
Response to Anonymous Referee #1 

Dear Anonymous Referee #1,  

We are grateful for your insightful review that will help us to improve the manuscript. Your verbatim 
comments are below (in bold), each followed by our response.  

General comment: The paper aims at showing the non-existence of correlation between seismic 
activity and climate variability. The paper is very short, simple and easy to read.  

Response: We are pleased that you find our paper being simple and easy to read. 
 
I have a few comments about this paper that should be addressed in a revised version. 

Comment 1: The authors use an unconventional tool (to my knowledge this is used only for climate 
researches) to check the correlation between seismicity and climate. I am wondering why do not use 
more classical statistical tools that have a solid theoretical mathematical basis. In essence, the authors 
should justify better their choice. 

Response: Our paper is not a regular research article but ESD Letter that is designed to briefly report 
important results and therefore it is limited to 2,500 words.  For this reason, we didn’t provide the full 
substantiation of the method of conditional dispersion but referenced our previous work where such 
substantiation has been performed (Verbitsky, M. Y., Mann, M. E., Steinman, B. A., and Volobuev, D. M.: 
Detecting causality signal in instrumental measurements and climate model simulations: global warming 
case study, Geosci. Model Dev., 12, 4053–4060, https://doi.org/10.5194/gmd-12-4053-2019, 2019).  

At the same time, we agree with you that some readers may benefit from better understanding of our 
instrument choice. Since all discussions, including this one, are going to be published as supplemental 
materials, the long quote from Verbitsky et al (2019) may be helpful for devoted readers: 

“The most simplistic approach, the Pearson correlation between two time series, which is often 
mentioned in the context of causality, does not really measure the causality. While statistically 
significant correlation quantifies similarity between time series, it does not imply a causality resulting 
from physical relationships between the natural processes that are expressed by the time series and 
that can be modeled using differential equations. Instead, it provides a statistical test of a hypothesis 
that describes a physical link between the two variables (i.e., expressed as time series) without actually 
testing either the direction of causality or the plausibility of the physics underlying the hypothesis. The 
breakthrough Granger developments (Granger, 1969) provided a foundation for several causality-
measuring techniques based on different hypotheses of data origin. The requirement of the cause 
leading the effect (but not vice versa) defines the direction of a causal link if a more general hypothesis 
of lagged linear connection between noisy autoregressive processes is assumed. Though this hypothesis 
leads to statistically significant estimates of climate response to the forcing input (e.g., Kaufmann et al., 
2006, 2011; Attanasio, 2012; Attanasio et al., 2012; Mokhov et al., 2012; Triacca et al., 2013), it may not 
be able to reliably detect the direction of causality in the climate system because the potential for non-
linearities in the climate system (leading to extreme sensitivity to initial conditions, i.e., deterministic 
chaos) is not taken into account. For example, Paluš et al. (2018) demonstrated that coupled chaotic 
dynamical systems can “violate the first principle of Granger causality that the cause precedes the 



effect.” The Shannon information flow approach expands Granger causality to non-linear systems, using 
transfer entropy as a causality measure. Barnett et al. (2009) have shown that transfer entropy is 
equivalent to Granger causality for Gaussian processes. The transfer entropy between two probability 
distributions is typically considered the most general approach for causality detection, and numerous 
modifications of transfer-entropy-based causality-measuring techniques have been developed for 
different applications (Pearl, 2009), including causality measurements of global warming (e.g., Stips et 
al., 2016). It should be noted though that all probability-based causality measures require long time 
series to calculate statistical distributions and may lack applicability to local climate due to high 
inhomogeneity and non-stationarity of the data (e.g., O'Brien et al., 2019). The prediction improvement 
approach is often considered as a generalization of Granger causality for non-linear systems (e.g., 
Krakovská and Hanzely, 2016). It is highly practical and, besides causality calculations, it may help to 
improve the prediction accuracy. For pure causality purposes, however, it adds an additional uncertainty 
because the causality may depend on the chosen prediction method. The convergent cross-mapping 
approach (Sugihara et al., 2012; Van Nes et al., 2015) has been recently designed to work with relatively 
short data series, thus addressing the major constraint of transfer-entropy approach. The background 
hypotheses of the method is more narrow and includes only non-linear dynamical systems, though 
convergent cross mapping remains applicable to most natural systems in ecology and geosciences 
(Sugihara et al., 2012). The approach considers conditional evolution of nearest neighbors in the 
reconstructed Takens' space, so it is sensitive to the noise and may not be applicable to a wide range of 
timescales. Moreover, Paluš et al. (2018) have shown that convergent cross mapping is not capable of 
determining the directionality of a causal link. Therefore, identification of specific causal effect measures 
for climate observables is still a challenge. When causal effect measures are identified, the graph theory 
could be employed for further analysis of multiple causality chains (Hannart et al., 2016; Runge et al., 
2015). Along with dimensionality reduction formalism (e.g., Vejmelka et al., 2015), it may lead to a 
promising general approach.   For our case study, we advocate the method of conditional dispersion 
(MCD) developed by Čenys et al. (1991) as a causal effect measure. It has also been designed for non-
linear systems and exploits the asymmetry of the conditional dispersion of two variables in Takens' 
space along all available scales. Therefore, it remains more general and noise resistant than convergent 
cross-mapping techniques and more general than prediction improvement approaches because it is 
insensitive to the choice of the prediction method.” 

Interestingly, in 2019, we concluded our paper with the following: “With our calculations, we calibrate 
MCD against existing measurements and simulations. As long as MCD is trusted as an insightful 
approach, it can be used for express testing of new models and, perhaps more importantly, can serve as 
a first test for any new external forcing candidate that may be considered as an alternative or 
supplement to CO2.” This is exactly where we are 5 years later: A new forcing candidate has been 
proposed, and we use method of conditional dispersion as the first test. 
  
Action: We will add (within ESD Letters limit) a few sentences to better justify our choice. 

 
Comment 2: As an additional comment, the authors use the count of earthquakes above M7. This is 
hardly justifiable, because a M8 releases 32 times the energy of a M7, and a M9 releases about 1000 
times more energy than a M7. So, close M7 events do not have the same energy than a single M8 or 
larger. In essence, I do not think that the number of M7+ is a good proxy to measure the seismicity 
index. Maybe considering the seismic energy could be more appropriate. Even better, the seismicity 
index could be quantified by the ground shaking at polar regions (or any other region of interest) 



produced by any single earthquake of the catalog used. This is feasible, but it would likely require an 
additional work made by a seismologist. 

Related to the previous point, if the interest is on the polar region, the seismicity index should be 
weighted according to the location of earthquakes, since earthquakes close to polar regions may 
produce stronger shaking in these regions, with respect to larger earthquakes that occur on equatorial 
regions. This is made simulating the ground shaking of each earthquake (seismic waves decreases 
with distance from the hypocenter), or, in case the authors use the energy released by each single 
earthquake, weighting the distance of earthquakes to polar regions with an appropriate spatial decay 
(roughly speaking, the surface waves decay with 1/r only due to the geometrical spreading). 

Response: We find your suggestion to be very valuable. Therefore, we have redefined the seismicity 
index as expected maximum values of crustal deformation and recalculated it according to the empirical 
law of Okada (1995) (Okada, Y.: "Simulated empirical law of coseismic crustal deformation." Journal of 
Physics of the Earth 43, 6, 1995, 697-713): 

lg(𝑈𝑚𝑎𝑥) = 1.5𝑀 − 2𝑙𝑔𝑅 − 6.0 

Here 𝑈𝑚𝑎𝑥are expected maximum values of crustal deformation (cm), 𝑀 is earthquake magnitude, and 
𝑅 is hypocentral distance to the region of interest. 

Based on this law, we created three seismicity indexes: (a) in the first one, only the earthquake 
magnitude 𝑀 is taking into account, and the hypocentral distance𝑅 is used only as a scaling constant; 
(b) in the second index, both earthquake magnitude 𝑀 and the hypocentral distance𝑅 to the North Pole 
are accounted for, and (c) the third index accounts for both earthquake magnitude 𝑀 and the 
hypocentral distance𝑅 to the South Pole. 

Results of the new seismicity-indexes and corresponding causality calculations are presented in Figure 1. 
It can be observed that, in all three cases, our results did not change: The conditional dispersion of 
global temperature anomalies σ(ε) is independent of ε where ε is the distance between synchronous 
points of a seismicity index. In other words, there is no causal relationship between seismic activity and 
global warming.  

Action: We believe that the seismicity indexes, recalculated per your recommendations, make our 
results more robust and we will update our ESD Letter accordingly. 

 

 

 

 

 

 



 

  

 
Figure 1. Panels from top to bottom: Global temperature anomalies data (red); Earthquake magnitudes 

(blue and black); The seismicity index with only earthquake magnitudes M taken into account (blue); 

The seismicity index where earthquake magnitudes M and the hypocentral distance R to the North Pole 

are accounted for (yellow), The seismicity index where earthquake magnitudes M and the hypocentral 

distance R to the South Pole are accounted for (dark green), Conditional dispersions of global 

temperature anomalies σ(ε), where ε is the distance between synchronous points of a seismicity index 

of a corresponding color and  conditional dispersion of global temperature anomalies σ(ε), where ε is 

the distance between synchronous points of atmospheric CO2 concentration (green circled line). 


