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Abstract. Ocean heat content (OHC) is a depth-integrated physical oceanographic variable used to precisely measure ocean 7 

warming. Because of the limitations associated with in-situ CTD data and Ocean Reanalysis system products, satellite-based 8 

approaches have gained importance in estimating the daily to decadal variability of OHC over the vast oceanic region. Efforts 9 

to minimize the biases in satellite-based OHC estimates are needed to realize the actual response of the ocean to the brunt of 10 

climate change. In the current study, an attempt has been made to better implement the satellite-based ocean thermal expansion 11 

method to estimate OHC at 17 depth extents ranging from the surface to 700m. To achieve this objective, an artificial neural 12 

network (ANN) model was developed to derive thermosteric sea level (TSL) from a given dataset of sea surface temperature, 13 

sea surface salinity, geographical coordinates, and climatological TSL. The model-derived TSL data were used to estimate 14 

OHC changes based on the thermal expansion efficiency of heat. Statistical analysis showed high correlation coefficients and 15 

low errors in satellite-derived TSL / OHC at 700 m water depth (N 388469, R 0.9926 / 0.9922, RMSE 1.16 m / 1.56 GJ m-2, 16 

MBE -0.1917 m / -0.2400 GJ m-2, MBPE -0.4560% / -0.0290%, MAE 0.763 m / 1.029 GJ m-2, and MAPE 2.34% / 0.13%) 17 

and nearly similar results at the remaining depth extents. These results suggest that the proposed ANN models are capable of 18 

accurately estimating OHC changes on real-time data and three-dimensional distribution patterns of depth-integrated OHC 19 

trends in the global ocean. In addition, the first-ever attempt to estimate the ocean thermal expansion component (i.e., TSL) 20 

from satellite data was successful and the model-derived TSL can be used to obtain high-end sea-level rise products in the 21 

global ocean. 22 

1. Introduction 23 

Owing to the vast heat capacity and spatial coverage, the oceans balance the planet's temperatures by absorbing 93% of the 24 

excess atmospheric heat caused by the greenhouse effect and global warming (Abraham et al., 2013; IPCC, 2014; Roemmich 25 

et al., 2015; Riser et al., 2016; Trenberth et al., 2016; Meyssignac et al., 2019). A precise understanding of the depth-wise 26 

penetration of this heat and its accumulation in the upper oceanic layers is inevitable (Liang et al., 2015; Baxter, 2016; IPCC, 27 

2022). Ocean heat content (OHC), a depth-integrated physical oceanographic variable that refers to the amount of heat energy 28 

accumulated between any two depths, has gained attention in various studies of the Earth Energy Imbalance (Von Schuckmann 29 
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et al., 2016; Trenberth et al., 2016; Cheng et al., 2017; Meyssignac et al., 2019; Cheng et al., 2022). Thus, accurate estimation 30 

of OHC changes at various depth extents is vital and the motivation of the current study.   31 

To obtain a complete picture of OHC changes at different depths, the direct measurements of in-situ conductivity, 32 

temperature, and depth (CTD) profiles are necessary. These in situ measurements of the ocean properties are limited in terms 33 

of depth and spatial coverages, leading to the biased global reconstruction of OHC estimates owing to the sparse measurement 34 

data and spatial coverage deficiencies (Jagadeesh et al., 2015; Meyssignac et al., 2019; Marti et al., 2022). However, the in-35 

situ CTD profile measurements have been used to develop and validate the different OHC models (Momin et al., 2011; 36 

Jagadeesh et al., 2015; Su et al., 2020; Prakash and Shanmugam, 2022). In addition, synthetic CTD profile data generated by 37 

the Ocean Reanalysis systems (ORA) have been used to compute OHC variability in spatial and temporal scales (Balmaseda 38 

et al., 2015; Palmer et al., 2017). More recently, satellite-based methods have become crucial to overcome the limitations in 39 

the in-situ measurements of OHC changes, to ensure the OHC trend at a global scale, and to understanding the evolution of 40 

the Earth's climate system (Meyssignac et al., 2019; Prakash and Shanmugam, 2022).  41 

The existing satellite-based OHC algorithms can be broadly grouped into three approaches based on the employed 42 

principles/parametrizations: (i) internal tide oceanic tomography (ITOT), (ii) ocean net surface heat fluxes, and (iii) ocean 43 

thermal expansion. Apart from these approaches, research is exploring ways to make use of tidal magnetic satellite observations 44 

(Irrgang et al., 2019), electrical conductance (Trossman and Tyler, 2019), and atmospheric oxygen & carbon dioxide 45 

concentrations (Resplandy et al., 2018) to infer OHC changes. The ITOT technique involves correlating the satellite altimeter-46 

derived internal tide phase changes with ocean warming to estimate the OHC variability. This technique is still at the proof-47 

of-concept level and the associated challenges remain to be addressed (Zhao, 2016; Meyssignac et al., 2019). The OHC 48 

estimation through the ocean net surface heat fluxes employs several assumptions and approximations in deriving the input 49 

parameters to compute the radiative and turbulent heat fluxes, which in turn leads to a higher uncertainty of global OHC 50 

changes (Wild et al., 2015; L’Ecuyer et al., 2015; Meyssignac et al., 2019). On the other hand, the ocean thermal expansion 51 

method is a promising technique for the estimation of OHC by considering the thermosteric sea level (TSL) and expansion 52 

efficiency of heat (EEH). Numerous satellite-based OHC models have been developed based on the sea surface height anomaly 53 

data from altimeters, water mass change equivalent sea level anomaly data from the Gravity Recovery and Climate Experiment 54 

mission (GRACE), sea surface temperature from the various radiometers onboard satellites, and wind speed/stress from 55 

scatterometers/numerical weather models. Pioneering work done by White and Tai (1995), Chambers et al. (1997), Polito et 56 

al. (2000), and Sato et al. (2000) have attempted to implement the ocean thermal expansion method based on a relationship 57 

between OHC and satellite altimeter-based sea surface height anomaly (SSHA). It should be mentioned that regardless of the 58 

source, the density of seawater changes when it is subjected to heating/cooling, and it eventually reflects in sea surface 59 

topography. The SSHA data recorded by the satellite altimeters comprise the sea surface topography changes due to tides, 60 

atmospheric pressure, salinity (haline), and barotropic flows along with the thermal effects. The SSHA changes due to the tides 61 

and atmospheric pressure can be corrected, but the effects of salinity and barotropic flows remain unresolved with the OHC 62 

estimates produced by Wang and Tai (1995) and Chambers et al. (1997). Sato et al. (2000) have introduced a haline correction 63 
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factor as the integral product of the haline contraction coefficient and salinity anomaly from in-situ CTD profile data. Owing 64 

to the limitations associated with in-situ data, the in-situ-based haline correction cannot be applied to satellite altimeter-based 65 

SSHA data while correlating with the space and time-varying OHC data. Jayne et al. (2003) have proposed the Alt-GRACE 66 

approach to resolve the effect of barotropic flows in sea surface topography by subtracting the satellite gravimetry-derived 67 

water mass change component from SSHA data. Though the Alt-GRACE approach has improved the accuracy of satellite-68 

based OHC estimates compared to Wang and Tai (1995), Chambers et al. (1997), Polito et al. (2000), and Sato et al. (2000), 69 

the issues associated with the haline effects and other approximations on the ocean thermal expansion coefficient and seawater 70 

density data have led to significant uncertainties in satellite-based OHC estimates. With the advancement of artificial 71 

intelligence, several researchers have attempted to model OHC by directly relating it with the satellite-based parameters by 72 

using deep-learning regression techniques (Jagadeesh and Ali, 2006; Momin et al., 2011; Chacko et al., 2015; Jagadeesh et al., 73 

2015; Su et al., 2020, 2021; Marti et al., 2022). These deep-learning models have oversimplified the OHC problem by 74 

neglecting the effects of salinity and barotropic flows. In addition, no previous work have accounted for the space and time-75 

varying nature of the ocean thermal expansion coefficient and seawater density in OHC computations. The other common 76 

drawbacks with the existing work are discussed in Sect. 4.3. Consequently, there is a need for developing a satellite-based 77 

model to accurately implement the ocean thermal expansion method to estimate OHC by resolving all the issues associated 78 

with salinity variation, barotropic flows, ocean thermal expansion, seawater density, choice of temperature and its units.  79 

Given the above background, we have made a major attempt to develop and implement a satellite-based ocean thermal 80 

expansion model for estimating OHC changes at various depth extents such as 20 m, 30 m, 40 m, 50 m, 100 m, 150 m, 200 m, 81 

250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 550 m, 600 m, 650 m, and 700 m. For this, artificial neural network (ANN) 82 

architectures were developed to estimate TSL for the given sea surface temperature (SST), sea surface salinity (SSS), 83 

geographical coordinates, and climatological TSL. The model-derived TSL estimates were then used to estimate OHC changes 84 

by accounting the expansion efficiency of heat. The proposed models are capable of estimating TSL and OHC accurately at 85 

multiple depth extents. The robustness of the new models was tested by comparison of satellite-derived TSL and OHC with 86 

in-situ data. 87 

2. Data 88 

For this study, in-situ CTD profile data (collected by Argo floats) were obtained from the World Ocean Database-2018 of the 89 

NOAA's National Centers for Environmental Information Data Archive for the period of 2005-2020 (Boyer et al., 2018a). 90 

These data have been extensively used by the research community for various ocean applications (Levitus et al., 2009; Momin 91 

et al., 2011; Levitus et al., 2012; Cheng et al., 2014; Roemmich et al., 2015; Jagadeesh et al., 2015; Su et al., 2020). The World 92 

Ocean Database (WOD) comprises the oceanographic data of diverse biogeochemical parameters that have been collected by 93 

various institutions, agencies, individual researchers, and data recovery initiatives. The quality-controlled CTD profile data 94 

(accepted_value flag) of standard depth levels recommended by the International Association of Physical Oceanography 95 
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(1936) were considered in this study to compute the TSLd and OHCd parameters and to obtain the SST and SSS data. The 96 

standard depth levels considered for deriving the TSL and OHC are given as 20 m, 30 m, 40 m, 50 m, 100 m, 150 m, 200 m, 97 

250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 550 m, 600 m, 650 m, and 700 m. The in-situ TSLd and OHCd parameters were 98 

computed by applying the integration formula (Eqs. 1 & 2) on the CTD profile data of depth range from the ocean surface to 99 

the respective standard depth (d) as well as the SST and SSS data corresponding to the ocean surface. Similarly, the 100 

climatological parameters such as TSLclim,d and OHCclim,d were computed from the monthly climatological temperature and 101 

salinity data of 41 vertical levels obtained from the World Ocean Atlas-2018 (WOA) (Boyer et al., 2018b). The theoretical 102 

considerations of computing OHC change at a depth can be found in Prakash and Shanmugam (2022) (Prakash and 103 

Shanmugam, 2022), which were adopted in this study. The Gibbs-SeaWater (GSW) Oceanographic Toolbox of TEOS-10 104 

(IOC et al., 2010) was used to compute the in-situ-based parameters including  105 

𝑂𝐻𝐶𝑑 =  ∫ 𝜌𝐶𝑃𝛩 𝑑𝑧
𝑑

0
          (1) 106 

𝑇𝑆𝐿𝑑 =  ∫ 𝛼𝛩 𝑑𝑧
𝑑

0
          (2) 107 

where OHCd refers to the heat energy accumulated in an oceanic layer of depth range from the surface to a stipulated depth 108 

(d) and is given in the units of joules per unit area (J m-2). Similarly, TSLd (in meters) refers to the thermosteric sea level 109 

integrated from the surface to a stipulated depth (d). And, Θ is the conservative temperature in K (derived from in-situ 110 

temperature, absolute salinity, and pressure), ρ is the seawater density in kg m-3 (derived from the conservative temperature, 111 

absolute salinity, and pressure), CP is the specific heat capacity (= 3991.87 J kg-1 K-1), and α is the thermal expansion coefficient 112 

in K-1 (derived from the conservative temperature, absolute salinity, and pressure).  113 

Python programming was used to prepare the individual databases for all the standard depth levels by extracting CTD 114 

profile data from the WOD and WOA NetCDF files with the help of NetCDF4, NumPy, Pandas, and GSW libraries. Each 115 

database was divided into two datasets, one for the model development spanning from 2005-2016 and one for validating the 116 

model spanning from 2017-2020, by ensuring a well distribution in spatiotemporal scales over the global open ocean. The 117 

spatial distribution of data points used to model TSL700 and OHC700 is shown in Fig. A1. The in-situ CTD profiles of depth 118 

coverage shallower than 700 m are also included in this process of deriving the TSL and OHC of other depth extents. Indeed, 119 

the number of CTD profiles and their distribution in global oceans is higher than the CTD profile density as shown in Fig. A1. 120 

3. Methodology 121 

3.1. Theoretical formulations  122 

Ocean thermal expansion is the best proxy to model the heat content accumulated in an oceanic layer. Unlike freshwater, 123 

seawater expands when it warms and contracts when it cools for temperatures above its freezing point. The volumetric 124 

expansion of seawater is non-isotropic in nature due to the differences in the degree of constraint in different directions. In a 125 

vertical direction, atmospheric pressure exerts a normal force on the seawater parcel at the surface. The magnitude of this 126 
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normal/vertical force is less compared to the horizontal forces exerted by physical barriers such as continental boundaries and 127 

geographic features on the ocean floor. It allows the ocean thermal expansion of seawater in the vertical direction rather than 128 

the horizontal direction, as the seawater is less constrained in the vertical direction compared to the horizontal direction. The 129 

amount of change in seawater volume in response to the net warming/cooling depends on the absolute conservative temperature 130 

and ocean thermal expansion coefficient (Eq. 2). Following are the GSW functions (Eqs. 3-5) (IOC et al., 2010) involved in 131 

the calculation of TSL (Eq. 2) for the given set of measured temperature (T), practical salinity (SP), pressure (P), longitude 132 

(x), and latitude (y). 133 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦 (𝑆𝐴) = 𝑔𝑠𝑤. 𝑆𝐴_𝑓𝑟𝑜𝑚_𝑆𝑃 (𝑆𝑃, 𝑃, 𝑥, 𝑦)      (3) 134 

Θ = 𝑔𝑠𝑤. 𝐶𝑇_𝑓𝑟𝑜𝑚_𝑇(𝑆𝐴, 𝑇, 𝑃)          (4) 135 

𝛼 = 𝑔𝑠𝑤. 𝐴𝑙𝑝ℎ𝑎(𝑆𝐴, Θ, 𝑃)          (5) 136 

Hence, an attempt has been made in this study to model TSL as a function of SST, SSS, and geographical coordinates. The 137 

existing correlations between the proposed input parameters and the targeted output parameter were explored by employing 138 

in-situ-based data used in the model development process (Fig. 1). 139 

 140 

Figure 1. Heatmap showing the Pearson correlation coefficients between the input parameters (i.e., SST, SSS, and 141 

geographical coordinates) and the output parameter (TSL) of various depth extents. 142 

It is observed that SST has an almost one-to-one correlation with TSL at shallower depth extents, and can be solely 143 

used to model the thermal expansion of upper oceanic layers. Despite a decreasing trend in correlation strength when moving 144 

towards a deeper depth, SST plays a primary role in accounting for TSL variations at deeper depths, because of its strong 145 

correlations with TSL. Observed weaker correlations between SSS and TSL which are plausible owing to the salinity's 146 

secondary role in TSL variations as compared to the temperature variable. However, an increasing trend in correlation 147 

coefficients between SSS and TSL is observed towards the deeper depth extents. Hence, SST and SSS are complementary to 148 

each other in resolving the TSL variations, and their combination plays a major role in modelling TSL of all depth extents 149 

considered in this study. Apart from these physical parameters, absolute salinity used in the computation of seawater density, 150 

conservative temperature, and ocean thermal expansion coefficient is a function of geographical coordinates along with 151 

practical salinity and pressure (Eq. 3). By considering all these theoretical considerations and observed correlations, an attempt 152 

has been made to model TSL of various depth extents by employing SST, SSS, and geographical coordinates as the input 153 
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parameters along with the climatological TSL (Fig. 2). Here, TSLd is an external manifestation of OHCd stored in an oceanic 154 

layer based on EEHd (Eq. 6). The model-derived TSL is further used to estimate OHC changes (as shown in Fig. 2 along with 155 

climatological OHC) as follows, 156 

𝑂𝐻𝐶𝑑 =
𝑇𝑆𝐿𝑑

𝐸𝐸𝐻𝑑
            (6) 157 

where EEH is a conversion factor that explains the relationship between the relative changes in ocean heat content and the 158 

corresponding seawater thermal expansion. As it varies as a function of temperature, salinity, and pressure, EEH is not a 159 

constant value over the global ocean. Hence, ANN modelling is employed in this study to derive OHC from TSL by accounting 160 

the complex variations in EEH.  161 

 162 

Figure 2. Flow chart representing the parameters involved in TSL and OHC modelling. The red and blue dashed boxes 163 

represent the TSL and OHC frameworks employed in ANNs, respectively. 164 

 165 

3.2. ANN model description 166 

This section explains the various steps and architectures involved in the ANN modelling of TSL and OHC. The multilayer 167 

perceptron regressor algorithm of deep neural networks was used to model both TSL and OHC (Pedregosa et al., 2011). It is 168 

observed that the input data of geophysical parameters are given in different units and scales. The range and order of SST, 169 

SSS, latitude, and longitude data are -1.8 °C to 34.15 °C & O(101), 2.53 PSU to 40.45 PSU & O(101), -76° to 80° & O(101), 170 

and -180° to 180° & O(102), respectively. In addition, the range and order of TSLclim,d and OHCclim,d are also distinct and vary 171 

with water depth. Hence, the input data were normalized using the StandardScaler class of Scikit-Learn and feed-forwarded 172 

through the neural networks. This StandardScaler normalizes the raw data to ensure the mean and standard deviation of each 173 

input parameter as 0 and 1, respectively. It allows the ANN model to focus on the relative importance and relationships between 174 

the input parameters rather than their magnitude. The standardized input data were injected into the corresponding neurons in 175 

the input layer and forward propagated through the hidden layers and then the output layer by applying the random weights 176 

and rectified linear unit (ReLU) activation function at each neuron. The mathematical formulations and schematic 177 
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representation related to ANN architecture are shown in Fig. 3. The model outputs were compared with the actual data and 178 

computed mean squared error (MSE) using a loss function (Eq. 7). In addition, L2 regularization (𝛼𝐿2) was employed to add 179 

a penalty term to the loss value to prevent overfitting. The observed error was then backpropagated through the network to 180 

update weights and biases using the Adam optimizer based on the learning rate and gradient of the error (see Eq. 8 in Prakash 181 

and Shanmugam, 2022). This process is repeated until the validation score improves more than 0.0001.  182 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑝𝑟𝑒𝑑,𝑖 − 𝑌𝑎𝑐𝑡,𝑖)

2         (7) 183 

where N is the number of samples, 𝑌𝑝𝑟𝑒𝑑,𝑖 is the predicted data, and 𝑌𝑎𝑐𝑡,𝑖 is the actual data. The model development work was 184 

carried out by employing both the input and output parameters from the in-situ sources. It enables the ANN models to 185 

implement the input data of any remote sensing sources to produce OHC estimates subject to the reliability and accuracy of 186 

those data sources. The particle swarm optimization technique (Kennedy and Eberhart, 1995; Shi and Eberhart, 1998) was 187 

employed for hyperparameter tuning, and the hyperparameters' combinations corresponding to each modelling depth are 188 

presented in Table 1. The Joblib module of Scikit-Learn library was used to save all the TSL and OHC models of various 189 

depths considered in this study, and the same module was used to load the TSL and OHC models of desired depth with the 190 

help of a unified Python script. 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 
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Table 1. The ANN model hyperparameters employed in TSL (regular font) and OHC (bold font) modelling of various depth 210 

extents.  211 

Depth  

(m) 
Hidden layers Batch size         𝜶𝑳𝟐 

Learning 

rate 

No. of  

iterations 

20 
38, 10, 55 178 0.00422 0.0004 14 

49, 12, 34 183 0.09023 0.0001 26 

30 
100, 97, 36 165 0.00001 0.0001 14 

11, 50, 55 58 0.00079 0.0001 16 

40 
64, 71, 5 106 0.00001 0.0001 16 

57, 89, 46 148 0.09691 0.0001 19 

50 
64, 99, 30 241 0.01478 0.0001 17 

56, 59, 10 139 0.07188 0.0001 22 

100 
70, 100, 100 256 0.00001 0.0009 30 

25, 36, 63 256 0.03556 0.0016 44 

150 
47, 83, 92 60 0.00001 0.0005 34 

49, 77, 28 69 0.05176 0.0318 16 

200 
100, 100, 16 256 0.00315 0.0022 33 

27, 48, 67 202 0.05638 0.0367 18 

250 
56, 82, 67 174 0.00001 0.0019 39 

2, 100, 77 73 0.00001 0.0037 22 

300 
83, 28, 74 128 0.00001 0.0028 36 

48, 92, 10 87 0.01364 0.0459 12 

350 
85, 25, 67 128 0.04606 0.0013 20 

27, 53, 48 141 0.08585 0.0851 14 

400 
89, 75, 96 64 0.04859 0.0007 26 

49, 1, 80 138 0.00001 0.0031 20 

450 
51, 83, 95 128 0.08582 0.0005 42 

47, 27, 52 32 0.00263 0.0055 24 

500 
71, 100, 62 128 0.00001 0.0012 27 

45, 100, 63 126 0.05162 0.0607 15 

550 
47, 89, 91 256 0.00843 0.0011 44 

64, 75, 78 114 0.05176 0.0634 15 

600 
98, 65, 6 16 0.00001 0.0001 48 

63, 17, 10 180 0.04654 0.0538 23 

650 
100, 69, 75 16 0.00001 0.0001 18 

53, 74, 40 176 0.07072 0.0048 20 

700 
98, 37, 37 164 0.04262 0.0015 32 

83, 63, 79 216 0.01217 0.0742 19 
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 212 

 213 

Figure 3. Schematic of the ANN architecture employed in the modelling of TSL and OHC parameters. The flow of the 214 

modelling and the associated mathematical transformations/formulations are given by considering a typical ANN architecture 215 

with n input parameters, one output parameter, p hidden layers, and q1 to qp neurons in each hidden layer. 216 

4. Results and discussion 217 

The performance of TSL and OHC models on unseen data from the in-situ and satellite sources was assessed using density 218 

scattergrams and statistical metrics. These metrics include mean bias error (MBE), mean bias percentage error (MBPE), mean 219 

absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), Pearson correlation 220 

coefficient (R), slope, and intercept (also referred and presented in Prakash and Shanmugam, 2022). To better understand the 221 

model performance, mean values of in-situ data were computed for the validation period and used to compute the weighted 222 

average of validation metrics across all the depth extents. 223 
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4.1. Validation with independent in-situ data 224 

The main objective of the independent validation using in-situ data is to evaluate the generalization ability and overall accuracy 225 

of TSL and OHC-ANN models on unseen data. For this purpose, the in-situ measured variables such as SST, SSS, and latitude 226 

/ longitude were inputted into these models to output the predicted values which were then compared with in-situ TSL and 227 

OHC data. The number of independent validation data points and their spatial distribution are presented in Table 2 and Fig. 228 

A1(b). The results in the form of density scattergrams are shown in Figs. 4 and 5. These results showed high correlation and 229 

low errors with the model-predicted values. From Table 2 and Fig. 4, the performance of the TSL models is exceptionally 230 

good on unseen data of all the depth extents without any overfitting. Similar model performance can also be observed in the 231 

case of OHC estimates as it primarily depends on the TSL estimates (Table 2 and Fig. 5). The high values of R indicate a 232 

strong positive correlation between the predicted and in-situ OHC (TSL) values. This suggests that the models are generally 233 

capable of capturing OHC (TSL) patterns in the data. The slope and intercept of the regression line between predicted and 234 

actual values are close to 1 and 0, respectively. This suggests that the model-predicted values have good agreement with the 235 

actual values with a minimal bias. The RMSE values are notably small implying that the predicted OHC values have a little 236 

random error when compared to the actual data. The MBE and MBPE values are close to zero, indicating that the model-237 

predicted values have a negligible systematic error when compared to the actual values. The low MAE and MAPE values are 238 

also indicating a high accuracy with the model-predicted OHC values. These results clearly demonstrate that the proposed 239 

ANN models succeeded in generalizing and accurately predicting the measured OHC (TSL) data with a high accuracy.  240 

Spatial distribution of mean percentage error (MPE) over the global open oceanic region was computed by averaging 241 

the observed percentage errors of all modelling depths available at each pixel (Fig. A2) for estimating the OHC changes. It is 242 

observed that the models' performance is comparatively low over the north-western parts of the North Atlantic gyre, 243 

southwestern parts of the South Atlantic gyre, Kuroshio extension, and Antarctic circumpolar regions. An elaborate note on 244 

the potential sources of the observed MPE values is given in Sect. 4.4. Further, the entire validation dataset was divided into 245 

two parts in terms of the observed overestimation and underestimation of data. In the cases of overestimation (underestimation), 246 

95% of the data points have a MPE of less than or equal to 0.47% (0.44%). The lower values of MPE indicate that the proposed 247 

ANN models succeed in capturing the OHC patterns in all major oceanic basins and can be used to produce accurate OHC 248 

products based on their implementation on real-time data. 249 

 250 
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 251 
Figure 4. Density scatterplots showing the observed agreement between model-predicted TSL values and in-situ measured 252 

TSL values during insitu-based independent validation. 253 
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 254 
Figure 5. Density scatterplots showing the observed agreement between model-predicted OHC values and in-situ measured 255 

OHC values during insitu-based independent validation. 256 
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Table 2. Statistical results from the insitu-based independent validation data of TSL (regular font) and OHC (bold font) against 257 

unseen Argo measured in-situ data. The units for the various metrics used in TSL & OHC validations are given as follows: 258 

Mean (m & GJ m-2), RMSE (m & GJ m-2), MBE (m & GJ m-2), MBPE (%), MAE (m & GJ m-2), MAPE (%), and intercept (m 259 

& GJ m-2). 260 

Depth 

(m) 

N 

Mean R RMSE MBE MBPE MAE MAPE Slope Intercept 
Data for  

model 

development 

Data for 

independent 

validation 

20 801303 536719 
1.44 0.9997 0.01 -0.0007 0.0575 0.006 0.60 0.9981 0.002 

23.91 0.9997 0.02 -0.0011 -0.0047 0.009 0.04 0.9987 0.030 

30 794166 532149 
2.15 0.9993 0.03 0.0029 0.3764 0.015 0.99 0.9982 0.007 

32.85 0.9992 0.04 0.0010 0.0027 0.021 0.06 0.9992 0.030 

40 787074 526571 
2.85 0.9988 0.05 -0.0009 0.1325 0.027 1.28 0.9988 0.002 

47.78 0.9988 0.07 -0.0008 -0.0014 0.038 0.08 0.9978 0.103 

50 779134 520102 
3.54 0.9984 0.07 -0.0008 0.0861 0.042 1.47 0.9975 0.008 

59.70 0.9984 0.10 0.0015 0.0028 0.057 0.10 0.9972 0.169 

100 731065 476709 
6.80 0.9974 0.18 -0.0129 -0.1725 0.120 2.09 0.9960 0.015 

119.00 0.9973 0.25 -0.0279 -0.0233 0.169 0.14 0.9981 0.196 

150 712120 460278 
9.83 0.9967 0.29 -0.0407 -0.3419 0.205 2.41 0.9905 0.053 

177.97 0.9965 0.40 -0.0369 -0.0198 0.279 0.16 0.9867 2.331 

200 697314 446979 
12.64 0.9961 0.38 -0.0001 0.0571 0.272 2.51 0.9960 0.050 

236.62 0.9959 0.53 -0.0076 -0.0029 0.372 0.16 0.9939 1.426 

250 686378 436906 
15.28 0.9959 0.46 -0.0361 -0.1803 0.332 2.49 0.9943 0.051 

295.04 0.9957 0.63 -0.0242 -0.0078 0.450 0.15 0.9918 2.392 

300 678526 429501 
17.80 0.9956 0.55 -0.0471 -0.0023 0.392 2.53 0.9851 0.218 

353.29 0.9954 0.74 -0.0155 -0.0039 0.525 0.15 0.9889 3.902 

350 672148 423688 
20.23 0.9949 0.65 -0.1035 -0.3383 0.462 2.59 0.9860 0.179 

411.40 0.9947 0.87 -0.0357 -0.0081 0.613 0.15 0.9861 5.676 

400 666605 418686 
22.57 0.9947 0.72 -0.0425 -0.0526 0.505 2.52 0.9887 0.213 

469.39 0.9945 0.97 -0.0067 -0.0010 0.676 0.14 0.9879 5.683 

450 661336 413987 
24.83 0.9946 0.78 -0.1227 -0.4726 0.547 2.47 0.9916 0.087 

527.25 0.9943 1.06 -0.1681 -0.0315 0.741 0.14 0.9872 6.588 

500 654880 408240 
27.03 0.9949 0.80 -0.0604 -0.1866 0.558 2.29 0.9945 0.089 

585.03 0.9947 1.07 -0.0761 -0.0127 0.747 0.13 0.9894 6.105 

550 649850 403357 
29.14 0.9948 0.85 -0.0462 -0.0937 0.586 2.19 0.9911 0.213 

642.69 0.9945 1.15 0.0347 0.0057 0.787 0.12 0.9900 6.479 

600 645150 398855 
31.21 0.9945 0.91 -0.0390 -0.0205 0.623 2.18 0.9883 0.327 

700.28 0.9942 1.23 0.0298 0.0046 0.838 0.12 0.9873 8.937 

650 640479 392921 
33.18 0.9941 0.99 0.0185 0.0903 0.670 2.19 0.9949 0.189 

757.74 0.9939 1.33 0.0086 0.0014 0.892 0.12 0.9904 7.296 

700 633004 388469 
35.13 0.9941 1.04 -0.1928 -0.4791 0.711 2.17 0.9858 0.307 

815.15 0.9938 1.41 -0.2413 -0.0292 0.960 0.12 0.9836 13.134 

Weighted average 
0.9961 0.74 -0.0620 -0.1591 0.513 2.29 0.9927 0.177 

0.9960 1.03 -0.0515 -0.0087 0.708 0.13 0.9914 6.648 

 261 
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4.2. Satellite-based independent validation 262 

The performance of the proposed ANN models in satellite-based applications has been assessed by injecting daily SST and 263 

SSS data from the satellite sources in place of the in-situ sources. The choice of satellite sources for SST and SSS data is 264 

completely subjective to the intended application and their compatibility in terms of spatial and temporal resolutions, whereas 265 

geographical coordinates data can be employed from WOA corresponding to the climatological TSL and OHC data. It is 266 

recommended to resample SST and SSS data to the WOA grid to eliminate the discrepancies arising from the non-uniform 267 

spatial references among the input data. In the current study, the NOAA Advanced Very High-Resolution Radiometer 268 

(AVHRR) Optimum Interpolation Sea Surface Temperature products (OISST v2.1) were used for daily SST data of 0.25° 269 

spatial resolution (Huang et al., 2021). Daily SSS data of the same spatial resolution were obtained from the ORAS5 reanalysis 270 

system of the European Centre for Medium-Range Weather Forecasts at the CMEMS portal (Product ID: 271 

GLOBAL_REANALYSIS_PHY_001_031) (Zuo et al., 2017). The NetCDF4 and NumPy Python libraries were used to read 272 

and resample satellite data to the WOA-18 grid, and to collocate with the corresponding Argo in-situ data points. The accuracy 273 

of the satellite-based SST and SSS was verified by Argo-measured SST and SSS profile data (N = 244722). The observed R, 274 

RMSE, MBE, and MAE values in SST & SSS validations are 0.99 & 0.99, 0.51°C & 0.26 PSU, -0.05°C & -0.006 PSU, and 275 

0.33°C & 0.12 PSU, respectively. High correlation coefficients and low errors indicate the minimal deviation of satellite-based 276 

data from actual (in-situ) data and ensure the reliability of satellite data in accurately representing the physical oceanographic 277 

conditions. The satellite-based SST, SSS, latitude, and longitude data were then given as the inputs to the ANN models for 278 

producing TSL and OHC estimates of all the depth extents considered in this study. Consequently, the model-derived TSL and 279 

OHC estimates were compared with Argo-measured in-situ data, and the satellite-based independent validation results are 280 

presented in this section (Table 3 and Figs. 6 and 7).   281 

The performance of the proposed ANN models on satellite-based independent validation data (Table 3, Figs. 6 and 282 

7) is rather similar to their performance on in-situ-based independent validation data (Table 2, Figs. 4 and 5). However, the 283 

models' performance on satellite-based independent validation data was marginally low as compared to the in-situ-based 284 

validation data, likely due to the errors associated with the satellite-derived products. According to the statistical results, the R 285 

values were observed to be slightly lower by an average percentage decrease of 0.11% across all depth extents. Similarly, the 286 

RMSE, MBE, MBPE, MAE, and MAPE were slightly larger than those values observed during the in-situ-based independent 287 

validation datasets. This relatively lower performance of the proposed models on the satellite-based independent validation 288 

datasets can be observed by comparing the spatial maps and the distribution of MPE (Figs. A2 and A3). The relatively higher 289 

magnitudes of MPE can be observed over the northwestern parts of the North Atlantic gyre, southwestern parts of the South 290 

Atlantic gyre, Kuroshio extension, and Antarctic circumpolar regions based on in-situ-based validation data. And, 95% of the 291 

data have a MPE of less than or equal to 0.56% (0.5%) in the cases of overestimation (underestimation), which is higher than 292 

those reported in Sect. 4.1. Though the performance of the proposed models' on satellite-based data is comparatively lower 293 

than the in-situ-based validation data, the observed difference in various validation metrics is rather insignificant. It 294 
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substantiates the efficiency of the proposed models in estimating OHC from satellite data at various depth extents over the 295 

major oceanic basins. However, it should be noted that the validation results presented in this section are subject to vary with 296 

the other sources of satellite-based SST and SSS data. 297 

 298 
Figure 6. Density scatterplots showing the observed agreement between model-predicted TSL values and in-situ measured 299 

TSL values during satellite-based independent validation. 300 
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 301 
Figure 7. Density scatterplots showing the observed agreement between model-predicted OHC values and in-situ measured 302 

OHC values during satellite-based independent validation. 303 
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Table 3. Statistical results from satellite-based independent validation data of TSL (regular font) and OHC (bold font) against 304 

unseen Argo measured in-situ data. The units for the various metrics used in TSL & OHC validations are given as follows: 305 

Mean (m & GJ m-2), RMSE (m & GJ m-2), MBE (m & GJ m-2), MBPE (%), MAE (m & GJ m-2), MAPE (%), and intercept (m 306 

& GJ m-2). 307 

Depth 

(m) 

N 

Mean R RMSE MBE MBPE MAE MAPE Slope Intercept 
Data for 

 model 

development 

Data for 

 independent 

validation 

20 801303 536719 
1.44 0.9987 0.03 -0.0034 -0.0822 0.016 1.67 0.9960 0.002 

23.91 0.9987 0.04 -0.0049 -0.0201 0.023 0.09 0.9965 0.080 

30 794166 532149 
2.15 0.9984 0.04 -0.0008 0.2562 0.027 1.88 0.9961 0.008 

32.85 0.9984 0.06 -0.0043 -0.0118 0.037 0.10 0.9969 0.108 

40 787074 526571 
2.85 0.9980 0.07 -0.0054 0.0211 0.041 2.08 0.9969 0.003 

47.78 0.9980 0.09 -0.0070 -0.0143 0.057 0.12 0.9959 0.191 

50 779134 520102 
3.54 0.9977 0.09 -0.0060 -0.0262 0.057 2.17 0.9960 0.008 

59.70 0.9976 0.12 -0.0056 -0.0090 0.077 0.13 0.9956 0.257 

100 731065 476709 
6.80 0.9966 0.20 -0.0206 -0.2651 0.140 2.56 0.9951 0.013 

119.00 0.9965 0.28 -0.0385 -0.0322 0.194 0.16 0.9971 0.301 

150 712120 460278 
9.83 0.9958 0.32 -0.0496 -0.4165 0.229 2.81 0.9897 0.052 

177.97 0.9956 0.44 -0.0491 -0.0266 0.311 0.17 0.9858 2.474 

200 697314 446979 
12.64 0.9951 0.43 -0.0091 -0.0022 0.300 2.83 0.9951 0.053 

236.62 0.9950 0.59 -0.0200 -0.0081 0.409 0.17 0.9929 1.653 

250 686378 436906 
15.28 0.9948 0.52 -0.0450 -0.2117 0.364 2.79 0.9928 0.065 

295.04 0.9946 0.71 -0.0365 -0.0119 0.492 0.17 0.9904 2.807 

300 678526 429501 
17.80 0.9943 0.62 -0.0556 -0.0279 0.428 2.79 0.9837 0.235 

353.29 0.9941 0.83 -0.0271 -0.0071 0.571 0.16 0.9875 4.398 

350 672148 423688 
20.23 0.9939 0.71 -0.1052 -0.3291 0.494 2.80 0.9846 0.206 

411.40 0.9936 0.95 -0.0381 -0.0086 0.655 0.16 0.9847 6.264 

400 666605 418686 
22.57 0.9935 0.79 -0.0450 -0.0422 0.540 2.72 0.9869 0.252 

469.39 0.9933 1.06 -0.0103 -0.0017 0.723 0.15 0.9860 6.557 

450 661336 413987 
24.83 0.9934 0.87 -0.1234 -0.4559 0.586 2.67 0.9898 0.129 

527.25 0.9931 1.17 -0.1694 -0.0316 0.792 0.15 0.9854 7.508 

500 654880 408240 
27.03 0.9934 0.91 -0.0707 -0.2034 0.605 2.50 0.9924 0.134 

585.03 0.9933 1.21 -0.0909 -0.0151 0.807 0.14 0.9874 7.293 

550 649850 403357 
29.14 0.9932 0.97 -0.0484 -0.0768 0.636 2.40 0.9887 0.280 

642.69 0.9929 1.30 0.0315 0.0053 0.851 0.13 0.9876 8.021 

600 645150 398855 
31.21 0.9930 1.03 -0.0431 -0.0139 0.675 2.38 0.9861 0.392 

700.28 0.9927 1.39 0.0242 0.0039 0.906 0.13 0.9850 10.52 

650 640479 392921 
33.18 0.9926 1.11 0.0193 0.1132 0.719 2.37 0.9925 0.267 

757.74 0.9924 1.48 0.0092 0.0015 0.957 0.13 0.9880 9.090 

700 633004 388469 
35.13 0.9926 1.16 -0.1917 -0.4560 0.763 2.34 0.9835 0.387 

815.15 0.9922 1.56 -0.2400 -0.0290 1.029 0.13 0.9813 14.982 

Weighted average 
0.9950 0.83 -0.0657 -0.1645 0.554 2.54 0.9909 0.224 

0.9948 1.15 -0.0566 -0.0104 0.763 0.14 0.9896 7.799 
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4.3. Comparison with the contemporary satellite-based OHC models  309 

Comparison of our ANN models with the existing models is crucial to determine the relative uncertainty in the OHC estimates. 310 

Previously, an ANN algorithm suite was developed by the National Remote Sensing Centre (NRSC) of ISRO to disseminate 311 

the daily OHC products over the North Indian Ocean (40°E-120°E, 0°-30°N) at a spatial resolution of 0.25 degree (Ali et al., 312 

2012; Jagadeesh et al., 2015). This algorithm suite includes ANN models to estimate OHC at multiple depth extents such as 313 

50 m, 100 m, 150 m, 200 m, 300 m, 500 m, and 700 m for the given input data of sea level anomaly (SLA), SST, and OHCclim,d. 314 

It estimates OHC changes by utilizing the satellite altimetry-based SLA data from AVISO (Archiving, Validation, and 315 

Interpretation of Satellite Oceanographic data) data portal, SST from the Advanced Microwave Scanning Radiometer-2 316 

(AMSR2) onboard JAXA's Global Change Observation Mission 1st-Water (GCOM-W1), and climatological OHC from the 317 

World Ocean Atlas-2009 monthly climatological CTD profiles. The multilayer perceptron regressor algorithm of neural 318 

networks with three hidden layers was used to estimate OHC of all seven depth extents. The number of data points used to 319 

develop and validate the NRSC-ANN algorithm were 11472 and 2479, respectively. To estimate OHC changes at different 320 

depths, this algorithm employs the Celsius scale, in-situ temperature, and average density data instead of the Kelvin scale, 321 

conservative temperature, and instantaneous density, respectively (see Eq. 3 in Jagadeesh et al., 2015).  322 

For this inter-comparison purpose, validation datasets were prepared for the period of 2017-2020 by calculating in-323 

situ OHC in both Kelvin and Celsius scales for the depth extents of 50 m, 100 m, 150 m, 200 m, 300 m, 500 m, and 700 m. 324 

Daily OHC data were obtained from the NRSC's Bhuvan portal and collocated with the corresponding Celsius-scaled in-situ 325 

OHC data to evaluate the NRSC-ANN model products. Similarly, satellite-based SST and SSS data, and climatological TSL 326 

and OHC data were extracted by collocating with Kelvin-scaled in-situ OHC data for our ANN model to generate the OHC 327 

products. Evaluation of these two OHC products was done separately by means of the normalized metrics such as R, MBPE, 328 

and MAPE (Table 4).  329 

Table 4. Statistical results for our ANN model and NRSC-ANN model obtained from another independent dataset of different 330 

depth extents used in this study. 331 

Depth 

(m) 
N 

R MBPE (%) MAPE (%) 

NRSC-

ANN 

model 

Proposed 

ANN 

model 

NRSC-

ANN 

model 

Proposed 

ANN 

model 

NRSC-

ANN 

model 

Proposed 

ANN 

model 

50 15595 0.9223 0.9303 -0.0012 0.0227 1.4762 0.1104 

100 14546 0.8575 0.8780 -0.3539 0.0303 2.5145 0.1732 

150 14303 0.7678 0.8215 -0.6887 -0.0263 3.2401 0.2053 

200 13513 0.7169 0.8152 -1.1048 0.0072 3.4667 0.1903 

300 12833 0.7732 0.8690 -1.2656 0.0218 3.1671 0.1525 

500 12410 0.8965 0.9346 -0.6996 -0.0052 2.3939 0.1073 

700 11959 0.9447 0.9628 -0.6214 -0.0370 2.0035 0.0891 

 332 
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As expected, our ANN model gave more accurate OHC estimates for all depth extents and hence yielded higher 334 

correlation coefficients and lower errors as compared to the NRSC-ANN model. The accuracy of OHC estimates produced by 335 

our ANN model also increased with depth in contrast to that of NRSC-ANN OHC estimates. Our ANN model was 336 

accomplished with the selection of key input parameters based on a precise theoretical basis, accurate computation of in-situ 337 

parameters, and selection of separate ANN architectures.  338 

It should be mentioned that SLA is the combined outcome of temperature (thermosteric), salinity (halosteric), and 339 

water mass changes in the oceanic water column. The direct use of satellite altimeter-derived SLA without eliminating 340 

halosteric and water mass change components results in weaker correlations with OHC of various depth extents. Moreover, 341 

the different time spans were used in the computation of the mean sea level at AVISO (1993-2012) and monthly climatology 342 

data at WOA09 (1955-2006). The pair of merged SLA data from AVISO/CMEMS and climatological OHC data from WOA 343 

could lead to discrepancies in OHC estimates. Under these considerations, the present study was focused on TSL modelling 344 

rather than the Alt-GRACE approach (Meyssignac et al., 2019) to implement the ocean thermal expansion method to estimate 345 

OHC changes. 346 

Celsius scale can be used to compute in-situ OHC where the temperature gradient is always on the positive side. The 347 

usage of the Celsius scale when the temperatures are less than zero and greater than the seawater freezing point is not 348 

appropriate because of the potential negative values. In addition, the conservative temperature is an accurate variable compared 349 

to the direct in-situ temperature or potential temperature. It represents the actual heat content of a mixture of two water masses 350 

which are characterized by variations of salinity, pressure, and temperature (Pawlowicz, 2013). Thus, the 9conservative 351 

temperature is defined in absolute scale (Kelvin scale) and used to calculate the in-situ OHC. On the other hand, employing 352 

instantaneous density rather than average density is essential to account for the variations in seawater density which is 353 

determined by temperature and salinity changes.  354 

The vertical distribution of conservative temperature varies from equatorial to polar regions, and it follows a non-355 

linear profile with a mixed layer at the top, a thermocline at the middle, and a deep ocean layer at the bottom. This suggests 356 

that it is appropriate to customize the ANN hyperparameters for each modelling depth. In this study, hyperparameter tuning 357 

was performed for each modelling depth and it resulted in a better understanding of OHC patterns at various depth extents.  358 

Though a clear improvement was achieved with the proposed OHC models, a relatively lower correlation was observed for 359 

our ANN models in the depth range of 100-300 m over the North Indian Ocean (refer to Table 4). Similar results were obtained 360 

for the NRSC-ANN models as well. It implies that the proposed ANN models less generalized the OHC patterns at the 361 

intermediate depths over the North Indian Ocean. The underlying factors for the less generalized OHC patterns are described 362 

in the following section. Nevertheless, the results demonstrated that the proposed ANN models contributed to improving the 363 

accuracy and quality of OHC products through the ocean thermal expansion method. 364 
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4.4. Potential sources of uncertainty in OHC estimates 365 

The relationship between the surficial parameters (SST and SSS) and depth-integrated parameters (TSL and OHC) is the prime 366 

factor for determining the efficiency of the proposed OHC models of various depth extents (Klemas and Yan, 2014). This 367 

relationship is mainly influenced by a wide range of geophysical processes including ocean currents, vertical mixing 368 

(upwelling/downwelling), stratification, fronts, gyres, eddies, and air-sea interface processes. In addition, different climate 369 

modes and oscillations, solar radiation, sea ice, phytoplankton growth, freshwater inputs, and winds can also be considered in 370 

this context. Monthly climatological CTD profiles obtained from the WOA-18 database were objectively analyzed to calculate 371 

the mean SST and SSS fields over a period of 1955-2017. Hence, these climatological data along with real-time SST and SSS 372 

data enabled the ANN models to better generalize the prevailing geophysical processes and subsequent patterns in TSL & 373 

OHC of various depth extents. The same can be perceived from the improved accuracy levels observed during the independent 374 

validations carried out on unseen data (refer to Sects. 4.1 and 4.2) and the comparison with NRSC-OHC model products (Sect. 375 

4.3).  376 

It should be noted that the established relationship between the input parameters (surficial and climatological) and 377 

output parameters (TSL & OHC patterns) may not hold great in the events of the above complex geophysical processes where 378 

the physical oceanographic conditions differ significantly from the prevailing conditions. Moreover, the relative contributions 379 

of these geophysical processes are subject to vary depending on the time and location of the water parcel in oceans. Slightly 380 

lower accuracy of the proposed ANN models can be attributed to the influence of these complex geophysical processes. The 381 

in-situ and satellite-based retrieval of all these atmospheric/surface/subsurface processes and their incorporation into the ANN 382 

models is difficult because of the scarcity/sparsity of the required datasets in different spatial, temporal, and vertical scales. 383 

The above factors constitute a potential source of uncertainty in OHC estimates and reduce the generalization ability of the 384 

model. Further efforts are needed to better understand, quantify, and eliminate the different sources of observed uncertainties 385 

caused by the complex geophysical oceanic processes. More number of in-situ CTD profiles are required to be collected and 386 

analyzed in such oceanic regions to address the associated complex patterns and processes. Future releases of WOA will 387 

certainly resolve the complex patterns in OHC data with the inclusion of newly collected CTD profiles over various oceanic 388 

basins. 389 

5. A preliminary analysis of global OHC data 390 

This section presents a map of the global distribution of model-derived OHC estimates and its variation from 1993 to 2020. 391 

This time period (1993-2020) was chosen based on the availability of satellite-based input data. The NOAA's AVHRR OISST 392 

version 2.1 products are available from 1981 to present, but the ECMWF's ORAS5 SSS data are available from 1993 to 2020 393 

only. Thus, for this preliminary analysis, daily OHC estimates were generated for the period from 1993 to 2020 and the 394 

corresponding annual mean estimates were computed as shown in Figs. 8a and 8b. Subsequently, the OHC anomalies (OHCA) 395 

were estimated by subtracting the annual mean data of 2020 from those of 1993 (Fig. 8c). It is worth mentioning that the heat 396 
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content estimates presented in this section cover all the modelling depths. The bathymetry values of each pixel were rounded 397 

off to the nearest and lowest modelling depth (d) with the help of GEBCO-2020 bathymetry data (GEBCO Compilation Group, 398 

2020), and the corresponding OHCd values were considered for that pixel. As the proposed models are built for open oceanic 399 

regions, the regions covered by sea ice are masked in both north and south poles by verifying the corresponding daily sea ice 400 

concentration data obtained from the National Snow and Ice Data Center (Meier et al., 2021).  401 

The spatial patterns of annual OHC product are nearly identical in both 1993 and 2020 (Figs. 8a and 8b). The relatively 402 

higher OHC values (830 GJ m-2 - 840 GJ m-2) at a depth of 700 m are observed over the North Atlantic subtropical gyre, Gulf 403 

stream, north Arabian sea, eastern Mediterranean sea, and southeastern side of the Madagascar. Next, the OHC values of range 404 

820 GJ m-2 - 830 GJ m-2 are observed over a vast portion of the major oceanic basins, namely the western parts of the north 405 

Pacific ocean (105° E – 150° W, 0° – 35° N), the western and central parts of the south Pacific ocean (115° E – 100° W, 0° – 406 

40° S), the north Atlantic ocean (90° W – 30° E, 0° – 40° N, excluding the north Atlantic subtropical gyre, the Gulf stream, 407 

and the eastern Mediterranean sea), the southwestern half of the south Atlantic ocean (55° W – 15° E, 15° S – 40° S), and the 408 

Indian ocean (25° E – 150° E, 25° N - 40° S, excluding the north Arabian sea and the southeastern side of the Madagascar). 409 

Subsequently, the OHC values in the range of 810 GJ m-2 - 820 GJ m-2 are observed over the eastern part of the Pacific ocean 410 

and equatorial Pacific ocean (170° E– 70° W, 45° S – 40° N), northeastern part of the north Atlantic ocean (50° W – 5° W, 411 

40° – 55° N) , the equatorial Atlantic ocean, the northeastern half of the south Atlantic ocean (60° W – 25° E, 0° S – 45° S), 412 

and the southeastern parts of the Indian ocean (60° E – 150° E, 30° S – 50° S). And, the OHC values in the range of 780 GJ 413 

m-2 - 810 GJ m-2  are observed in the latitudinal range of 40° – 70° in both the hemispheres with a decreasing trend from 40° 414 

to 70°N. In the case of oceanic regions shallower than 700 m, the OHC values are observed to vary widely as shown in Figs. 415 

8a and 8b.  416 

Though the spatial patterns and magnitudes of OHC are almost same during the years 1993 and 2020, well-marked 417 

warming/cooling regions can be observed in the order of O(100) during 2020 with reference to 1993 (Fig. 8c). The ocean 418 

warming of 1.5 GJ m-2 - 5 GJ m-2 is observed over the Red Sea, Kuroshio extension, Gulf Stream, and southern side of the 419 

Africa (30° S – 45° S). On the other hand, cooling of the same range is observed over the north Atlantic subpolar gyre and 420 

southern parts of the Indian Ocean. In addition, several eddy regions are also seen with warming/cooling patterns (Fig. 8c).  421 

In a broader perspective, the observed spatial patterns in OHC and its temporal variation can be attributed to 422 

consistent/anomalous warming/cooling in response to the ocean / atmospheric circulations, anthropogenic climate change and 423 

internal variability. Consequently, a comprehensive analysis is to be carried out to gain new insights into the underlying 424 

phenomena responsible for the observed OHC distributions and its variation in a separate study. 425 

  426 

 427 
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 428 

Figure 8. Maps showing the spatial distribution of OHC during (a) 1993 and (b) 2020, and (c) the observed variation in 2020 429 

with reference to 1993. The oceanic regions shallower than 20 m depth and/or covered with sea ice are masked with a dark 430 

gray flag. 431 
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6. Conclusion 432 

Accurate reconstruction of OHC and analysis of its regional patterns and long-term global records are critical for estimating 433 

the Earth Energy Imbalance and understanding the evolution of the climate change. Owing to the lack of instrumentation to 434 

cover geographic and depth ranges, OHC estimates from the in-situ measured temperatures are temporally limited and 435 

insufficiently widespread to capture its spatiotemporal changes and structures. OHC estimates from either different mapping 436 

methods or Ocean reanalyses (ORAs) have yielded large uncertainties in past studies. Thus, improving OHC estimates through 437 

a novel satellite-based method is the major step forward to overcome sparse observations and reduce the uncertainty in OHC 438 

trends. In this study, we proposed an artificial network model to estimate OHC changes in global oceans. The proposed ANN 439 

model incorporates the ocean thermal expansion method as a promising tool to estimate OHC changes from satellite data. 440 

Accurate implementation of the ocean thermal expansion method was challenging due to the inability of the present-day 441 

satellite systems to directly measure the ocean thermal expansion/contraction component. In this study, we proposed a satellite-442 

based novel approach to better implement the ocean thermal expansion method by establishing a relationship between the 443 

surficial parameters such as SST & SSS and subsurface T-S profiles. This model predicts the depth-integrated TSL component 444 

by making use of SST & SSS data and then utilizes the predicted TSL to estimate OHC changes. For this application, we 445 

developed ANN models for TSL and OHC of various depth extents such as 20 m, 30 m, 40 m, 50 m, 100 m, 150 m, 200 m, 446 

250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 550 m, 600 m, 650 m, and 700 m. The performance of these TSL & OHC models 447 

was assessed by using in-situ-based independent data and satellite-based independent validation data, which were extracted 448 

from the unseen in-situ CTD profiles of the Argo program. Observed high correlations and low errors indicated that the 449 

proposed ANN models performed exceptionally good on unseen data of all depth extents without any overfitting and can be 450 

used in conjunction with the sea ice thermodynamics-based OHC model of the ice-covered oceanic regions (Prakash and 451 

Shanmugam, 2022) to better study the trends and patterns in three-dimensional distribution of OHC in the global oceans. 452 

The model development and validation databases were prepared by using in-situ CTD profiles obtained from the Argo 453 

program and collocated with the corresponding satellite-based daily data of SST (AVHRR v2.1) and SSS (ORAS5). The 454 

multilayer perceptron regressor algorithm of deep neural networks was used and its architecture was optimized by evaluating 455 

different combinations of hyperparameters for each modelling depth using the particle swarm optimization technique. Precise 456 

consideration of theoretical aspects in the selection of input parameters, accurate computation of in-situ OHC, and customized 457 

ANN architectures enabled the proposed models to establish the accurate relationships between the surficial parameters and 458 

depth-integrated OHC (TSL) of various depths extents. The overall performance of the proposed models on satellite data was 459 

good, suggesting that these models can be used for a variety of applications subjected to the accuracy requirements and can 460 

produce accurate satellite-based OHC (TSL) estimates at various depth extents than previously possible. However, the 461 

influence of complex geophysical processes on the generalization ability of ANN models is discussed, and realized that the 462 

proposed models relatively less generalized the data in the events of complex geophysical processes. Further research should 463 

focus on implementation of these models over the oceanic regions with complex geophysical processes. More number of in-464 

https://doi.org/10.5194/esd-2024-1
Preprint. Discussion started: 15 January 2024
c© Author(s) 2024. CC BY 4.0 License.



24 

 

situ CTD profiles need to be collected and analyzed in such oceanic regions to address the associated complex patterns. Future 465 

releases of WOA will certainly resolve the complex patterns in OHC data with the inclusion of newly collected CTD profiles 466 

over various oceanic basins. However, the scope of the current research includes minimizing the observed marginal gap by 467 

exploring new methods/parametrizations in satellite-based OHC modelling approaches. 468 
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Appendix A 617 

 618 
Figure A1. The spatial distribution of in-situ data points used for (a) model development (N=633004 Argo CTD profiles) and 619 

(b) validation (N=388469 unseen Argo CTD profiles) in the case of TSL700 and OHC700.  620 
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 625 

Figure A2. Spatial distribution of mean percentage errors observed during the insitu-based independent validation of OHC 626 

models. The oceanic regions shallower than 20 m and/or covered with sea ice are marked with a dark gray color. 627 
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 629 
Figure A3. Spatial distribution of mean percentage errors observed during the satellite-based independent validation of OHC. 630 

The oceanic regions shallower than 20 m and/or covered with sea ice are marked with a dark gray color. 631 
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