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Abstract: 13 

This study examines changes in extreme precipitation over the Greater Antilles and their correlation with large-scale 14 

sea surface temperature (SST) for the period 1985 to 2015. The data used for this study were derived from two satellite 15 

products: Climate Hazards Group InfraRed Precipitation (CHIRPS) and NOAA DOISST (Daily Optimum 16 

Interpolation Sea Surface Temperature version 2.1) with resolutions of 5 km and 25 km, respectively. Then, change 17 

in the characteristics of six(6) extreme precipitation indices defined by the WMO ETCCDI (World Meteorological 18 

Organization Expert Team on Climate Change Detection and Indices) is analyzed, and Spearman's correlation 19 

coefficient has been used and evaluated by t-test to investigate the influence of a few large-scale SST indices: (i) 20 

Caribbean Sea Surface Temperature (SST-CAR); (ii) Tropical South Atlantic (TSA); (iii) Southern Oscillation Index 21 

(SOI); (iv) North Atlantic Oscillation Index (NAO). The results show that at the regional scale, +NAO contributes 22 

significantly to a decrease in heavy precipitation (R95p), daily precipitation intensity (SDII), and total precipitation 23 

(PRCPTOT), whereas +TSA is associated with a significant increase in daily precipitation intensity (SDII). At an 24 

island scale, in Puerto Rico and southern Cuba, the positive phase of +TSA, +SOI, and +SST-CAR is associated with 25 

an increase in daily precipitation intensity (SDII) and heavy precipitation (R95p). However, in Jamaica and northern 26 

Haiti, the positive phases of +SST-CAR and +TSA are also associated with increased indices (SDII, R95p). In 27 

addition, the SST warming of the Caribbean Sea surface temperature and the positive phase of the Southern Oscillation 28 

(+SOI) is associated with a significant increase in the number of rainy days (RR1) and the maximum duration of 29 

consecutive rainy days (CWD) over the Dominican Republic and in southern Haiti. 30 
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1 Introduction 48 

Over the past three decades, the climatic hazards to which the Caribbean Basin has been exposed include recurrent 49 

cyclonic and hydrometeorological hazards, characterized by increasing intensities (Joseph, 2006). The economic cost 50 

of 250 storms and floods over 40 years (1970 to 2009) for 12 Caribbean countries amounted to US$19.7 billion in 51 

2010, representing an annual average of 1% of gross domestic product (GDP) (Burgess et al., 2018). The most dreadful 52 

damage caused by these hydroclimatic events includes George in 1998, with 1,000 victims in the Dominican Republic 53 

and losses estimated at 14% of GDP, equivalent to approximately half the exports made that year (Naciones Unidades, 54 

Comision Economica para America Latina y el Caribe, 1988); Matthew in Haiti (October 2016), with over 500 dead, 55 

128 missing, 439 injured and 2.1 million people affected, including 895,000 children(De Giogi et al., 2021). Also, 56 

Hurricane Dorian caused property damage estimated at 2.5 billion USD when it came to rest over the Bahamas as a 57 

Category 5 storm in September 2019, rendering nearly 3,000 homes uninhabitable and causing extensive damage to 58 

hospitals, schools, and fisheries (Panamerican Health Organisation, 2019). A severe drought episode affected the 59 

island of the Caribbean from October 2019 to mid-2020, causing water shortages, bushfires, and agricultural losses. 60 

In Saint Vincent and the Grenadines, the 2020 drought was considered the worst of the 50 years (Nurse, 2020). The 61 

Inter-American Development Bank predicts that the Caribbean could face climate-related losses of over $22 billion 62 

per year by 2050 (Inter-American Development Bank, 2014).    63 

In response to the climate extremes that are further weakening the island states of the Caribbean region, already in a 64 

situation of extreme socio-economic precariousness, several studies have been carried out in parallel to understand 65 

the associated physical processes and anticipate the evolution of these extreme climatic events. Research into the 66 

Caribbean climate goes back to the second half of the twentieth century and has focused mainly on rainfall patterns 67 

(Curtis et al., 2008), as well as on the overall description of rainy seasons (Griffiths et al., 1982).  68 

A more detailed study of the climate of the Caribbean was performed in 2001 and 2002 using indices derived from 69 

daily data to detect climate change (Peterson et al., 2001; Frich et al., 2002). This approach, which uses indices defined 70 

by the World Meteorological Organization's group of experts to characterize precipitation and temperature extremes, 71 

has enabled several studies to examine the state of climate extremes over the Caribbean (Stephenson et al., 2014; 72 

McLean et al., 2015). The results of these previous assessments agree that the frequency and intensity of climate 73 

extremes(heavy rainfall, drought spell, wet spell ) over the Caribbean have increased over the last 30 years (Stephenson 74 

et al., 2014; Peterson et al., 2002a;  Beharry et al., 2015; Dookie et al., 2019), and will continue to do so until the end 75 

of the century(Taylor et al., 2018; Vichot-Llano et al., 2021; Hall et al., 2013; Almazroui et al., 2021; McLean et al., 76 

2015). 77 

Climate teleconnections, the remote forcing of a region far from the source of disturbance, whether simultaneous or 78 

time-lagged (Mariami et al., 2018; Rodrigues et al., 2021), are generally derived from variations in sea surface 79 

temperature (SST) or atmospheric pressure at seasonal to interdecadal scales. Several of these have been shown to 80 

play a major role in modifying global weather patterns (Hurrell et al., 1995; Martens et al., 2018). 81 
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Previous studies have also shown the effect of east-west gradients in SST anomalies in the tropical Pacific and Atlantic 87 

on precipitation in the Caribbean, with a tendency for a warm Atlantic and a cold Pacific to favor precipitation in the 88 

Caribbean (Taylor et al., 2002a; Gimeno et al., 2011). Studies (Enfiel et al., 2001; IPCC, 2007) also found that the 89 

monthly AMO (Atlantic Multidecadal Oscillation) index is an SST signal in the North Atlantic that influences the 90 

decadal-scale variability in precipitation. In addition, Peterson et al. (2022)  analyzed the link between SST, 91 

temperature, and precipitation extremes over the Caribbean using ground-based observations. They showed that the 92 

extreme precipitation index (SDII) averaged over the Caribbean has a strong correlation with SST over the Caribbean 93 

and the entire tropical North Atlantic Ocean. The work of  Stephenson et al. (2014) examined the influence of the 94 

Atlantic Multidecadal Oscillation (AMO) on extreme precipitation from a ground-based observation network in the 95 

Caribbean. These results show that the AMO influences the variability of extreme temperature and precipitation 96 

events. However, considering that the effects of teleconnections caused by large-scale SSTs on weather are expected 97 

to become more extreme in the future due to climate change (Mariami et al., 2018), further research is needed on other 98 

SST indices such as NAO, SOI, TSA, SST-Car, for which no in-depth studies have been carried out. 99 

In this context, this study aimed to examine the remote impact of the tropical Pacific Ocean, Atlantic Ocean, and the 100 

Caribbean Sea on observed changes in the tropical islands of the Greater Antilles, particularly the links between 101 

extreme precipitation indices and large-scale sea surface temperature indices. This paper is organized into five 102 

sections: Section 1 presents the study area and the associated climatology. Sections 2 and 3 describe the spatio-103 

temporal variability of extreme precipitation indices at regional and local scales and the influence of SST indices on 104 

extreme precipitation. The last sections (4-5) present the discussion and conclusion. 105 

 106 

2 Study Area and Data 107 

2.1 Study area 108 

The Greater Antilles is a region between North and South America made up of four islands bordered by the Caribbean 109 

Sea to the south and the Atlantic Ocean to the east (Fig.1). These islands include Cuba, Hispaniola, Jamaica, and 110 

Puerto Rico. They have a monthly rainfall cycle characterized by two peaks: the first in May and the second between 111 

September and October (Giamini et al., 2000). The climatology of monthly rainfall in the Greater Antilles is strongly 112 

influenced by the subtropical North Atlantic anticyclone (Davis et al.,1997), low-level jet (CLLJ),  characterized by 113 

two peaks; the first in January and the second in July (Cook and Vizy, 2010). This jet plays a key role in transporting 114 

moisture to the Caribbean (Mo et al., 2005). They were also influenced by the intertropical convergence zone (ITCZ) 115 

(Hastenrath, 2002), with maximum precipitation in May (sup.fig.1b). Heavy autumn rainfall in the Greater Antilles 116 

(supl.fig.1d) is generally associated with North Atlantic tropical cyclones, 85% of which are of high intensity and 117 

originate from African easterlies (Agudelo et al., 2011; Thorncroft and Hoges, 2001) under warm Atlantic basin 118 

conditions. The spatial distribution of the total annual precipitation in the Greater Antilles, particularly on the islands, 119 

is not homogeneous due to the complexity of topography (Moron et al., 2015, Cantet, 2007). Precipitation is relatively 120 
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high (2,000-24,000< mm/year) at higher altitudes and in wind-exposed areas (supl.fig.1b). In contrast, annual 152 

precipitation can reach 500 mm/year in leeward areas (Daly et al., 2003). 153 

 154 

2.2 Satellite data 155 

This study was conducted using two satellite datasets: NOAA DOISST Sea surface temperature data and CHIRPSv2 156 

data. The CHIRPSv2 data (Climate Hazards Group Infrared Precipitation with Stations data version 2) are quasi-157 

global daily precipitation data (50S-50N) with a resolution of 0.050, available over a period from 1981 to 2022(Funk 158 

et al., 2015). Based on the techniques used by NOAA for estimating precipitation in the thermal infrared (Love et al., 159 

2004), the CHIRPSv2 database was built from precipitation estimates based on cold cloud duration observations, and 160 

a fusion incorporating monthly CHPClim (Funk et al., 2015a) (Climate Hazards Group Precipitation Climatology 161 

(CHPClim) precipitation data, and in situ data from ground observation networks. TRMM 3B42v7 (Tropical Rainfall 162 

Measuring Mission Multi-Satellite Precipitation Analysis) satellite products were also used to calibrate and reduce the 163 

bias in the estimates. The results of global and regional validation studies showed that CHIRPSv2 can be used to 164 

quantify the hydrological impacts of decreasing rainfall and increasing air temperatures in the Greater Horn of Africa 165 

(Funk et al., 2015). In addition, the performance of CHIRPSv2, evaluated over certain regions of the Americas, has 166 

demonstrated its ability to reproduce the mean climate as well as its capacity to estimate extreme precipitation events 167 

(Rivera et al., 2019). Furthermore, in Colombia, the best results were obtained on a daily and monthly scale over the 168 

Magdalena River Basin (Baez-Villanueva et al., 2018). CHIRPSv2 data are suitable for our study, as they perform 169 

well in the Caribbean (Centella-Artolla al., 2020), and in the study by Bathelemy et al.(2022), it was shown that Chips 170 

perform well in estimating heavy precipitation based on the 90th percentile(Bathelemy et al., 2022).  171 

Sea surface temperatures (SST) are very important for monitoring and assessing climate change (IPCC, 2013). They 172 

can be derived either from observations from floating or moored buoys (Smith et al., 1996), from satellite observations 173 

(Merchant et al., 2014), or from a mixture (in situ + satellite) (HadSST, Rayner et al., 2003) and (DOSST, Reynold et 174 

al., 2007). In this study, NOAA DOISST (Daily Optimum Interpolation Sea Surface Temperature version 2.1) data 175 

were used; these are also daily sea surface temperature data derived from a combination of in situ sea surface 176 

temperature (SST) data obtained from ships and buoys and sea surface temperatures obtained from the Advanced Very 177 

High-Resolution Radiometer (AVHRR)(Reynold et al., 2007; Huang et al., 2021). This satellite product is the result 178 

of a global file of 0.250-degree grid points, available over the period 1981-2020. In addition, it has been widely used 179 

for climate assessment and monitoring, notably as part of the reanalysis of the NOAA/NCEP climate prediction system 180 

(Saha et al., 2010). Work by Huang et al.(2021a) has revealed that NOAA DOISST performs well in terms of bias 181 

compared with buoy and Argo observations, as well as with the eight SST products.  182 

 183 
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3. Methodology  197 

The World Meteorological Organization's Expert Team on Climate Change Detection and Indices (ETCCDI) has 198 

defined 27 indices to characterize extreme precipitation and temperature events in terms of frequency, amplitude, and 199 

duration (Peterson et al., 2001). Although the proposed method includes numerous indices based on percentiles, with 200 

thresholds set to assess extremes that generally occur a few times a year and not necessarily high-impact events, it has 201 

paved the way for numerous research projects in the Caribbean (Stephenson et al., 2014; McLean et al., 2015). Six 202 

extreme precipitation indices (see Table 1 for details) were calculated: total annual precipitation (PRCPTOT), number 203 

of rainy days (RR1), intensity of rain events (SDII), and heavy precipitation (R95p), calculated with a threshold 204 

corresponding to the 95th percentile of the daily precipitation distribution, maximum number of consecutive wet days 205 

(CWD), and maximum number of consecutive dry days (CDD). 206 

The spatiotemporal evolution of extreme precipitation in the Greater Antilles was investigated by analyzing the 207 

interannual variability of extreme precipitation index anomalies over a long period (1985-2015) and the change in 208 

percentage variations in extreme precipitation indices at decadal timescales. To characterize the percentage variations, 209 

we chose the (Pij) index, which is already used in the study by An et al. (2023), whose equation is presented hereafter.  210 

                                                   Pij =( 
!!(#$%)
!!#

  -1) x100                                                              (1) 211 

Where Pij is the average extreme precipitation index for the j-th decade at the i-th location, and Pi(j+1) is the average 212 

extreme precipitation index for the (j+1)-th decade at the i-th location. 213 

Previous studies have shown that precipitation in the Caribbean, particularly in the Greater Antilles, is influenced by 214 

the surface temperature of the Atlantic Ocean and tropical Pacific (Gimeno et al., 2011; Enfiel et al., 2001). Thus, to 215 

investigate the impact of these basins on extreme precipitation over indices, we selected four large-scale SST indices, 216 

namely the Southern Oscillation Index (SOI), the North Atlantic Oscillation (NAO) (Jones et al., 1997), the Tropical 217 

South Atlantic Anomaly Index (TSA) and the Caribbean Sea Surface Temperature Anomaly Index (SST-CAR). 218 

Details of these indices can be consulted online: https://psl.noaa.gov/data/climateindices/list/#Nina34.   219 

Analysis of the relationship between two variables is often of great interest for data analysis in research. It generally 220 

consists in characterizing the form and intensity of the link (relationship) between variables using a correlation 221 

coefficient. For two variables, X and Y, this coefficient is interpreted as: i)linear linkage, the correlation coefficient is 222 

positive when X and Y values change in the same direction, that is, an increase in X leads to an increase in Y; ii)linear 223 

linkage, the correlation coefficient is negative when X and Y values change in the opposite direction, that is, an 224 

increase in X leads to a decrease in Y (or vice versa); iii) non-linear monotonic linkage, the correlation coefficient is 225 

positive when X and Y change in the same direction as in (i), but with a small slope (Lewis-Beck, 1995; Sheskin, 226 

2007).  227 
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In the literature, Pearson's and Spearman's correlation coefficients are often the most widely used to measure the 253 

strength or degree of linkage between two variables. In this study, we used Spearman's non-parametric rank correlation 254 

coefficient (rho) to assess the interannual link between extreme precipitation over indices and global SSTs indices.  255 

This non-parametric method was chosen because it does not require a normal distribution for the variables. Also, 256 

Spearman outperforms Pearson's linear coefficient in the case of outliers. On the other hand, linear trends can be 257 

detected using Pearson or Spearman tests, but the latter is preferable for monotonic non-linear relationships (Gauthier, 258 

2001; Von Storch and Zwiers, 1999). Spearman's correlation has already been used in several studies to assess the 259 

links between teleconnection patterns and precipitation. (Ríos-Cornejo et al., 2015;  Khadgarai et al., 2021).  260 

Spearman's correlation coefficient is calculated using the following equation:  261 

                                                 r_spearman= 
∑ ($!'
!(% %$&)	()!	%)̅)

+∑ ($!'
!(% %$&)*∑ ()!'

#(% %)̅)
                                                      (2) 262 

Where r_spearman is the correlation coefficient, Ri=rang (Xi), Si=rang (Yi) are respectively the data ranks of 263 

Variables X and Y (X: Extreme precipitation index, Y: Large-scale SST index). 264 

To test the significance of the relationship, whether the two variables are correlated or not, we use the t-test for a 265 

threshold of 0.05 or less. This involves testing the two hypotheses (H0 and H1) based on the value of t to deduce the 266 

probability of observing a result that deviates as much as expected from the correlation. The formula for calculating 267 

the value of t using Spearman's correlation is as follows: 268 

                                                                tn-2= 
,+,-./0.'

+-%,+,-./0.'*
 √" − 2                                                            (3) 269 

 Where:  270 

 271 

                n-2:  degrees of freedom.   272 

                    n:  sample size 273 

4 Results  274 

4.1 Changes in precipitation extreme indices 275 

Interannual changes in extreme precipitation indices over the Greater Antilles are shown in Fig. 2. As shown in Fig. 276 

2a, the period from 1985 to 1994 was generally marked by a decline in total annual precipitation. This decline was 277 

associated with a decrease in average rainfall intensity (Fig. 2c) and a reduction in the length of wet and dry spells 278 

(Fig. 2e, 2f). On the other hand, the period from 1995 to 2004 was mainly characterized by a decrease in the number 279 

of rainy days (fig.2b), associated with an increase in the average intensity of precipitation (fig. 2c) and in the 280 

contribution of heavy precipitation (fig. 2d). Furthermore, during the period 2005-2015, an increase in the contribution 281 

of heavy precipitation was observed until 2012(fig.2d). This was associated with an increase in the number of rainy 282 

days(fig.2b), an increase in the average intensity of precipitation(fig.2c) and in the length of wet episodes(fig.2e). 283 
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 307 

Fig. 3 shows the annual change in percentage between two consecutive decades of precipitation indices over the 308 

Greater Antilles (1985-2015).  As shown in fig. 3(a, d2), there was an increase in total annual precipitation 309 

(PRCPTOT) in southeastern Cuba. This was associated with an increase in the number of rainy days (RR1) (fig.3(b, 310 

d2)) and the average intensity of precipitation per rainy day (SDII) (fig.3(c, d2)). These results were also observed in 311 

Puerto Rico, with an increase in total annual precipitation associated with an increase in RR1 (fig.3(a, d2), 3(b, d2)). 312 

In addition, a decrease in total annual precipitation (PRCPTOT) was observed on the island of Hispaniola (Dominican 313 

Republic and Haiti, except for the southern part ) (fig.3(a, d2)). This was associated with a decrease in the average 314 

rainfall intensity per wet day (SDII) (fig.3(c, d1)). This decrease in the SDII was also recorded in Puerto Rico (fig.3(c, 315 

d2)). For heavy precipitation (R95p), as shown in fig.3(d, d2), an increase was observed in the southeastern part of 316 

Cuba, whereas the whole island (Cuba) was affected in general by a decrease in wet sequences (CWD) (fig.3(e, d2)) 317 

and dry sequences (CDD) (fig.3(f, d2)). A decrease in heavy precipitation (R95p) was observed in the central and 318 

western regions of Haiti (fig.3(d, d2)). This was accompanied by an increase in wet sequences (CWD) over Haiti 319 

(fig.3(e, d2)). The Dominican Republic was also affected by this increase in wet sequences (CWD) (fig.3(e, d2)). 320 

Variations in extreme precipitation indices under the influence of variables such as NAO, SOI, TSA, and SST-CAR 321 

were analyzed over the Greater Antilles. The influences of large-scale variables were classified as positive, negative, 322 

positive, significant, negative, or significant, as shown in figure 4. The results obtained by taking the intersections of 323 

the table in fig. 4 presented show the values of the correlation coefficient (with its significance *) between the extreme 324 

precipitation indices (PRCPTOT, RR1, SDII, R95p, CWD, and CDD) and the influencing variables (NAO, SOI, TSA, 325 

and SST-CAR). Thus, the table in fig. 4 shows that NAO has a negative effect on all extremes, while the other SST-326 

CAR are positive, except for the number of rainy days (RR1) and the number of consecutive rainy days (CWD). 327 

However, the positive phase of the +TSA index had a positive and significant effect on the average rainfall intensity 328 

per wet day (SDII), for which a correlation coefficient of 0.37 was obtained. Similarly, with the ONA index, a negative 329 

and significant effect (P<0.05) was observed on total annual precipitation (PRCPTOT), average precipitation intensity 330 

(SDII), and heavy precipitation (R95p), for which correlation coefficients of 0.49, 0.40, and 0.47, respectively, were 331 

obtained. 332 

At a local scale, the results show that teleconnections have had positive and significant effects on extreme precipitation 333 

indices over the last 30 years in the countries of the Caribbean region, particularly in the Greater Antilles. The spatial 334 

extent of significance is indicated by the symbols (*). Thus, the double symbol (**) represents regions with a 335 

significant surface area greater than 50% of the surface area, while the symbol (*) is used for a significant surface area 336 

less than 50%. The figures (with a threshold at p ≤ 0.05; fig. 5, 6, 7, 8) show the regions or countries over which 337 

positive and significant effects were observed for the Greater Antilles. 338 

Fig. 5 and suppl. Table 1 shows the effect of the TSA index on extreme precipitation indices (PRCPTOT, RR1, SDII, 339 

R95p, CWD, and CDD) in the Greater Antilles. The results show that South Atlantic tropical warming, corresponding 340 
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to the positive phase of the +TSA index, has a positive and significant effect (**) on the total annual precipitation 378 

(PRCPTOT) and heavy precipitation (R95p) in Puerto Rico (fig.5a, 5b; suppl. table1d). In Jamaica, it was also 379 

associated with an increase in total annual precipitation (PRPCPTOT) and heavy precipitation (R95p) (fig.5a, 5b; 380 

suppl. table1d). In Haiti, more specifically in the northern part, the increase in the average daily rainfall intensity 381 

(SDII) was also associated with +TSA warming (fig.5e; suppl. table1d). In northwest Cuba, this positive phase of 382 

+TSA also had a positive and significant effect (**) on mean rainfall intensity per day (SDII) (fig.5e; suppl. table1d). 383 

Conversely, in southeastern Cuba, a positive effect was observed for heavy rainfall (R95p) (fig.5b; suppl. table1d).  384 

Fig. 6 and suppl. Table 1a shows the effects of warming of the Caribbean Sea surface temperature (SST-Car anomaly, 385 

averaged over 14-16N, 65–85 °W) on extreme precipitation in the Greater Antilles. In southern Haiti, an increase in 386 

total annual precipitation (PRCPTOT) and the number of rainy days (RR1) was observed as the SST-Car warmed 387 

(fig.5a, 5c; suppl. table1a). In the same region, this increase was also observed for heavy rainfall (R95p) (fig.6b; Suppl. 388 

table1a). In eastern Haiti, particularly in Santo Domingo, the positive phase of + SST-Car is associated with an increase 389 

in the duration of wet sequences (CWD) and the number of rainy days (RR1) (fig.6c, 6d; suppl. table1a). In 390 

southeastern Cuba, especially on the Caribbean coast, warming of SST-Car is associated with an increase in total 391 

annual precipitation (PRCPTOT) and heavy precipitation (R95p) (fig.6a, 6b; suppl. table1a). An increase in heavy 392 

precipitation (R95p) during the positive phase of + SST-Car was also observed in Puerto Rico (fig.6c; Suppl. table1a).  393 

Fig. 7 and suppl. Table 1c shows the results of the effect of SOI on extreme precipitation indices (PRCPTOT, RR1, 394 

SDII, R95p, CWD, and CDD) in the Caribbean region, particularly on the islands forming the Greater Antilles. In 395 

Puerto Rico, as shown (fig.7a, 7b; suppl. table1c), the positive phase of the +SOI index was associated with an increase 396 

in total annual precipitation (PRCPTOT) and heavy precipitation (R95p). In Haiti, specifically in the south, this 397 

positive phase of the +SOI index was associated with an increase in the number of rainy days (RR1), including the 398 

duration of wet sequences (CWD) (fig.7c, 7d; suppl. table1c). In Santo Domingo, this is associated with an increase 399 

in the duration of wet sequences (CWD) (fig.7d; suppl. table1c). In southeastern Cuba, this is associated with an 400 

increase in the average intensity of precipitation per rainy day (SDII) and heavy precipitation (R95p) (fig.7e, 7b; suppl. 401 

table1c).  402 

Fig. 8 and suppl. Table 1b shows the results of the effect of the NAO index on extreme precipitation indices 403 

(PRCPTOT, RR1, SDII, R95p, CWD, and CDD) in the Greater Antilles. The condensed results for different phases 404 

of the NAO index are presented in Supplementary Table 1b. In contrast to the results for the other large-scale SST 405 

indices, the positive phase of the +NAO index was only associated with an increase in the number of rainy days (RR1) 406 

over Cuba. This increase was greater for coasts facing the Caribbean Sea (fig.8c; Suppl. Table). 407 

 408 
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 426 

5. Discussion 427 

The results of this study showed that extreme precipitation over the period 1985-2015 was influenced by four large-428 

scale sea surface temperature indices (NAO, SOI, TSA, SST-Car). On the other hand, on a local scale, notably over a 429 

few regions, the effects of this influence on certain precipitation indices were statistically significant, while on other 430 

precipitation indices, non-significant effects were observed. To shed more light on these results, we discuss the 431 

following points: i) Impact of sea surface pressure anomalies (NAO, SOI); ii)  Impact of sea surface temperature 432 

anomalies (TSA, SST-Car).  433 

5.1 Impact of sea surface pressure anomalies (NAO, SOI) 434 

In this study, the influence of the Atlantic Ocean over the Greater Antilles is assessed using two large-scale SST 435 

indices (NAO, Hurrell (2003)) and TSA. The phases (positive and negative) of the NAO index have been shown to 436 

affect circulation in the Northern Hemisphere (Thompson et al., 2000). Also, this index is a measure of the meridional 437 

pressure gradient between the NASH and the Icelandic low (Visbeck et al., 2001).  Nevertheless, in this study, the 438 

results show that the NAO has a negative effect on all extreme precipitation over indices in the region (fig.4). In other 439 

words, the fluctuation of the NAO index and extreme precipitation over indices change in opposite phases, i.e. the 440 

negative (or positive) phase of the NAO is linked to the positive (or negative) phase of the precipitation indices. 441 

However, on a local scale (Fig. 8), notably in Cuba and southern Haiti, the positive effect of NAO+, corresponding to 442 

a weakening of the subtropical anticyclone (Wallace et al., 1981; North Atlantic Oscillation, 2023) and leading to very 443 

wet conditions in the Caribbean, particularly in the Greater Antilles (Giannini et al., 2000; Mo et al., 2005), is 444 

associated with an increase in the number of rainy days (RR1). These results are consistent with those of Jury et al. 445 

(2007), for whom the NAO exerts a certain influence on rainfall in the southeastern Caribbean.      446 

In the case of the SOI index (fig.7), studies have already shown that ENSO influences precipitation patterns in several 447 

regions, notably in South and North America (Ropelewski et al., 1987).  However, studies (Giannini et al. 2000; 448 

Giannini et al. 2001a; Giannini et al. 2001b; Rodriguez-Vera et al., 2019) have shown that, on an interannual scale, 449 

ENSO is one of the most important factors influencing precipitation in the Caribbean. These results are consistent 450 

with those of our study. The influence of ENSO was assessed on extreme precipitation indices (figure 7) using the 451 

SOI index. For example, the positive phase of the +SOI index (sign of La Niña), characterized by abnormally cold 452 

ocean waters in the eastern tropical Pacific, led to an increase in total annual precipitation (PRCPTOT) and heavy 453 

precipitation (R95p) in Puerto Rico (fig. 7a, 7b). It has also led to an increase in the number of rainy days (RR1), 454 

including the duration of wet sequences (CWD) in southern Haiti (fig. 7c, 7d), while in southeastern Cuba, it is 455 

associated with an increase in mean rainfall intensity per rainy day (SDII) and heavy precipitation (R95p) (fig. 7b, 456 

7e). This influence could be explained by the fact that La Nina brings wet conditions to the Caribbean ( Klotzbach, 457 

2011). 458 
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 496 

5.2 Impact of sea surface temperature anomalies (TSA, SST-Car) 497 

The evolution of temperature anomalies in the South Atlantic (TSA average over 0-20S, 10E-30W) and Caribbean 498 

Sea (SST-Car SST average 14-16N, 65-85W) presented in suppl. Fig. 3 is marked by increasing warming in the 499 

Atlantic and Caribbean Sea over the period 1985-2015. In the Caribbean, warming has intensified over the past three 500 

decades in both seasons (DJF and MAM) (suppl. fig.2). Thus, the +SST-Car phase in the Caribbean is associated with 501 

an increase in all extremes at the regional scale, apart from the mean rainfall intensity per wet day (SDII) (fig. 4). 502 

Similarly, on a local scale, considering all islands, it leads to an increase in the number of consecutive rainy days 503 

(CWD), as well as in the number of consecutive rainy days on the island of Hispaniola (Haiti and Santo Domingo) 504 

(fig. 6c, 6d). The increase in heavy precipitation (R95p) in Puerto Rico, southeast Cuba, and Haiti is also due to 505 

abnormally warm conditions + SST-Car in the Caribbean Sea(fig. 6b). These results are in line with previous research 506 

on the influence of sea surface temperature on precipitation in the Caribbean, particularly in the Greater Antilles 507 

(Wang et al., 2007; Wang et al., 2008; Wu et al., 2011). Also, for the link between extreme precipitation and SSTs, it 508 

has been shown that the average rainfall intensity per wet day (SDII) averaged and heavy precipitation (R95p) over 509 

the Caribbean has a strong correlation with the warm phase of the Caribbean Sea (Peterson et al., 2002). In contrast, 510 

the positive +TSA phase (TSA averaged over 0-20S, 10E-30W), which corresponds to warmer sea surface 511 

temperatures (SST) in the southern tropical Atlantic (TSA), is associated with a southward shift of the ITCZ (Philander 512 

et al., 1996) and a weakening of the southeasterly (SE) trade winds (Nobre and Shukla, 1996). This phase, which is 513 

also associated with higher precipitation in northeastern Brazil (Utida et al., 2019), influenced precipitation indices 514 

over the Greater Antilles, particularly in Puerto Rico and central Cuba, where it led to an increase in heavy 515 

precipitation (R95p) (fig.5b). On the other hand, in south-eastern Cuba and north-western Haiti, this phase was 516 

associated with an increase in rainfall intensity per wet day (SDII)(fig.6e). These results are compared with those of 517 

the study by Utida et al. (2019), in which the influence of TSA on precipitation was assessed. The results of this study 518 

show that the warm phase + TSA is associated with an increase in precipitation in southeastern Cuba. These findings 519 

are consistent with my own, namely that TSA influences southeastern Cuba. 520 

 521 

5 Conclusion 522 

This work provides a relevant analysis of the evolution of extreme precipitation and its link with global teleconnections 523 

over the Caribbean, particularly the Greater Antilles, over the period 1985-2015. Extreme precipitation indices 524 

(PRCPTOT, RR1, R95p, CWD, and CDD) defined by the World Meteorological Organization Expert Team on 525 

Climate Change Detection and Indices (ETCCDI) were calculated. Next, the links between large-scale SST oscillation 526 

indices (NAO, SOI, TSA, and SST-CAR) and extreme precipitation indices (PRCPTOT, RR1, R95p, CWD, and CDD) 527 

were evaluated and tested using Spearman's correlation coefficient. The results show that warming in the tropical 528 

South Atlantic (TSA), the Caribbean Sea (mean SST 14-16N, 65-85 W), and cooling in the eastern tropical Pacific 529 
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(Niña) have positive effects on all extreme precipitation indices. Except for the number of rainy days (RR1) and rainy 602 

episodes (CWD), for which negative correlations were observed. However, the significant effects on extremes were 603 

greatest at the island scale in the Greater Antilles. For example, in southeastern Cuba and Puerto Rico, there was an 604 

increase in heavy precipitation (R95p) and average rainfall intensity per wet day (SDII) associated with the positive 605 

phase of the indices (SOI, TSA, and SST-Car), whereas in Jamaica and northern Haiti, there were only two indices 606 

(TSA and SST-Car). The number of rainy days (RR1) and the maximum duration of consecutive rainy days (CWD) 607 

showed a significant upward trend over southern Haiti and the Dominican Republic, in line with the positive phase of 608 

the Southern Oscillation (SOI) and warming east of the Caribbean Sea surface. 609 

These results further improve our knowledge of the impact of certain global teleconnections on extreme precipitation 610 

in the Greater Antilles. They also highlight the most relevant teleconnection indices (SOI, SST-Car (average SST-Car 611 

SST 14-16N, 65–85 W), and TSA) to be considered as part of the impact study in the region, to limit damage to key 612 

economic sectors such as agriculture, biodiversity, health, and energy. 613 
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Figure 1. Location of study area. The figures show (a) the altitude of the four islands making up the Greater Antilles and (b) average 
annual rainfall. 
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 955 

Figure 2. Interannual variability of precipitation indices in the Greater Antilles over the period 1980-2015 with (a) PRCPTOT, (b) 956 

RR1, (c) SDII, (d) R95; (e) CWD; (f) CDD. 957 
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Figure 3. Annual change (%) between two consecutive decades of precipitation indices over the Greater Antilles (left: 1995-2004 1027 

compared to 1985-1994; right: 2005-2015 compared to 1995-2004 right): (a) PRCPTOT, (b) RR1, (c) SDII, (d) R95p, (e) CWD 1028 

(f) CDD. 1029 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

Figure 4. Correlation between precipitation indices and large-scale SST in the Greater Antilles (1985-2015).  The values in the 1036 

table are the correlation coefficients of large-scale SST with extremes. The indices on the abscissa are the precipitation extremes 1037 

and those on the ordinate are the SST indices.  The symbol (*) represents a statistically significant correlation at a threshold less 1038 

than or equal to 0.05. 1039 
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 1065 

Figure 5. Correlation between precipitation indices and Tropical Southern Atlantic Index (TSA).  The spatial correlation of extremes 

with TSA (SST average over 0-20S, 10E-30W) for this figure is presented in two columns; the first is realized with the indices: a) 

PRCPTOT Corr. TSA, b) RR1 Corr. TSA, c) SDII Corr. TSA and the second column with the indices: b) R95p Corr. TSA, d) CWD 

Corr. TSA, f) CDD Corr. TSA. Black dots represent areas where correlations are statistically significant at p ≤  0.05.  
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 1084 

Figure 6. Correlation between precipitation indices and Caribbean Sea surface temperature.  The spatial correlation of extremes with 

SST-Car(SST average  14-16N, 65-85W) for this figure is presented in two columns; the first is realized with the indices: a) PRCPTOT 

Corr. SST-Car, b) RR1 Corr. SST-Car, c) SDII Corr. SST-Car and the second column with the indices: b) R95p Corr. SST-Car, d) 

CWD Corr. SST-Car, f) CDD Corr. SST-Car. Black dots represent areas where correlations are statistically significant at p ≤  0.05.  
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 1101 

Figure 7. Correlation between precipitation indices and Southern Oscillation indices (SOI).  The spatial correlation of extremes 

with SOI for this figure is presented in two columns; the first is realized with the indices: a) PRCPTOT Corr. SOI, b) RR1 Corr. 

SOI, c) SDII Corr. SOI and the second column with the indices: b) R95p Corr. SOI, d) CWD Corr. SOI, f) CDD Corr. SOI. Black 

dots represent areas where correlations are statistically significant at p ≤  0.05. 
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Figure 8. Correlation between precipitation indices and North Atlantic Oscillation Indices (NAO).  The spatial correlation of extremes 

with NAO for this figure is presented in two columns; the first is realized with the indices: a) PRCPTOT Corr. NAO, b) RR1 Corr. 

NAO, c) SDII Corr. NAO and the second column with the indices: b) R95p Corr. NAO, d) CWD Corr. NAO, f) CDD Corr. NAO. 

Black dots represent areas where correlations are statistically significant at p ≤ 0.05. 
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 1121 

Table 1 Definition of extreme precipitation indices used in this study. 1122 

ID Index Name Indices definition Units 

RR1 Total wet days index 

Number of days with precipitation amount ≥ 1 mm. 

Let RRij be the day daily precipitation amount on 

day i in period j. Count the number of days where: 

RRij ≥ 1 mm. 

days 

PRCPTOT Annual total precipitation on a wet day  

Annual total precipitation on wet days. Let RRij be 

the daily precipitation amount on day i in period j. If 

I represent the number of days in I, then: 

 PRCPTOTJ = ∑ ''./0
.1-  

mm 

SDII Simple daily rainfall intensity index 

Simple daily rainfall intensity index: Let RRij be the 

daily precipitation amount on a wet day, with RR> 

1mm in period j.  If W represents the number of wet 

days in j, then:  SDIIj=
∑ $$1#21(%

2  

mm/days 

CWD Consecutive wet days 

Maximum number of consecutive days wet days.  

Let RRij be the daily day precipitation amount on 

day i in period j. Count the largest number of 

consecutive days where:  RRij ≥ 1 mm 

days 

CDD Consecutive dry days 

Maximum number of consecutive dry days. Let RRij 

be the daily day precipitation amount on day i in 

period j. Count the largest number of consecutive 

days where:  RRij < 1 mm  

days 

R95p Very wet days 

 
The 95th percentile of daily precipitation events 
is the value above mm/day which 5% of the 
daily precipitation events are found.  
 
 

mm/day 
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