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Abstract. Ocean heat content (OHC) is a depth-integrated physical oceanographic variable used to precisely measure ocean 7 

warming. Because of the limitations associated with in-situ CTD data and Ocean Reanalysis system products, satellite-based 8 

approaches have gained importance in estimating the daily to decadal variability of OHC over the vast oceanic region. Efforts 9 

to minimize the biases in satellite-based OHC estimates are needed to realize the actual response of the ocean to the brunt of 10 

climate change. In the current study, an attempt has been made to better implement the satellite-based ocean thermal expansion 11 

method to estimate OHC at 17 depth extents ranging from the surface to 700m. To achieve this objective, artificial neural 12 

network (ANN) models were developed to derive thermosteric sea level (TSL) from a given dataset of sea surface temperature, 13 

sea surface salinity, geographical coordinates, and climatological TSL. The model-derived TSL data were further used to 14 

estimate OHC changes based on the thermal expansion efficiency of heat. Statistical analysis showed high correlation 15 

coefficients and low errors in satellite-derived TSL / OHC of 700 m modeling depth (N 388469, R 0.9926 / 0.9922, RMSE 16 

1.16 m / 1.56 GJ m-2, MBE -0.1917 m / -0.2400 GJ m-2, MBPE -0.4560% / -0.0290%, MAE 0.763 m / 1.029 GJ m-2, and 17 

MAPE 2.34% / 0.13%) and nearly similar results at the remaining modeling depths. These results suggest that the proposed 18 

ANN models are capable of generating satellite-based daily OHC maps by covering both shallower and deeper oceanic regions 19 

of varying bathymetry levels (≥ 20 m).  In addition, the first-ever attempt to estimate the ocean thermal expansion component 20 

(i.e., TSL) from satellite data was successful and the model-derived TSL can be used to obtain high-end sea-level rise products 21 

in the global ocean. 22 

1. Introduction 23 

Owing to the vast spatial coverage and high heat capacity , oceans balance the planet's temperatures by absorbing 89% of the 24 

excess atmospheric heat caused by the greenhouse effect and global warming (Abraham et al., 2013; IPCC, 2014; Roemmich 25 

et al., 2015; Riser et al., 2016; Trenberth et al., 2016; Meyssignac et al., 2019; Von Schuckmann et al., 2023). A precise 26 

understanding of the depth-wise penetration of this heat and its accumulation in the upper oceanic layers is of great importance 27 

to the scientific community (Liang et al., 2015; Baxter, 2016; IPCC, 2022). Ocean heat content (OHC), a depth-integrated 28 

physical oceanographic variable that refers to the amount of heat energy accumulated between any two depths, has gained 29 
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attention in various studies of the Earth's  Energy Imbalance (Von Schuckmann et al., 2016; Trenberth et al., 2016; Cheng et 30 

al., 2017; Meyssignac et al., 2019; Cheng et al., 2022). Thus, accurate estimation of OHC changes at various depth extents is 31 

vital and is the motivation of the current study.   32 

To obtain a complete picture of OHC changes at different depths, the direct measurements of in-situ conductivity, 33 

temperature, and depth (CTD) profiles are necessary. These in situ measurements of the ocean properties are limited in terms 34 

of depth and spatial coverages, leading to the biased global reconstruction of OHC estimates owing to the sparse measurement 35 

data and spatial coverage deficiencies (Jagadeesh et al., 2015; Meyssignac et al., 2019; Marti et al., 2022). However, the in-36 

situ CTD profile measurements have been used to develop and validate the different OHC models (Momin et al., 2011; 37 

Jagadeesh et al., 2015; Su et al., 2020; Prakash and Shanmugam, 2022). On the other hand , synthetic CTD profile data 38 

generated by the Ocean Reanalysis systems (ORA) have been used to study OHC variability in spatial and temporal scales 39 

(Balmaseda et al., 2015; Palmer et al., 2017). More recently, satellite-based methods have become crucial to overcome the 40 

limitations associated with in-situ CTD data and Ocean Reanalysis system products , to ensure the OHC trend at a global scale, 41 

and to understanding the evolution of the Earth's climate system (Meyssignac et al., 2019; Prakash and Shanmugam, 2022).  42 

The existing satellite-based OHC algorithms can be broadly grouped into three approaches based on the employed 43 

principles/parametrizations: (i) internal tide oceanic tomography (ITOT), (ii) ocean net surface heat fluxes, and (iii) ocean 44 

thermal expansion. Apart from these approaches, research is exploring ways to make use of tidal magnetic satellite observations 45 

(Irrgang et al., 2019), electrical conductance (Trossman and Tyler, 2019), and atmospheric oxygen & carbon dioxide 46 

concentrations (Resplandy et al., 2018) to infer OHC changes. The ITOT technique involves correlating the satellite altimeter-47 

derived internal tide phase changes with ocean warming to estimate the OHC variability. This technique is still at the proof-48 

of-concept level and the associated challenges remain to be addressed (Zhao, 2016a, 2017; Meyssignac et al., 2019). The OHC 49 

estimation through the ocean net surface heat fluxes employs several assumptions and approximations in deriving the input 50 

parameters to compute the radiative and turbulent heat fluxes, which in turn leads to higher uncertainty in global OHC changes 51 

(Wild et al., 2015; L’Ecuyer et al., 2015; Meyssignac et al., 2019).  52 

On the other hand, the ocean thermal expansion method is a promising technique for the estimation of OHC by 53 

considering the thermosteric sea level (TSL) and expansion efficiency of heat (EEH). Numerous satellite-based OHC models 54 

have been developed based on the sea surface height anomaly data from altimeters, water mass change equivalent sea level 55 

anomaly data from the Gravity Recovery and Climate Experiment mission (GRACE), sea surface temperature from the various 56 

radiometers onboard satellites, and wind speed/stress from scatterometers/numerical weather models. Pioneering work done 57 

by White and Tai (1995), Chambers et al. (1997), Polito et al. (2000), and Sato et al. (2000) have attempted to implement the 58 

ocean thermal expansion method based on a relationship between OHC and satellite altimeter-based sea surface height anomaly 59 

(SSHA). It should be mentioned that regardless of the source, the volume of seawater changes when it is subjected to 60 

heating/cooling, and it eventually reflects in sea surface topography. The SSHA data recorded by the satellite altimeters 61 

comprise the sea surface topography changes due to tides, atmospheric pressure, salinity (haline), and barotropic flows along 62 

with the thermal effects. The SSHA changes due to the tides and atmospheric pressure can be corrected, but the effects of 63 
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salinity and barotropic flows remain unresolved with the OHC estimates produced by Wang and Tai (1995) and Chambers et 64 

al. (1997). Sato et al. (2000) have introduced a haline correction factor as the integral product of the haline contraction 65 

coefficient and salinity anomaly from in-situ CTD profile data. Owing to the limitations associated with in-situ data, the in-66 

situ-based haline correction cannot be applied to satellite altimeter-based SSHA data while correlating with the space and time-67 

varying OHC data. Jayne et al. (2003) have proposed the Alt-GRACE approach to resolve the effect of barotropic flows in sea 68 

surface topography by subtracting the satellite gravimetry-derived water mass change component from SSHA data. Though 69 

the Alt-GRACE approach has improved the accuracy of satellite-based OHC estimates compared to Wang and Tai (1995), 70 

Chambers et al. (1997), Polito et al. (2000), and Sato et al. (2000), the issues associated with the haline effects and other 71 

approximations on the ocean thermal expansion coefficient and seawater density data have led to significant uncertainties in 72 

satellite-based OHC estimates.  73 

With the advancement of artificial intelligence, several researchers have attempted to model OHC by directly relating 74 

it with the satellite-based parameters of relevance by using deep-learning regression techniques (Jagadeesh and Ali, 2006; 75 

Momin et al., 2011; Chacko et al., 2015; Jagadeesh et al., 2015; Su et al., 2020, 2021; Marti et al., 2022; Lyman and Johnson, 76 

2023). These deep-learning models have oversimplified the OHC problem by neglecting the effects of salinity and barotropic 77 

flows. In addition, no previous work have accounted for the space and time-varying nature of the ocean thermal expansion 78 

coefficient and seawater density in OHC computations. The other common drawbacks with the existing work are discussed in 79 

Sect. 4.3. Consequently, there is a need for developing a satellite-based model to accurately implement the ocean thermal 80 

expansion method to estimate OHC by resolving all the issues associated with salinity variation, barotropic flows, ocean 81 

thermal expansion, seawater density, choice of temperature and its units.  82 

Given the above background, we have made a major attempt to develop and implement the satellite-based ocean 83 

thermal expansion models for estimating OHC changes at various depth extents (such as 20 m, 30 m, 40 m, 50 m, 100 m, 150 84 

m, 200 m, 250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 550 m, 600 m, 650 m, and 700 m). It enables the research community 85 

to generate satellite-based OHC maps of varying bathymetry levels (≥ 20 m) by covering both shallower and deeper oceanic 86 

waters. For this, artificial neural network (ANN) architectures were developed to estimate TSL for the given sea surface 87 

temperature (SST), sea surface salinity (SSS), geographical coordinates, and climatological TSL. The model-derived TSL 88 

estimates were then used to estimate OHC changes by accounting the expansion efficiency of heat. The proposed models are 89 

capable of estimating TSL and OHC accurately at multiple depth extents. The robustness of the new models was tested by 90 

comparison of model-derived TSL and OHC with in-situ data. 91 

2. Data 92 

2.1. In-situ data for model development and in-situ validation 93 

For this study, in-situ CTD profile data (collected by Argo floats) were obtained from the World Ocean Database-2018 of the 94 

NOAA's National Centers for Environmental Information Data Archive for the period of 2005-2020 (Boyer et al., 2018a). 95 
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These data have been extensively used by the research community for various ocean applications (Levitus et al., 2009; Momin 96 

et al., 2011; Levitus et al., 2012; Cheng et al., 2014; Roemmich et al., 2015; Jagadeesh et al., 2015; Su et al., 2020). The World 97 

Ocean Database (WOD) comprises the oceanographic data of diverse biogeochemical parameters that have been collected by 98 

various institutions, agencies, individual researchers, and data recovery initiatives. The quality-controlled CTD profile data 99 

(accepted_value flag) of standard depth levels recommended by the International Association of Physical Oceanography 100 

(1936) were considered in this study to compute the TSLd and OHCd parameters and to obtain the SST and SSS data. The 101 

standard depth levels considered for deriving the TSL and OHC are given as 20 m, 30 m, 40 m, 50 m, 100 m, 150 m, 200 m, 102 

250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 550 m, 600 m, 650 m, and 700 m. The in-situ TSLd and OHCd parameters were 103 

computed by applying the integration formulae (Eqs. 1 & 2) on the CTD profile data of depth range from the ocean surface to 104 

the respective standard depth (d) and the corresponding SST and SSS values were extracted. Similarly, the climatological 105 

parameters such as TSLclim,d and OHCclim,d were computed from the monthly climatological temperature and salinity data of 41 106 

vertical levels obtained from the World Ocean Atlas-2018 (WOA) (Boyer et al., 2018b). The theoretical considerations for 107 

computing OHC change at a depth can be found in Prakash and Shanmugam (2022) (Prakash and Shanmugam, 2022), and the 108 

same were  adopted in this study. The Gibbs-SeaWater (GSW) Oceanographic Toolbox of TEOS-10 (IOC et al., 2010) was 109 

used to compute the in-situ-based parameters including  110 

𝑂𝐻𝐶𝑑 =  ∫ 𝜌𝐶𝑃𝛩 𝑑𝑧
𝑑

0
          (1) 111 

𝑇𝑆𝐿𝑑 =  ∫ 𝛼𝛩 𝑑𝑧
𝑑

0
          (2) 112 

where OHCd refers to the heat energy accumulated in an oceanic layer of depth range from the surface to a stipulated depth 113 

(d) and is given in the units of joules per unit area (J m-2). Similarly, TSLd (in meters) refers to the thermosteric sea level 114 

integrated from the surface to a stipulated depth (d). And, Θ is the conservative temperature in K (derived from in-situ 115 

temperature, absolute salinity, and pressure), ρ is the seawater density in kg m-3 (derived from the conservative temperature, 116 

absolute salinity, and pressure), CP is the specific heat capacity (= 3991.87 J kg-1 K-1), and α is the thermal expansion coefficient 117 

in K-1 (derived from the conservative temperature, absolute salinity, and pressure).  118 

Python programming was used to prepare the individual databases for all the standard depth levels by extracting CTD 119 

profile data from the WOD and WOA NetCDF files with the help of NetCDF4, NumPy, Pandas, and GSW libraries. Each 120 

database (in-situ OHC, in-situ TSL, in-situ SST, in-situ SSS, climatological OHC, climatological TSL, and WOA geographical 121 

coordinates) was divided into two datasets, one for the model development spanning from 2005-2016 and one for (in-situ-122 

based) validating the model spanning from 2017-2020, by ensuring a well distribution in spatiotemporal scales over the global 123 

open ocean. The spatial distribution of data points used to model TSL700 and OHC700 is shown in Fig. A1. The in-situ CTD 124 

profiles of depth coverage shallower than 700 m are also included in this process of deriving the TSL and OHC of other depth 125 

extents. Indeed, the number of CTD profiles and their distribution in global oceans is higher than the CTD profile density as 126 

shown in Fig. A1. 127 
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2.2. Satellite-based validation 128 

For the validation period 2017-2020, the NOAA Advanced Very High-Resolution Radiometer (AVHRR) Optimum 129 

Interpolation Sea Surface Temperature products (OISST v2.1) were used for daily SST data of 0.25° spatial resolution (Huang 130 

et al., 2021). Daily SSS data of the same spatial resolution were obtained from the ORAS5 Ocean reanalysis system of the 131 

European Centre for Medium-Range Weather Forecasts at the CMEMS portal (Product ID: 132 

GLOBAL_REANALYSIS_PHY_001_031) (Zuo et al., 2017). The NetCDF4 and NumPy Python libraries were used to read 133 

and resample satellite data to the WOA-18 grid, and to collocate with the corresponding Argo in-situ data points. The accuracy 134 

of the satellite-based SST and ORA-based SSS was verified by Argo-measured SST and SSS data (N = 244722). The observed 135 

R, RMSE, MBE, and MAE values in SST & SSS validations are 0.99 & 0.99, 0.51°C & 0.26 PSU, -0.05°C & -0.006 PSU, 136 

and 0.33°C & 0.12 PSU, respectively. High correlation coefficients and low errors indicate the minimal deviation of satellite-137 

based data from the actual (in-situ) data and ensure the reliability of satellite data in accurately representing the physical 138 

oceanographic conditions. 139 

3. Methodology 140 

3.1. Theoretical formulations  141 

Ocean thermal expansion is the best proxy to model the heat content accumulated in an oceanic layer. Unlike freshwater, 142 

seawater expands when it warms and contracts when it cools to temperatures above its freezing point. The volumetric 143 

expansion of seawater is non-isotropic in nature due to the differences in the degree of constraint in different directions. In a 144 

vertical direction, atmospheric pressure exerts a normal force on the seawater parcel at the surface. The magnitude of this 145 

normal/vertical force is less compared to the horizontal forces exerted by physical barriers such as continental boundaries and 146 

geographic features on the ocean floor. It allows the ocean thermal expansion of seawater in the vertical direction rather than 147 

the horizontal direction, as the seawater is less constrained in the vertical direction compared to the horizontal direction. The 148 

amount of change in seawater volume in response to the net warming/cooling depends on the absolute conservative temperature 149 

and ocean thermal expansion coefficient (Eq. 2). Following are the GSW functions (Eqs. 3-5) (IOC et al., 2010) involved in 150 

the calculation of TSL (Eq. 2) for the given set of measured temperature (T), practical salinity (SP), pressure (P), longitude 151 

(x), and latitude (y). 152 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦 (𝑆𝐴) = 𝑔𝑠𝑤. 𝑆𝐴_𝑓𝑟𝑜𝑚_𝑆𝑃 (𝑆𝑃, 𝑃, 𝑥, 𝑦)      (3) 153 

Θ = 𝑔𝑠𝑤. 𝐶𝑇_𝑓𝑟𝑜𝑚_𝑇(𝑆𝐴, 𝑇, 𝑃)          (4) 154 

𝛼 = 𝑔𝑠𝑤. 𝐴𝑙𝑝ℎ𝑎(𝑆𝐴, Θ, 𝑃)          (5) 155 

Hence, an attempt has been made in this study to model TSL as a function of SST, SSS, and geographical coordinates. The 156 

existing correlations between the proposed input parameters and the targeted output parameter were explored by employing 157 

in-situ-based data used in the model development process (Fig. 1). 158 
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 159 

Figure 1. Heatmap showing the Pearson correlation coefficients between the input parameters (i.e., SST, SSS, and 160 

geographical coordinates) and the output parameter (TSL) of various depth extents. 161 

It is observed that SST has an almost one-to-one correlation with TSL at shallower depth extents, and can be solely 162 

used to model the thermal expansion of upper oceanic layers. Despite a decreasing trend in correlation strength when moving 163 

towards deeper depths, SST plays a primary role in accounting for TSL variations at deeper depths, because of its strong 164 

correlations with TSL. Observed weaker correlations between SSS and TSL which are plausible owing to the salinity's 165 

secondary role in TSL variations as compared to the temperature variable. However, an increasing trend in correlation 166 

coefficients between SSS and TSL is observed towards the deeper depth extents. Hence, SST and SSS are complementary to 167 

each other in resolving the TSL variations, and their combination plays a major role in modelling TSL of all depth extents 168 

considered in this study. Apart from these physical parameters, absolute salinity used in the computation of seawater density, 169 

conservative temperature, and ocean thermal expansion coefficient is a function of geographical coordinates along with 170 

practical salinity and pressure (Eq. 3). By considering all these theoretical considerations and observed correlations, an attempt 171 

has been made to model TSL of various depth extents by employing SST, SSS, and geographical coordinates as the input 172 

parameters along with the climatological TSL (Fig. 2). Here, TSLd is an external manifestation of OHCd stored in an oceanic 173 

layer based on EEHd (Eq. 6). The model-derived TSL is further used to estimate OHC changes (as shown in Fig. 2 along with 174 

climatological OHC) as follows, 175 

𝑂𝐻𝐶𝑑 =
𝑇𝑆𝐿𝑑

𝐸𝐸𝐻𝑑
            (6) 176 

where EEH is a conversion factor that explains the relationship between the relative changes in ocean heat content and the 177 

corresponding seawater thermal expansion. As it varies as a function of temperature, salinity, and pressure, EEH is not a 178 

constant value over the global ocean. Hence, ANN modelling is employed in this study to derive OHC from TSL by accounting 179 

the complex variations in EEH.  180 
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 181 

Figure 2. Flow chart representing the parameters involved in TSL and OHC modelling. The red and blue dashed boxes 182 

represent the TSL and OHC frameworks employed in ANNs, respectively. 183 

 184 

3.2. ANN model description 185 

This section explains the various steps and architectures involved in the ANN modelling of TSL and OHC. The multilayer 186 

perceptron regressor algorithm of deep neural networks was used to model both TSL and OHC (Pedregosa et al., 2011). It is 187 

observed that the input data of geophysical parameters are given in different units and scales. The range and order of SST, 188 

SSS, latitude, and longitude data are -1.8 °C to 34.15 °C & O(101), 2.53 PSU to 40.45 PSU & O(101), -76° to 80° & O(101), 189 

and -180° to 180° & O(102), respectively. In addition, the range and order of TSLclim,d and OHCclim,d are also distinct and vary 190 

with water depth. Hence, the input data were normalized using the StandardScaler class of Scikit-Learn and feed-forwarded 191 

through the neural networks. This StandardScaler normalizes the raw data to ensure the mean and standard deviation of each 192 

input parameter as 0 and 1, respectively. It allows the ANN model to focus on the relative importance and relationships between 193 

the input parameters rather than their magnitude. The standardized input data were injected into the corresponding neurons in 194 

the input layer and forward propagated through the hidden layers and then the output layer by applying the random weights 195 

and rectified linear unit (ReLU) activation function at each neuron (Fig. 3). The model outputs were compared with the actual 196 

data and computed mean squared error (MSE) using a loss function (Eq. 7). In addition, L2 regularization (𝛼𝐿2) was employed 197 

to add a penalty term to the loss value to prevent overfitting. The observed error was then backpropagated through the network 198 

to update weights and biases using the Adam optimizer based on the learning rate and gradient of the error (see Eq. 8 in Prakash 199 

and Shanmugam, 2022). This process is repeated until the validation score improves more than 0.0001.  200 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑝𝑟𝑒𝑑,𝑖 − 𝑌𝑎𝑐𝑡,𝑖)

2         (7) 201 

where N is the number of samples, 𝑌𝑝𝑟𝑒𝑑,𝑖 is the predicted data, and 𝑌𝑎𝑐𝑡,𝑖 is the actual data. The model development work was 202 

carried out by employing both the input and output parameters from the in-situ sources. It enables the ANN models to 203 

implement the input data of any remote sensing sources to produce OHC estimates subject to the reliability and accuracy of 204 



8 

 

those data sources. The particle swarm optimization technique (Kennedy and Eberhart, 1995; Shi and Eberhart, 1998) was 205 

employed for hyperparameter tuning, and the hyperparameters' combinations corresponding to each modelling depth are 206 

presented in Table 1. The Joblib module of Scikit-Learn library was used to save all the TSL and OHC models of various 207 

depths considered in this study, and the same module was used to load the TSL and OHC models of desired depth with the 208 

help of a unified Python script. 209 

 210 

Figure 3. Schematic of the ANN architecture employed in the modelling of TSL and OHC parameters. The flow of the 211 

modelling and the associated mathematical transformations/formulations are given by considering a typical ANN architecture 212 

with n input parameters, one output parameter, p hidden layers, and q1 to qp neurons in each hidden layer. 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 
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Table 1. The ANN model hyperparameters employed in TSL (regular font) and OHC (bold font) modelling of various depth 222 

extents.  223 

Depth  

(m) 
Hidden layers Batch size         𝜶𝑳𝟐 

Learning 

rate 

No. of  

iterations 

20 
38, 10, 55 178 0.00422 0.0004 14 

49, 12, 34 183 0.09023 0.0001 26 

30 
100, 97, 36 165 0.00001 0.0001 14 

11, 50, 55 58 0.00079 0.0001 16 

40 
64, 71, 5 106 0.00001 0.0001 16 

57, 89, 46 148 0.09691 0.0001 19 

50 
64, 99, 30 241 0.01478 0.0001 17 

56, 59, 10 139 0.07188 0.0001 22 

100 
70, 100, 100 256 0.00001 0.0009 30 

25, 36, 63 256 0.03556 0.0016 44 

150 
47, 83, 92 60 0.00001 0.0005 34 

49, 77, 28 69 0.05176 0.0318 16 

200 
100, 100, 16 256 0.00315 0.0022 33 

27, 48, 67 202 0.05638 0.0367 18 

250 
56, 82, 67 174 0.00001 0.0019 39 

2, 100, 77 73 0.00001 0.0037 22 

300 
83, 28, 74 128 0.00001 0.0028 36 

48, 92, 10 87 0.01364 0.0459 12 

350 
85, 25, 67 128 0.04606 0.0013 20 

27, 53, 48 141 0.08585 0.0851 14 

400 
89, 75, 96 64 0.04859 0.0007 26 

49, 1, 80 138 0.00001 0.0031 20 

450 
51, 83, 95 128 0.08582 0.0005 42 

47, 27, 52 32 0.00263 0.0055 24 

500 
71, 100, 62 128 0.00001 0.0012 27 

45, 100, 63 126 0.05162 0.0607 15 

550 
47, 89, 91 256 0.00843 0.0011 44 

64, 75, 78 114 0.05176 0.0634 15 

600 
98, 65, 6 16 0.00001 0.0001 48 

63, 17, 10 180 0.04654 0.0538 23 

650 
100, 69, 75 16 0.00001 0.0001 18 

53, 74, 40 176 0.07072 0.0048 20 

700 
98, 37, 37 164 0.04262 0.0015 32 

83, 63, 79 216 0.01217 0.0742 19 
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4. Results and discussion 224 

The performance of TSL and OHC models on unseen data from the in-situ and satellite sources was assessed using density 225 

scattergrams and statistical metrics. These metrics include mean bias error (MBE), mean bias percentage error (MBPE), mean 226 

absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), Pearson correlation 227 

coefficient (R), slope, and intercept (also referred and presented in Prakash and Shanmugam, 2022). To better understand the 228 

model performance, mean values of in-situ data were computed for the validation period and used to compute the weighted 229 

average of validation metrics across all the depth extents. 230 

4.1 In-situ validations with unseen data 231 

The main objective of the in-situ-based validation with unseen data is to evaluate the generalization ability and overall accuracy 232 

of TSL and OHC-ANN models on unseen data. For this purpose, the in-situ measured variables such as SST, SSS, and latitude 233 

/ longitude were inputted into these models to output the predicted values which were then compared with in-situ TSL and 234 

OHC data. The number of validation (unseen) data points and their spatial distribution are presented in Table 2 and Fig. A1(b). 235 

The validation density scattergrams showed high correlation and low errors with the model-predicted values (Figs. 4 and 5). 236 

The performance of the TSL models is exceptionally good on unseen data of all the depth extents without any overfitting 237 

(Table 2 and Fig. 4). Similar model performance can also be observed in the case of OHC estimates as it primarily depends on 238 

the TSL estimates (Table 2 and Fig. 5). The high values of R indicate a strong positive correlation between the predicted and 239 

in-situ OHC (TSL) values. This suggests that the models are generally capable of capturing OHC (TSL) patterns in the data. 240 

The slope and intercept of the regression line between predicted and actual values are close to 1 and 0, respectively. This 241 

suggests that the model-predicted values have good agreement with the actual values with a minimal bias. The RMSE values 242 

are notably small implying that the predicted OHC values have a little random error when compared to the actual data. The 243 

MBE and MBPE values are close to zero, indicating that the model-predicted values have a negligible systematic error when 244 

compared to the actual values. The low MAE and MAPE values are also indicating a high accuracy with the model-predicted 245 

OHC values. These results clearly demonstrate that the proposed ANN models succeeded in generalizing and accurately 246 

predicting the measured OHC (TSL) data with a high accuracy.  247 

Spatial distribution of mean percentage error (MPE) over the global open oceanic region was computed by averaging 248 

the observed percentage errors of all modelling depths available at each pixel (Fig. A2) for estimating the OHC changes. It is 249 

observed that the models' performance is comparatively low over the north-western parts of the North Atlantic gyre, 250 

southwestern parts of the South Atlantic gyre, Kuroshio extension, and Antarctic circumpolar regions due to the high eddy 251 

kinetic energy (Beech et al., 2022; Ni et al., 2023). An elaborate note on the potential sources of the observed MPE values is 252 

given in Sect. 4.4. Further, the entire validation dataset was divided into two parts in terms of the observed overestimation and 253 

underestimation of data. In the cases of overestimation (underestimation), 95% of the data points have a MPE of less than or 254 

equal to 0.47% (0.44%). The lower values of MPE indicate that the proposed ANN models succeed in capturing the OHC 255 
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patterns in all major oceanic basins and can be used to produce accurate OHC products based on their implementation on real-256 

time data. 257 

 258 
Figure 4. Density scatterplots showing the observed agreement between model-predicted TSL values and in-situ measured 259 

TSL values during insitu-based validation. 260 
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 261 
Figure 5. Density scatterplots showing the observed agreement between model-predicted OHC values and in-situ measured 262 

OHC values during insitu-based validation. 263 



13 

 

Table 2. Statistical results from the insitu-based validation data of TSL (regular font) and OHC (bold font) against unseen 264 

Argo measured in-situ data. The units for the various metrics used in TSL & OHC validations are given as follows: Mean (m 265 

& GJ m-2), RMSE (m & GJ m-2), MBE (m & GJ m-2), MBPE (%), MAE (m & GJ m-2), MAPE (%), and intercept (m & GJ m-266 

2). 267 

Depth 

(m) 

N 

Mean R RMSE MBE MBPE MAE MAPE Slope Intercept 
Data for  

model 

development 

Data for  

model 

validation 

20 801303 536719 
1.44 0.9997 0.01 -0.0007 0.0575 0.006 0.60 0.9981 0.002 

23.91 0.9997 0.02 -0.0011 -0.0047 0.009 0.04 0.9987 0.030 

30 794166 532149 
2.15 0.9993 0.03 0.0029 0.3764 0.015 0.99 0.9982 0.007 

32.85 0.9992 0.04 0.0010 0.0027 0.021 0.06 0.9992 0.030 

40 787074 526571 
2.85 0.9988 0.05 -0.0009 0.1325 0.027 1.28 0.9988 0.002 

47.78 0.9988 0.07 -0.0008 -0.0014 0.038 0.08 0.9978 0.103 

50 779134 520102 
3.54 0.9984 0.07 -0.0008 0.0861 0.042 1.47 0.9975 0.008 

59.70 0.9984 0.10 0.0015 0.0028 0.057 0.10 0.9972 0.169 

100 731065 476709 
6.80 0.9974 0.18 -0.0129 -0.1725 0.120 2.09 0.9960 0.015 

119.00 0.9973 0.25 -0.0279 -0.0233 0.169 0.14 0.9981 0.196 

150 712120 460278 
9.83 0.9967 0.29 -0.0407 -0.3419 0.205 2.41 0.9905 0.053 

177.97 0.9965 0.40 -0.0369 -0.0198 0.279 0.16 0.9867 2.331 

200 697314 446979 
12.64 0.9961 0.38 -0.0001 0.0571 0.272 2.51 0.9960 0.050 

236.62 0.9959 0.53 -0.0076 -0.0029 0.372 0.16 0.9939 1.426 

250 686378 436906 
15.28 0.9959 0.46 -0.0361 -0.1803 0.332 2.49 0.9943 0.051 

295.04 0.9957 0.63 -0.0242 -0.0078 0.450 0.15 0.9918 2.392 

300 678526 429501 
17.80 0.9956 0.55 -0.0471 -0.0023 0.392 2.53 0.9851 0.218 

353.29 0.9954 0.74 -0.0155 -0.0039 0.525 0.15 0.9889 3.902 

350 672148 423688 
20.23 0.9949 0.65 -0.1035 -0.3383 0.462 2.59 0.9860 0.179 

411.40 0.9947 0.87 -0.0357 -0.0081 0.613 0.15 0.9861 5.676 

400 666605 418686 
22.57 0.9947 0.72 -0.0425 -0.0526 0.505 2.52 0.9887 0.213 

469.39 0.9945 0.97 -0.0067 -0.0010 0.676 0.14 0.9879 5.683 

450 661336 413987 
24.83 0.9946 0.78 -0.1227 -0.4726 0.547 2.47 0.9916 0.087 

527.25 0.9943 1.06 -0.1681 -0.0315 0.741 0.14 0.9872 6.588 

500 654880 408240 
27.03 0.9949 0.80 -0.0604 -0.1866 0.558 2.29 0.9945 0.089 

585.03 0.9947 1.07 -0.0761 -0.0127 0.747 0.13 0.9894 6.105 

550 649850 403357 
29.14 0.9948 0.85 -0.0462 -0.0937 0.586 2.19 0.9911 0.213 

642.69 0.9945 1.15 0.0347 0.0057 0.787 0.12 0.9900 6.479 

600 645150 398855 
31.21 0.9945 0.91 -0.0390 -0.0205 0.623 2.18 0.9883 0.327 

700.28 0.9942 1.23 0.0298 0.0046 0.838 0.12 0.9873 8.937 

650 640479 392921 
33.18 0.9941 0.99 0.0185 0.0903 0.670 2.19 0.9949 0.189 

757.74 0.9939 1.33 0.0086 0.0014 0.892 0.12 0.9904 7.296 

700 633004 388469 
35.13 0.9941 1.04 -0.1928 -0.4791 0.711 2.17 0.9858 0.307 

815.15 0.9938 1.41 -0.2413 -0.0292 0.960 0.12 0.9836 13.134 

Weighted average 
0.9961 0.74 -0.0620 -0.1591 0.513 2.29 0.9927 0.177 

0.9960 1.03 -0.0515 -0.0087 0.708 0.13 0.9914 6.648 

 268 
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4.2. Satellite validations with unseen data  269 

The performance of the proposed ANN models in satellite-based applications has been assessed by injecting daily SST and 270 

SSS data from the satellite sources (refer to Sect. 2.2) in place of the in-situ sources. The choice of satellite sources for SST 271 

and SSS data is completely subjective to the intended application and their compatibility in terms of spatial and temporal 272 

resolutions, whereas geographical coordinates data can be employed from WOA corresponding to the climatological TSL and 273 

OHC data. It is recommended to resample SST and SSS data to the WOA grid to eliminate the discrepancies arising from the 274 

non-uniform spatial references among the input data. The satellite-based SST, ORA-based SSS, latitude, and longitude data 275 

were then given as the inputs to the ANN models for producing TSL and OHC estimates of all the depth extents considered in 276 

this study. Consequently, the model-derived TSL and OHC estimates were compared with Argo-measured in-situ data, and 277 

the satellite-based validation results are presented in this section (Table 3 and Figs. 6 and 7).   278 

The performance of the proposed ANN models on satellite-based validation data (Table 3, Figs. 6 and 7) is rather 279 

similar to their performance on in-situ-based validation data (Table 2, Figs. 4 and 5). However, the models' performance on 280 

satellite-based validation data was marginally low as compared to the in-situ-based validation data, likely due to the errors 281 

associated with the satellite-derived products. According to the statistical results, the R values were observed to be slightly 282 

lower by an average percentage decrease of 0.11% across all depth extents. Similarly, the RMSE, MBE, MBPE, MAE, and 283 

MAPE were slightly larger than those values observed during the in-situ-based validation datasets. This relatively lower 284 

performance of the proposed models on the satellite-based validation datasets can be observed by comparing the spatial maps 285 

and the distribution of MPE (Figs. A2 and A3). The relatively higher magnitudes of MPE can be observed over the 286 

northwestern parts of the North Atlantic gyre, southwestern parts of the South Atlantic gyre, Kuroshio extension, and Antarctic 287 

circumpolar regions based on in-situ-based validation data. And, 95% of the data have a MPE of less than or equal to 0.56% 288 

(0.5%) in the cases of overestimation (underestimation), which is higher than those reported in Sect. 4.1. Though the 289 

performance of the proposed models' on satellite-based data is comparatively lower than the in-situ-based validation data, the 290 

observed difference in various validation metrics is rather insignificant. It substantiates the efficiency of the proposed models 291 

in estimating OHC from satellite data at various depth extents over the major oceanic basins. However, it should be noted that 292 

the validation results presented in this section are subject to vary with the other sources of satellite-based SST and SSS data. 293 
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 294 
Figure 6. Density scatterplots showing the observed agreement between model-predicted TSL values and in-situ measured 295 

TSL values during satellite-based validation. 296 
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 297 
Figure 7. Density scatterplots showing the observed agreement between model-predicted OHC values and in-situ measured 298 

OHC values during satellite-based validation. 299 
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Table 3. Statistical results from satellite-based validation data of TSL (regular font) and OHC (bold font) against unseen Argo 300 

measured in-situ data. The units for the various metrics used in TSL & OHC validations are given as follows: Mean (m & GJ 301 

m-2), RMSE (m & GJ m-2), MBE (m & GJ m-2), MBPE (%), MAE (m & GJ m-2), MAPE (%), and intercept (m & GJ m-2). 302 

Depth 

(m) 

N 

Mean R RMSE MBE MBPE MAE MAPE Slope Intercept 
Data for 

 model 

development 

Data for 

 model 

validation 

20 801303 536719 
1.44 0.9987 0.03 -0.0034 -0.0822 0.016 1.67 0.9960 0.002 

23.91 0.9987 0.04 -0.0049 -0.0201 0.023 0.09 0.9965 0.080 

30 794166 532149 
2.15 0.9984 0.04 -0.0008 0.2562 0.027 1.88 0.9961 0.008 

32.85 0.9984 0.06 -0.0043 -0.0118 0.037 0.10 0.9969 0.108 

40 787074 526571 
2.85 0.9980 0.07 -0.0054 0.0211 0.041 2.08 0.9969 0.003 

47.78 0.9980 0.09 -0.0070 -0.0143 0.057 0.12 0.9959 0.191 

50 779134 520102 
3.54 0.9977 0.09 -0.0060 -0.0262 0.057 2.17 0.9960 0.008 

59.70 0.9976 0.12 -0.0056 -0.0090 0.077 0.13 0.9956 0.257 

100 731065 476709 
6.80 0.9966 0.20 -0.0206 -0.2651 0.140 2.56 0.9951 0.013 

119.00 0.9965 0.28 -0.0385 -0.0322 0.194 0.16 0.9971 0.301 

150 712120 460278 
9.83 0.9958 0.32 -0.0496 -0.4165 0.229 2.81 0.9897 0.052 

177.97 0.9956 0.44 -0.0491 -0.0266 0.311 0.17 0.9858 2.474 

200 697314 446979 
12.64 0.9951 0.43 -0.0091 -0.0022 0.300 2.83 0.9951 0.053 

236.62 0.9950 0.59 -0.0200 -0.0081 0.409 0.17 0.9929 1.653 

250 686378 436906 
15.28 0.9948 0.52 -0.0450 -0.2117 0.364 2.79 0.9928 0.065 

295.04 0.9946 0.71 -0.0365 -0.0119 0.492 0.17 0.9904 2.807 

300 678526 429501 
17.80 0.9943 0.62 -0.0556 -0.0279 0.428 2.79 0.9837 0.235 

353.29 0.9941 0.83 -0.0271 -0.0071 0.571 0.16 0.9875 4.398 

350 672148 423688 
20.23 0.9939 0.71 -0.1052 -0.3291 0.494 2.80 0.9846 0.206 

411.40 0.9936 0.95 -0.0381 -0.0086 0.655 0.16 0.9847 6.264 

400 666605 418686 
22.57 0.9935 0.79 -0.0450 -0.0422 0.540 2.72 0.9869 0.252 

469.39 0.9933 1.06 -0.0103 -0.0017 0.723 0.15 0.9860 6.557 

450 661336 413987 
24.83 0.9934 0.87 -0.1234 -0.4559 0.586 2.67 0.9898 0.129 

527.25 0.9931 1.17 -0.1694 -0.0316 0.792 0.15 0.9854 7.508 

500 654880 408240 
27.03 0.9934 0.91 -0.0707 -0.2034 0.605 2.50 0.9924 0.134 

585.03 0.9933 1.21 -0.0909 -0.0151 0.807 0.14 0.9874 7.293 

550 649850 403357 
29.14 0.9932 0.97 -0.0484 -0.0768 0.636 2.40 0.9887 0.280 

642.69 0.9929 1.30 0.0315 0.0053 0.851 0.13 0.9876 8.021 

600 645150 398855 
31.21 0.9930 1.03 -0.0431 -0.0139 0.675 2.38 0.9861 0.392 

700.28 0.9927 1.39 0.0242 0.0039 0.906 0.13 0.9850 10.52 

650 640479 392921 
33.18 0.9926 1.11 0.0193 0.1132 0.719 2.37 0.9925 0.267 

757.74 0.9924 1.48 0.0092 0.0015 0.957 0.13 0.9880 9.090 

700 633004 388469 
35.13 0.9926 1.16 -0.1917 -0.4560 0.763 2.34 0.9835 0.387 

815.15 0.9922 1.56 -0.2400 -0.0290 1.029 0.13 0.9813 14.982 

Weighted average 
0.9950 0.83 -0.0657 -0.1645 0.554 2.54 0.9909 0.224 

0.9948 1.15 -0.0566 -0.0104 0.763 0.14 0.9896 7.799 

 303 
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4.3. Comparison with the contemporary satellite-based OHC models  304 

Comparison of our ANN models with the existing models is crucial to determine the relative uncertainty in the OHC estimates. 305 

Previously, an ANN algorithm suite was developed by the National Remote Sensing Centre (NRSC) of ISRO to disseminate 306 

the daily OHC products over the North Indian Ocean (40°E-120°E, 0°-30°N) at a spatial resolution of 0.25 degree (Ali et al., 307 

2012; Jagadeesh et al., 2015). This algorithm suite includes ANN models to estimate OHC at multiple depth extents such as 308 

50 m, 100 m, 150 m, 200 m, 300 m, 500 m, and 700 m for the given input data of sea level anomaly (SLA), SST, and OHCclim,d. 309 

It estimates OHC changes by utilizing the satellite altimetry-based SLA data from AVISO (Archiving, Validation, and 310 

Interpretation of Satellite Oceanographic data) data portal, SST from the Advanced Microwave Scanning Radiometer-2 311 

(AMSR2) onboard JAXA's Global Change Observation Mission 1st-Water (GCOM-W1), and climatological OHC from the 312 

World Ocean Atlas-2009 monthly climatological CTD profiles. The multilayer perceptron regressor algorithm of neural 313 

networks with three hidden layers was used to estimate OHC of all seven depth extents. The number of data points used to 314 

develop and validate the NRSC-ANN algorithm were 11472 and 2479, respectively. To estimate OHC changes at different 315 

depths, this algorithm employs the Celsius scale, in-situ temperature, and average density data instead of the Kelvin scale, 316 

conservative temperature, and instantaneous density, respectively (see Eq. 3 in Jagadeesh et al., 2015).  317 

For this inter-comparison purpose, validation datasets were prepared for the period of 2017-2020 by calculating in-318 

situ OHC in both Kelvin and Celsius scales for the depth extents of 50 m, 100 m, 150 m, 200 m, 300 m, 500 m, and 700 m. 319 

Daily OHC data were obtained from the NRSC's Bhuvan portal and collocated with the corresponding Celsius-scaled in-situ 320 

OHC data to evaluate the NRSC-ANN model products. Similarly, satellite-based SST and ORA-based SSS data, and 321 

climatological TSL and OHC data were extracted by collocating with Kelvin-scaled in-situ OHC data for our ANN model to 322 

generate the OHC products. Evaluation of these two OHC products was done separately by means of the normalized metrics 323 

such as R, MBPE, and MAPE (Table 4).  324 

Table 4. Statistical results for our ANN model and NRSC-ANN model obtained from another unseen dataset of different depth 325 

extents used in this study. 326 

Depth 

(m) 
N 

R MBPE (%) MAPE (%) 

NRSC-

ANN 

model 

Proposed 

ANN 

model 

NRSC-

ANN 

model 

Proposed 

ANN 

model 

NRSC-

ANN 

model 

Proposed 

ANN 

model 

50 15595 0.9223 0.9303 -0.0012 0.0227 1.4762 0.1104 

100 14546 0.8575 0.8780 -0.3539 0.0303 2.5145 0.1732 

150 14303 0.7678 0.8215 -0.6887 -0.0263 3.2401 0.2053 

200 13513 0.7169 0.8152 -1.1048 0.0072 3.4667 0.1903 

300 12833 0.7732 0.8690 -1.2656 0.0218 3.1671 0.1525 

500 12410 0.8965 0.9346 -0.6996 -0.0052 2.3939 0.1073 

700 11959 0.9447 0.9628 -0.6214 -0.0370 2.0035 0.0891 

 327 

 328 
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As expected, our ANN model gave more accurate OHC estimates for all depth extents and hence yielded higher 329 

correlation coefficients and lower errors as compared to the NRSC-ANN model. The accuracy of OHC estimates produced by 330 

our ANN model also increased with depth in contrast to that of NRSC-ANN OHC estimates. Our ANN model was 331 

accomplished with the selection of key input parameters based on a precise theoretical basis, accurate computation of in-situ 332 

parameters, and selection of separate ANN architectures.  333 

It should be mentioned that SLA is the combined outcome of temperature (thermosteric), salinity (halosteric), and 334 

water mass changes in the oceanic water column. The direct use of satellite altimeter-derived SLA without eliminating 335 

halosteric and water mass change components results in weaker correlations with OHC of various depth extents. Moreover, 336 

the different time spans were used in the computation of the mean sea level at AVISO (1993-2012) and monthly climatology 337 

data at WOA09 (1955-2006). The pair of merged SLA data from AVISO/CMEMS and climatological OHC data from WOA 338 

could lead to discrepancies in OHC estimates. Hence, the prime criterion followed in choosing the input parameters in the 339 

current study is the theoretical relationship between the input and output parameters rather than the direct usage of all the 340 

relevant parameters. The one-to-one relationship between OHC and TSL is employed in the OHC modeling. To arrive at TSL, 341 

the theoretical dependency of TSL on temperature and salinity is considered in TSL modeling work. However, SLA and 342 

climatological OHC data of the same base period are desirable and can be used in OHC (TSL) modeling if available in the 343 

future. 344 

Celsius scale can be used to compute in-situ OHC where the temperature gradient is always on the positive side. The 345 

usage of the Celsius scale when the temperatures are less than zero and greater than the seawater freezing point is not 346 

appropriate because of the potential negative values. In addition, the conservative temperature is an accurate variable compared 347 

to the direct in-situ temperature or potential temperature. It represents the actual heat content of a mixture of two water masses 348 

which are characterized by variations of salinity, pressure, and temperature (Pawlowicz, 2013). Thus, the 9conservative 349 

temperature is defined in absolute scale (Kelvin scale) and used to calculate the in-situ OHC. On the other hand, employing 350 

instantaneous density rather than average density is essential to account for the variations in seawater density which is 351 

determined by temperature and salinity changes.  352 

The vertical distribution of conservative temperature varies from equatorial to polar regions, and it follows a non-353 

linear profile with a mixed layer at the top, a thermocline at the middle, and a deep ocean layer at the bottom. This suggests 354 

that it is appropriate to customize the ANN hyperparameters for each modelling depth. In this study, hyperparameter tuning 355 

was performed for each modelling depth and it resulted in a better understanding of OHC patterns at various depth extents.  356 

Though a clear improvement was achieved with the proposed OHC models, a relatively lower correlation was observed for 357 

our ANN models in the depth range of 100-300 m over the North Indian Ocean (refer to Table 4). Similar results were obtained 358 

for the NRSC-ANN models as well. It implies that the proposed ANN models less generalized the OHC patterns at the 359 

intermediate depths over the North Indian Ocean. The underlying factors for the less generalized OHC patterns are described 360 

in the following section. Nevertheless, the results demonstrated that the proposed ANN models contributed to improving the 361 

accuracy and quality of OHC products through the ocean thermal expansion method. 362 
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4.4. Potential sources of uncertainty in OHC estimates 363 

The relationship between the surficial parameters (SST and SSS) and depth-integrated parameters (TSL and OHC) is the prime 364 

factor for determining the efficiency of the proposed OHC models of various depth extents (Klemas and Yan, 2014). This 365 

relationship is mainly influenced by a wide range of geophysical processes including ocean currents, vertical mixing 366 

(upwelling/downwelling), stratification, fronts, gyres, eddies, and air-sea interface processes. In addition, different climate 367 

modes and oscillations, solar radiation, sea ice, phytoplankton growth, freshwater inputs, and winds can also be considered in 368 

this context. Monthly climatological CTD profiles obtained from the WOA-18 database were objectively analyzed to calculate 369 

the mean SST and SSS fields over a period of 1955-2017. Hence, these climatological data along with real-time SST and SSS 370 

data enabled the ANN models to better generalize the prevailing geophysical processes and subsequent patterns in TSL & 371 

OHC of various depth extents. The same can be perceived from the improved accuracy levels observed during the validations 372 

carried out on unseen data (refer to Sects. 4.1 and 4.2) and the comparison with NRSC-OHC model products (Sect. 4.3).  373 

It should be noted that the established relationship between the input parameters (surficial and climatological) and 374 

output parameters (TSL & OHC patterns) may not hold great in the events of the above complex geophysical processes where 375 

the physical oceanographic conditions differ significantly from the prevailing conditions. Moreover, the relative contributions 376 

of these geophysical processes are subject to vary depending on the time and location of the water parcel in oceans. Slightly 377 

lower accuracy of the proposed ANN models can be attributed to the influence of these complex geophysical processes. The 378 

in-situ and satellite-based retrieval of all these atmospheric/surface/subsurface processes and their incorporation into the ANN 379 

models is difficult because of the scarcity/sparsity of the required datasets in different spatial, temporal, and vertical scales. 380 

The above factors constitute a potential source of uncertainty in OHC estimates and reduce the generalization ability of the 381 

model. Hence, it is advisable to carry out vicarious calibration with the help of contemporary in-situ CTD profiles before 382 

adopting the OHC estimates for further scientific analyses of specific interest in both regional and global scales. Further efforts 383 

are needed to better understand, quantify, and eliminate the different sources of observed uncertainties caused by the complex 384 

geophysical oceanic processes. More number of in-situ CTD profiles are required to be collected and analyzed in such oceanic 385 

regions to address the associated complex patterns and processes.  386 

5. Spatiotemporal variability of OHC  387 

Here, we present the long-term variability of model-derived OHC and its comparison with the existing global OHC products 388 

for the period 1993-2020. The time period (1993-2020) was chosen based on the availability of satellite-based input data to 389 

generate the model-derived OHC estimates and the existing OHC products considered. Thus, model-derived annual OHC 390 

estimates were generated from 1993 to 2020 and computed annual time series of model-derived OHC anomalies (OHCA) with 391 

reference to the 1993-2020 long-term mean. It is worth mentioning that the model-derived heat content estimates presented in 392 

this section represent OHC changes in both shallower and deep oceanic basins of bathymetry levels ≥ 20 m. The bathymetry 393 
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values of each pixel were rounded off to the nearest and lowest modeling depth (d) with the help of GEBCO-2020 bathymetry 394 

data, and the corresponding OHCd values were considered for that pixel (GEBCO Compilation Group, 2020).  395 

 On the other hand, OHCA time series annual maps obtained from various global OHC products such as the National 396 

Centers for Environmental Information (NCEI), Institute of Atmospheric Physics (IAP), Pacific Marine Environmental 397 

Laboratory (PMEL), and OPEN-LSTM have been employed for comparison. NCEI employs the Objective analysis method 398 

on in-situ CTD profile data of World Ocean Database-2009 and estimates annual OHCA at a spatial resolution of 1° with 399 

reference to the 1955-2006 long-term mean (Levitus et al., 2012). Similarly, IAP employs the ensemble optimal interpolation 400 

with a dynamic ensemble approach on in-situ CTD profile data of World Ocean Database-2013 and distributes monthly OHC 401 

estimates at a spatial resolution of 1° (Cheng et al., 2017). Annual OHC means were computed from IAP monthly OHC data, 402 

and annual OHCA estimates were generated with reference to the 1993-2020 long-term mean. Recently, PMEL has developed 403 

a random forest regression model to predict OHCA of 0-40 m, 40-90 m, 90-190 m, 190-290 m, 290-450 m, 450-700 m, 700-404 

950 m, 950-1450 m, etc with reference to the 1993-2022 long-term mean. This PMEL random forest regression model employs 405 

satellite-based SST, SSH (SLA), latitude, longitude, and time data to predict weekly OHCA estimates at a spatial resolution 406 

of 0.25° (Lyman and Johnson, 2023). In the current study, PMEL layer-wise OHCA estimates from surface to 700 m have 407 

been summed up at each pixel to arrive at weekly OHCA spatial maps, and subsequently computed corresponding annual 408 

OHCA estimates. Similarly, Su et al., (2021) have developed a long short-term memory neural network method to produce 409 

monthly OHC estimates (OPEN-LSTM) at a spatial resolution of 1°. OPEN-LSTM employs satellite-based SSH (SLA), SST, 410 

zonal and meridional components of sea surface wind, latitude, longitude, and day of the year to predict monthly OHC. Annual 411 

OHC means were computed from OPEN-LSTM monthly OHC data, and annual OHCA estimates were generated with 412 

reference to the 1993-2020 long-term mean.  413 

 Model-derived annual OHCA estimates were regridded to 1° spatial resolution to maintain uniform spatial reference 414 

among all the OHC products considered. As the proposed models are built for open oceanic regions, the regions covered by 415 

sea ice are masked in both the north and south poles by verifying the corresponding sea ice concentration data obtained from 416 

the National Snow and Ice Data Center (Meier et al., 2021). Subsequently, long-term variability maps (Fig. 8) and time series 417 

plots (Fig. 9) were produced to compare model-derived OHC estimates with the existing global OHC products. Further, the 418 

information on percentage variance explained (PVE) by the observed long-term trend values is provided to realise the short-419 

term trends or periodic signals in OHC variability (Fig. A4). Higher PVE values indicate the persistent increase or decrease in 420 

OHC throughout the study period, and vice versa.  421 

 Lower magnitudes of long-term warming/cooling trends (± 0.05 GJ m-2 Year-1) are observed throughout the global 422 

ocean (Fig. 8a). The corresponding PVE values are observed to be very low (≤ 30%) which infer the intermittent trends in 423 

majority of the global ocean rather than persistent warming/cooling (Fig. A4a). The same can be observed from the non-linear 424 

distribution of OHCA time series indicating short-term periods of alternate warming and cooling during the study period (Fig. 425 

9). However, the oceanic regions linked with Kusoshio current, Gulf stream, Antarctic circumpolar current, North Atlantic 426 
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cold blob, southeastern Pacific are experiencing relatively higher magnitudes of persistent warming/cooling (± 0.1 to 0.15 GJ 427 

m-2 Year-1, PVE 50-90%).  428 

  429 

Figure 8. Spatial maps showing the long-term trends of OHC obtained from (a) the current model, (b) NCEI, (c) IAP, (d) 430 

PMEL, and (e) OPEN-LSTM products. Note that the oceanic regions shallower than 20 m depth and/or covered with sea ice 431 

are masked with a dark gray color. 432 

 433 
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The spatial patterns of OHCA trends observed from NCEI (Fig. 8b), IAP (Fig. 8c), and PMEL (Fig. 8d) products are 434 

almost similar and relatively more warming regions compared to the model-derived OHC estimates (Fig. 8a). Similarly, the 435 

spatial distribution of corresponding PVE values is also same in NCEI, IAP, and PMEL products with higher values over vast 436 

oceanic regions of the Atlantic, Indian, and southeastern Pacific Oceans (Figs. A4b-A4d). NCEI, IAP, and PMEL products 437 

indicating persistent warming conditions over the vast oceanic regions of the Pacific, Atlantic, and Indian Oceans. The same 438 

can be observed from the persistent long-term warming throughout the study period (Fig. 9). On the other hand, OPEN-LSTM 439 

OHC estimates indicating lower warming patterns all over the globe except the North Atlantic cold blob and some parts of the 440 

Antarctic circumpolar current (Fig. 8e) with higher PVE values over vast oceanic regions of Pacific, Atlantic, and Indian 441 

Oceans (Fig. A4e). As a result, persistent long-term warming has been observed throughout the study period (Fig. 9). 442 

 443 

Figure 9. Time series distribution of global mean OHCA obtained from the current model and the existing OHC products 444 

observed over the period 1993-2020. Note that the NCEI time series has been shifted by subtracting 0.3 GJ m-2 to better 445 

compare with the remaining OHC time series plots. 446 

The observed time series plots have indicated contrasting trends between the current OHC model and the existing 447 

products. The observed time series plot of model-derived OHCA has indicated alternate periods of short-term cooling and 448 

warming during the current study period. Global open oceans have witnessed a cooling trend of −0.017 GJ m-2 Year-1 (PVE 449 

76.99%) during 1993-1999, a warming trend of +0.069 GJ m-2 Year-1 (PVE 92.73%) during 1999-2002, a cooling trend of 450 

−0.054 GJ m-2 Year-1 (PVE 99.71%) during 2002-2008, and a warming trend of +0.007 GJ m-2 Year-1 (PVE 36.50%) during 451 

2008-2020. The observed results indicate the efficiency of the current model by capturing the ocean cooling during 2003-2006 452 

(Loehle, 2009; Lyman et al., 2006) and the global warming hiatus during 1998-2013 (Trenberth, 2015). Whereas the observed 453 

time series plots of NCEI, IAP, PMEL, and OPEN-LSTM products indicated persistent warming trends of +0.017 GJ m-2 Year-454 

1 (PVE 95.75%), +0.019 GJ m-2 Year-1 (PVE 97.94%), +0.0198 GJ m-2 Year-1 (PVE 97.19%), and +0.0195 GJ m-2 Year-1 (PVE 455 

97.48%), respectively. However, full-depth pan-global mean OHCA estimates by including OHC estimates over ice-covered 456 
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oceanic regions are required to substantiate these global ocean cooling and global warming hiatus signatures, and to realize 457 

the role of excess heat added by anthropogenic climate change. 458 

6. Conclusion 459 

Accurate reconstruction of OHC and analysis of its regional patterns and long-term global records are critical for estimating 460 

the Earth Energy Imbalance and understanding the evolution of the climate change. Owing to the lack of instrumentation to 461 

cover geographic and depth ranges, OHC estimates from the in-situ measured temperatures are temporally limited and 462 

insufficiently widespread to capture its spatiotemporal changes and structures. OHC estimates from either different mapping 463 

methods or Ocean reanalyses (ORAs) have yielded large uncertainties in past studies. Thus, improving OHC estimates through 464 

a novel satellite-based method is the major step forward to overcome sparse observations and reduce the uncertainty in OHC 465 

trends. In this study, we proposed an artificial network model to estimate OHC changes in global oceans. The proposed ANN 466 

model incorporates the ocean thermal expansion method as a promising tool to estimate OHC changes from satellite data. 467 

Accurate implementation of the ocean thermal expansion method was challenging due to the inability of the present-day 468 

satellite systems to directly measure the ocean thermal expansion/contraction component. In this study, we proposed a satellite-469 

based novel approach to better implement the ocean thermal expansion method by establishing a relationship between the 470 

surficial parameters such as SST & SSS and subsurface T-S profiles. This model predicts the depth-integrated TSL component 471 

by making use of SST & SSS data and then utilizes the predicted TSL to estimate OHC changes. For this application, we 472 

developed ANN models for TSL and OHC of various depth extents such as 20 m, 30 m, 40 m, 50 m, 100 m, 150 m, 200 m, 473 

250 m, 300 m, 350 m, 400 m, 450 m, 500 m, 550 m, 600 m, 650 m, and 700 m. The performance of these TSL & OHC models 474 

was assessed by using in-situ-based data and satellite-based validation data, which were extracted from the unseen in-situ CTD 475 

profiles of the Argo program. Observed high correlations and low errors indicated that the proposed ANN models performed 476 

exceptionally good on unseen data of all depth extents without any overfitting and can be used in conjunction with the sea ice 477 

thermodynamics-based OHC model of the ice-covered oceanic regions (Prakash and Shanmugam, 2022) to better study the 478 

pan-global OHC changes by covering both open and ice-covered oceans of varying bathymetry levels (≥ 20 m). 479 

The model development and validation databases were prepared by using in-situ CTD profiles obtained from the Argo 480 

program and collocated with the corresponding satellite-based daily data of SST (AVHRR v2.1) and SSS (ORAS5). The 481 

multilayer perceptron regressor algorithm of deep neural networks was used and its architecture was optimized by evaluating 482 

different combinations of hyperparameters for each modelling depth using the particle swarm optimization technique. Precise 483 

consideration of theoretical aspects in the selection of input parameters, accurate computation of in-situ OHC, and customized 484 

ANN architectures enabled the proposed models to establish the accurate relationships between the surficial parameters and 485 

depth-integrated OHC (TSL) of various depths extents. The overall performance of the proposed models on satellite data was 486 

good, suggesting that these models can be used for a variety of applications subjected to the accuracy requirements and can 487 

produce accurate satellite-based OHC (TSL) estimates at various depth extents than previously possible. However, the 488 

influence of complex geophysical processes on the generalization ability of ANN models is discussed, and realized that the 489 
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proposed models relatively less generalized the data in the events of complex geophysical processes. Further research should 490 

focus on implementation of these models over the oceanic regions with complex geophysical processes. More number of in-491 

situ CTD profiles need to be collected and analyzed in such oceanic regions to address the associated complex patterns. 492 

However, the scope of the current research includes minimizing the observed marginal gap by exploring new 493 

methods/parametrizations in satellite-based OHC modelling approaches. 494 
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 Appendix A 658 

 659 
Figure A1. The spatial distribution of in-situ data points used for (a) model development (N=633004 Argo CTD profiles) and 660 

(b) validation (N=388469 unseen Argo CTD profiles) in the case of TSL700 and OHC700.  661 

 662 

 663 
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 666 

Figure A2. Spatial distribution of mean percentage errors observed during the in-situ-based validation of OHC models. The 667 

oceanic regions shallower than 20 m and/or covered with sea ice are marked with a dark gray color. 668 

 669 

 670 
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 671 
Figure A3. Spatial distribution of mean percentage errors observed during the satellite-based validation of OHC. The oceanic 672 

regions shallower than 20 m and/or covered with sea ice are marked with a dark gray color. 673 
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 675 

Figure A4. Spatial maps showing the percentage variance explained by the OHC trends obtained from (a) the current model, 676 

(b) NCEI, (c) IAP, (d) PMEL, and (d) OPEN-LSTM products. Note that the oceanic regions shallower than 20 m depth and/or 677 

covered with sea ice are masked with a dark gray color. 678 


