days	Maximum number of consecutive dry days. Let RRij			For	matted: Justified
CDD		be the daily day precipitation amount on day 1 in period i. Count the largest number of consecutive		days	3	
		davs where: RRii < 1 mm			Dal	eted: days with daily minfall ≤ 1 mm
					Ear	mattad. English (US)
		The 95th percentile of daily precipitation events			FOL	matteu: English (03)
R95p	Very wet days.	is the value above mm/day which 5% of the	n	nm/da	a Dele	eted: M
1	·	daily precipitation events are found			Dela	eted:
	1	I ▼	L		Dele	eted: Annual total PRCP when RR>95th percent
				Section of the sectio		

I

Deleted: ¶

	Carlo DESTOUCHES	9/26/24 10:09:00 AM
		•
Page 6: [2] Deleted	Carlo DESTOUCHES	10/6/24 12:55:00 PM
Page 6: [3] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
-pjlv, Font: 10 pt, Font color: Au	to, French	
Page 6: [4] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
e-pjlv, Font: 10 pt, French		
Page 6: [5] Deleted	Carlo DESTOUCHES	9/26/24 1:35:00 PM
Page 6: [6] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt	Carlo DESTOUCHES	10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted	Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM 10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted English (US)	Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM 10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted English (US) Page 6: [8] Formatted	Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM 10/12/24 10:50:00 AM 10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted English (US) Page 6: [8] Formatted English (US)	Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM 10/12/24 10:50:00 AM 10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted English (US) Page 6: [8] Formatted English (US) Page 6: [9] Formatted	Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM 10/12/24 10:50:00 AM 10/12/24 10:50:00 AM 10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted English (US) Page 6: [8] Formatted English (US) Page 6: [9] Formatted English (US)	Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM 10/12/24 10:50:00 AM 10/12/24 10:50:00 AM 10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted English (US) Page 6: [8] Formatted English (US) Page 6: [9] Formatted English (US)	Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM
Page 6: [6] Formatted Font: 10 pt Page 6: [7] Formatted English (US) Page 6: [8] Formatted English (US) Page 6: [9] Formatted English (US) Page 6: [9] Formatted English (US) Page 6: [9] Formatted English (US) Page 6: [10] Formatted English (US)	Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES Carlo DESTOUCHES	10/12/24 10:50:00 AM
Page 6: [6] FormattedFont: 10 ptPage 6: [7] FormattedEnglish (US)Page 6: [8] FormattedEnglish (US)Page 6: [9] FormattedEnglish (US)Page 6: [10] FormattedEnglish (US)Page 6: [10] FormattedEnglish (US)Page 6: [11] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
Page 6: [6] FormattedFont: 10 ptPage 6: [7] FormattedPage 6: [7] FormattedEnglish (US)Page 6: [8] FormattedEnglish (US)Page 6: [9] FormattedEnglish (US)Page 6: [10] FormattedEnglish (US)Page 6: [10] FormattedEnglish (US)Page 6: [11] FormattedEnglish (US)	Carlo DESTOUCHES	10/12/24 10:50:00 AM 10/12/24 10:50:00 AM

I

I

I

I

I

I

I

English (US)

.

I

I

I

I

I

I

I

I

I

I

I

T

I

Page 6: [13] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [14] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [15] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [16] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [17] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [18] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [19] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [20] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [21] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [22] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [23] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [24] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [25] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [26] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM

Subscript

I

I

I

I

I

I

I

I

I

Page 6: [27] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
Subscript		
Page 6: [28] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [29] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [30] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [31] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [32] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
English (US)		
Page 6: [33] Formatted	Carlo DESTOUCHES	9/26/24 11:55:00 AM
Normal, Left, Line spacing: Multiple 1,1	15 li	
Page 6: [34] Formatted	Carlo DESTOUCHES	10/12/24 10:50:00 AM
Font: Not Bold		
Page 6: [35] Formatted	Carlo DESTOUCHES	10/2/24 11:09:00 AM
Justified, Line spacing: 1,5 lines		
Page 10: [36] Deleted	Carlo DESTOUCHES	10/12/24 10:47:00 AM
1		•••••••
Page 10: [37] Deleted	Carlo DESTOUCHES	10/12/24 11:30:00 AM
		_
L		
L		
Page 12: [38] Deleted	Carlo DESTOUCHES	9/18/24 9:41:00 PM