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Abstract. We carry out a nonlinear time series analysis motivated by dynamical systems theory to investigate the links between

temperatures on the eastern South Pacific coast, influenced by the Humboldt Current System, and El Niño–Southern Oscillation

(ENSO) events. To this aim, we use a set of 16 oceanic and atmospheric temperature time series from Chilean coastal stations

distributed between 18° and 45° S. The spectral analysis indicates periodicities that can be related to both internal and external

forcing, involving not only ENSO, but also the Pacific Decadal Oscillation, the Southern Annual Mode, the Quasi-Biennial5

Oscillation and the lunar nodal cycle. The asymptotic neural network test for chaos based on the largest global Lyapunov

exponent indicates that the temperature dynamics along the Chilean coast is not chaotic. We use local Lyapunov exponents

to characterize the short-term stability of the series. Using a cross-entropy test, we find that two stations in northern Chile,

one oceanic, Iquique, and one atmospheric, Arica, present a significant positive cross-dependence between local Lyapunov

exponents and ENSO. Iquique is the station that presents the greater number of regional characteristics and correlates with10

ENSO differently from the rest. The unique large-scale study area combined with time series from hitherto unused sources

(Chilean naval records), reveals the nonlinear dynamics of climate variability in Chile.

1 Introduction

The Peru–Chile or Humboldt Current System (HCS) is a notable phenomenon of the eastern South Pacific coast. It is one of

the most biologically productive eastern border oceanic currents in the world (Pauly and Christensen, 1995) as a consequence15

of wind-driven coastal upwellings occurring at different intensity and frequency in the south-east Pacific (Daneri et al., 2000).

Such oceanic upwelling processes also impact atmospheric temperatures (Sobarzo et al., 2007), through either local or remote

effects (Hormazabal et al., 2001). Atmospheric temperatures are further affected in this region by the warm (El Niño) and cold
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(La Niña) phases of El Niño–Southern Oscillation (ENSO) events (Vargas et al., 2007; Enfield and Allen, 1980; Pizarro and

Montecinos, 2004), and there is great interest in the possible influence of anthropogenic climate change (Sydeman et al., 2014).20

A notable attempt to characterize the spatial and temporal patterns of atmospheric temperatures along the Pacific coast of

South America was by Falvey and Garreaud (2009). They used in situ temperature records and satellite data for the period

1979–2006, and found that in northern and central Chile at latitudes 17°–37° S atmospheric temperatures were cooling by

about 0.20 °C per decade. They ascribed this cooling to a long-term La Niña phenomenon, which is consistent with the negative

temperature trend observed in the Pacific Decadal Oscillation (PDO) for the same period. However, their analysis is limited25

to the period after satellite data became available in the mid-1970s; that is, just when two major El Niño events, of 1982–83

and 1997–98, took place. The effects of these large disturbances on temperature trends are not clear and have to be accounted

for to provide reliable, unbiased conclusions. This is especially true for studies conducted in highly dynamic regions like

the eastern South Pacific, where complex physical land–sea–atmosphere interactions suggest nonlinear relationships between

coastal upwelling, interdecadal variability of El Niño-type events, and global warming (Vargas et al., 2007).30

In a context of global warming, it is important to understand the spatial and temporal patterns of atmospheric temperatures

in complex systems like the eastern South Pacific region, since El Niño events have great impacts on human life (Glantz, 2022),

and, in particular, on human health (Kovats et al., 2003) far beyond the eastern South Pacific (Fan et al., 2017). The nonlinear

approach allows us to overcome many of the limitations of the linear framework. Its foundations were laid in the early 1980s,

when deterministic chaos became a very active field of research (Bradley and Kantz, 2015), including in the geosciences (see35

e.g., Zeng et al., 2015; Nicolis and Nicolis, 1984; Grassberger, 1986; Pierrehumbert, 1990; Vassiliadis et al., 1991; Lorenz,

1991; Cuculeanu and Lupu, 2001; Petkov et al., 2015). Elsner and Tsonis (1992) and Tsonis et al. (1993) proposed that the

atmosphere can be seen as a weakly coupled system and that the finite dimension of the attractor found by some of these

aforementioned studies could correspond to the size of a subsystem. The dynamics of the atmosphere and the climate system

are characterized by sensitivity to initial conditions (Kalnay, 2003), namely, a small error in observing the initial conditions40

is exponentially amplified and this implies the impossibility of mid- and long-term forecasting. This property was already

recognized in the first developments of weather forecasting (Thompson, 1963) and was associated with the nonlinear nature of

deterministic dynamical systems by Lorenz (1963).

In this work we study the dynamics that governs the climatic variability of the south-eastern Pacific coast, its stabilities and

instabilities. We discuss its consequences and its relationship with the HCS, the Pacific anticyclone, upwelling zones and the45

climatic phenomena that impact this region, thereby achieving a better understanding of the system’s dynamics, impossible

to achieve using linear methods. To accomplish this task, we perform a nonlinear analysis of a unique set of daily series of

ambient coastal and sea surface temperatures, distributed between 18° and 45° S and spaced every 3 to 4 degrees of latitude.

We test in a mathematically rigorous fashion for the presence of chaotic dynamics through the largest Lyapunov exponent.

In addition, we characterize the local stability of the systems using Local Lyapunov Exponents (LLEs), which quantify the50

state-dependent predictability over finite time horizons. Also, we study how the dynamics are affected by ENSO events by

comparing LLEs and the Oceanic Niño Index in different latitudes of the Chilean coast. Finally we discuss the periodicities of
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Table 1. Daily and weekly data for oceanic stations.

Station Time Period Daily Data Weekly Data

Arica 1

1951–1970

25566

1015

1982–1999 904

2004–2020 845

Iquique 1984–2020 13376 1910

Antofagasta 1946–2020 27392 3913

Coquimbo 1982–2020 14154 2022

Valparaíso 1961–2020 21914 3130

Talcahuano 1

1949–1974

26297

1356

1976–1989 730

1991–2020 1543

Corral 1985–2020 13027 1861

Puerto Montt 1982–2020 14154 2022

1 The data are split into three series, due to the presence of

gaps.

the time series, the type of dynamics involved and the bioclimatic characteristics found by latitude, in order to understand the

role played by both internal and external forcing in the climatic variability of the eastern South Pacific.

2 Data and Methods55

2.1 Data pre-processing

Sea surface temperature (SST) data were obtained from the Hydrographic and Oceanographic Service of the Chilean Navy

(SHOA), which has kept records for the main ports of the country since the mid 20th century. Data of atmospheric surface

temperature (AST) begin from the first half of the 20th century and were provided by the Meteorological Directorate of Chile

(DMC). Since the DMC weather stations are associated with the presence of airports in major cities, they usually coincide with60

the main ports. For all stations, the daily data were converted to weekly average temperature time series. In case of missing data,

we applied Kalman filtering for imputation using the R package imputeTS (Moritz and Bartz-Beielstein, 2017). Tables 1 and

2 list the oceanic and atmospheric stations used in this study. The first column contains the location names that range from the

northern to the southern regions of Chile and the second column indicates the time range; the third and fourth columns report

the sample sizes.65
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Table 2. Daily and weekly data for atmospheric stations

Station Time Period Daily Data Weekly Data

Arica 1960–2020 22281 3183

Iquique 1981–2020 14520 2074

Antofagasta 1960–2020 22281 3183

Serena 1973–2020 17461 2494

Rodelillo 2
1971–1995

18232
1300

2002–2020 991

Concepción 1970–2020 18597 2656

Valdivia 1968–2020 19268 2752

Puerto Montt 1970–2020 18597 2656

2 The data are split into two series, due to the presence of

gaps.

2.1.1 Study area

Along the south eastern Pacific littoral between 18° and 45° S there is a marked climatic gradient from an arid zone to a rainy

Mediterranean zone. Three major divisions are identifiable along the coast: the north, 18°–30° S, centre, 30°–37° S and south,

37°–45° S, of Chile (Sarricolea et al., 2017). Figure 1 shows the study area and the time series of both SST and AST used in

this work.70

Northern Chile is characterized by a narrow continental shelf, approximately 4–5 km wide, and an arid to semi-arid climate.

Coastal upwelling is permanent in this region. Antofagasta stands out, as its orientation allows the presence of a pool of

persistent hot water: a full-time El Niño (Piñones et al., 2007). La Serena, 30° S, presents a medium-sized continental shelf,

approximately 20–30 km wide, where the surroundings show characteristics of persistent upwelling. Central Chile has a wider

continental shelf that extends about 40 km from the coast. It is characterized by a Mediterranean climate with four well-marked75

seasons. This system is under the influence of a coastal upwelling driven by the wind with a strong seasonal pattern and is one

of the most productive regions of the ocean (Montero et al., 2007), with more than 50% of the fish catch of Chile and 4% of the

world catch. Its hydrographical structure is strongly affected by the runoff of several rivers, whose discharges vary seasonally

with a maximum during winter off Concepción, 36°49’ S. Southern Chile includes the northern limit of Chilean Patagonia, one

the most extensive fjord regions in the world. The climate is rainy. It covers almost 240 000 km2 with an extremely complex80

geomorphology in one of the least densely populated areas of the country. Water circulation essentially follows a two-layered

estuarine flow pattern. One superficial layer of brackish water is fed by rivers and glaciers and another marine layer, mainly

Subantarctic Surface Water (SAAW), enters predominantly through a subsurface layer (Sievers and Silva, 2008).
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Coquimbo
Talcahuano

ValdiviaCorral
Rodelillo

Figure 1. Study area and examples of time series used in this work. a) Sea surface temperature for stations from northern to southern Chile.

b) Study area. c) Atmospheric surface temperature for the same region. d) Study area relative to the Humboldt Current System (HCS). For

comparative purposes, all the time series plots here use the same temperature and time scales.

2.1.2 Trend estimation

One recurring issue with trend estimation is that, in most situations, the detrended series is both dependent and possibly85

heteroskedastic; moreover, missing data are very common and disregarding these aspects leads to invalid confidence bands.

Here, we follow Friedrich et al. (2020), who solve the problem by proposing a novel autoregressive wild bootstrap scheme

that does not need adjustments in the presence of missing data and is particularly suitable for climatological applications. We
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assume that the series Xt, t= 1, . . . ,n admits the following decomposition:

Xt =m(t/n)+ zt, (1)90

zt = σtut,

ut =

∞∑
j=0

ψjεt−j , ψ0 = 1,

where {εt} is a zero-mean i.i.d. sequence with constant variance and finite fourth moments, m(·) is a smooth deterministic

trend function, zt = σtut is a stochastic process with σt accounting for (unconditional) heteroskedasticity and ut is a stationary

linear process. We estimate m(·) by means of a local polynomial smoother (loess). For the estimation of the long-run trend the95

degree of the smoother has been set to one to mitigate boundary effects, otherwise the order is two. The confidence bands for

the nonparametric estimator of the trend have been derived using the following autoregressive wild bootstrap scheme:

1. obtain the estimate of the trend m̂(t) using the bandwidth h̃ and derive the residuals ẑt =Xt− m̂(t);

2. derive the bootstrap errors z∗t = ξ∗t ẑt, where ξ∗t = γξ∗t−1 + ν∗t , ν∗t ∼ i.i.d. N(0,1− γ2) and γ = θ1/l, with θ = 0.1 and

l = 1.75 3
√
n;100

3. build the bootstrap series X∗t = m̂(t/n)+ z∗t for t= 1, . . . ,n and estimate the trend m̂∗(t) upon it using the same band-

width h̃ as in step 1.

The scheme provides valid confidence intervals under the assumptions as in Eq. (1) where the detrended series is dependent.

For more details see Friedrich et al. (2020).

2.2 Chaos and the largest Lyapunov exponent105

The largest global Lyapunov exponent quantifies the sensitivity to initial conditions and is one of the hallmarks of the presence

of chaos. Assume that the series is generated by the following dynamical system in Rd:

Xt = F (Xt−1)+Et, Xt ∈ Rd, (2)

where Et is an error process in Rd, which can be disregarded as far the following definition is concerned; we will comment on

its role later on (see Chan and Tong, 2001, for more details). Let X0 and X
′

0 be two close initial conditions and Xn and X
′

n110

their value after n time steps, respectively. Then∥∥∥Xn−X
′

n

∥∥∥≈ exp(nλ1)
∥∥∥X0−X

′

0

∥∥∥
where ‖·‖ is a suitable norm and δ = (X0−X

′

0) is a small perturbation. In other words, as n grows, the growth factor is

governed by λ1 as other terms become negligible. Hence,

λ1 = lim
n→∞

lim
δ→0

1

n
ln


∥∥∥Xn−X

′

n

∥∥∥∥∥X0−X
′
0

∥∥
 (3)115
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is the global largest Lyapunov exponent. Note that

Xn−X
′

n ≈ δ ·DF (n)(X0) = δ

n−1∏
t=0

DF (Xt) = δ

n−1∏
t=0

Jn−t,

where F (n)(X0) is the n-fold iteration of the map F and Jt is the Jacobian of the map F evaluated at Xt. Hence

λ1 = lim
n→∞

1

2n
lnν1 (T

′
nTn) , (4)

where Tn =
∏n−1
t=0 Jn−t and ν1(A) is the largest eigenvalue of the matrix A. λ1 measures the average rate of divergence

of nearby starting trajectories and chaotic dynamics implies λ1 > 0. The two equivalent definitions of the largest Lyapunov

exponent given in Eq. (3) and Eq. (4) are reflected in the two approaches to estimating it in finite samples. The first approach120

refers to Eq. (3) and is called direct since it finds close pairs of state vectors and measures the average divergence of trajectories

over time (Rosenstein et al., 1993; Kantz, 1994; Giannerini and Rosa, 2001). The logarithm of such a divergence is plotted

over time and, if it is possible to identify a linear scaling region, its slope is the direct estimator of λ1. Typically, the exercise is

repeated for a range of embedding dimensions and time delays to assess the reliability of the estimate. One problem with this

approach is that it is sensitive to noise: it cannot distinguish between divergence due to noise and exponential divergence due to125

the chaotic dynamics (Giannerini and Rosa, 2004). Moreover, there are no results on the asymptotic distribution of the estimator

so that it is not possible to build a proper statistical test for the hypothesis of chaos. In Giannerini and Rosa (2001) a bootstrap

solution for continuous time processes was proposed, but the intrinsic sensitivity to noise of the direct estimator remains, so

that we only use it to cross-check the result from the second approach, the Jacobian based estimator, which relies upon a neural

network model of the map F and its Jacobian J. The estimated largest global Lyapunov exponent λ̂1 is obtained by plugging130

the estimated quantities into Eq. (4). We use a feed-forward neural network with a single layer of "hidden units" (analogue

neurons). The number of units determines the model complexity (i.e., a complicated F̂ that comes close to interpolating the

data, versus a simpler F̂ that smooths the data) (Ellner et al., 1992). The crucial step is the selection of the neural network

model, which also provides a rigourous solution to the state space reconstruction problem (Chan and Tong, 2001). The idea

is to select the embedding parameters that provide the best fit over a grid, according to the generalized Bayesian Information135

Criterion (BIC):

BIC = log

(
RSS

n

)
+

log(n)

n
[1+ k(d+2)], (5)

where RSS is the residual sum of squares, n is the sample size, d is the embedding dimension, and k is the number of units

(or nodes) of the hidden layer. The generalized BIC is consistent in that it selects the true model (if it exists) with probability

one as the sample size diverges. See Appendix C for more details on the neural network approach. The modelling step allows140

us to filter out the effect of noise, obtain a consistent estimator for λ1, and perform a proper statistical test for chaos (Shintani

and Linton, 2004). The null hypothesis tests H0 : λ1 ≤ 0 against the alternative hypothesis of a positive exponent H1 : λ1 > 0.

This asymptotic, one sided, test is based upon the asymptotically Gaussian standardized statistic

Z =
λ̂M√
Φ̂/M

L−−−−→
M→∞

N(0,1), (6)
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where M is the number of steps ahead and Φ̂ is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the145

asymptotic variance of the M -step local Lyapunov exponent estimator λ̂M (see next section). The null hypothesis is rejected

at level α if the value of the statistic exceeds the corresponding critical value of the standard Gaussian random variable.

2.3 Local Lyapunov exponents

A positive largest global Lyapunov exponent indicates sensitive dependence on initial conditions and is an important theoretical,

global indicator of the presence of chaos. However, it is defined in the double limit of infinitesimal perturbations and infinite150

time steps ahead; hence it poses no practical limit to the predictability of a dynamical system (Ziehmann et al., 2000), which

may typically have state space regions of enhanced predictability, coupled with zones of instability. Nonlinear dynamical

systems, be they chaotic or not, are characterized by this non-uniform predictability and one way of quantifying it is through

local (finite-time) Lyapunov exponents (LLEs). In this respect, local Lyapunov exponents can be used as a time-series tool that

provide different, complementary, information with respect to global Lyapunov exponents (Bailey et al., 1997; Abarbanel et al.,155

1992; Smith, 1992; Wolff, 1992). We assume that the data {Xt} are from a time series generated by a nonlinear autoregressive

model

Xt+1 = fd(Xt,Xt−1, . . . ,Xt−d+1)+ εt, (7)

where Xt ∈ R and {εt} is a sequence of independent random variables or perturbations with E(εt) = 0 and Var(εt) = σ2. It

is important to note that the error in Eq. (7) is not measurement error, but dynamical noise, an inherent part of the dynamics of160

the system. The state-space representation of the system is

Xt+1 = F (Xt)+Et, (8)

where Xt = (Xt,Xt−1, . . . ,Xt−d+1) and Et = (εt,0,0, . . . ,0) are in Rd.

The local exponent (LLE) is defined by taking a small perturbation of Xt to X∗t and following forward the perturbed and

unperturbed trajectories after M time steps165

λM (Xt) =
1

M
log

∥∥Xt+M −X∗t+M
∥∥

‖Xt−X∗t ‖
. (9)

If we choose to perturb only the first component of Xt and follow the growth of that perturbation along the actual sample

path, this corresponds to a perturbation of Eq. (7) at time t, i.e., perturbing Xt and the following the growth of that single

perturbation along the actual sample path. This definition of the LLE is related to noise amplification by the system, and thus

to predictability (Yao and Tong, 1994). This is best shown in a scalar system with small additive noise:170

Xt = f(Xt−1)+ εt.

Now let σ2
M (x) = Var(Xt+M |Xt = x). It results

σ2
M (x) = σ2µM (x)(1+ o(1)), where σ2 =Var(εt), and
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µM (x) = 1+

M−1∑
j=1


M−1∏
k=j

Df(f (k)(x))


2

. (10)175

This can be re-written as

µM (x) = 1+

M−1∑
j=1

exp
{
2(M − j)λM−j(f (j)(x))

}
(11)

where λj are LLEs along the “skeleton” system with the noise deleted (Yao and Tong, 1994). However, up to the leading order

of σ in the previous expansion, the skeleton LLEs agree with those along the sample path for any fixed finite M . For a system

with dynamical noise, the values of µM set the limits to large-sample forecasting accuracy (Tong, 1995). Thus Eq. (11) shows180

a close link — for small noise — between LLEs and local unpredictability.

In the general d-dimensional scenario, as perturbations become small, λM (Xt) will depend on the derivatives of the map F .

Then

λM (Xt) =
1

M
ln‖JM+t−1JM+t−2, . . . ,JtU0‖, (12)

where Jt is the Jacobian matrix of F evaluated at Xt, U0 is a unit vector and ‖ · ‖ is some vector norm. Since λM (Xt) is185

a function of the state space location, the LLE depends on the trajectory and can be thought of as an M -step ahead local

Lyapunov exponent process. If U0 is chosen at random with respect to the uniform measure on the unit sphere, then with

probability 1 as M →∞, λM (Xt) converges to the global Lyapunov exponent λ1, because U0 has zero probability of falling

into a subspace corresponding to subdominant exponents. In practice, we usually take U0 = (1,0,0, . . . ,0) and the estimators

for local exponents are the same as for global ones, with the notable difference that the former depend upon the state space190

location and measure the state-dependent instability of the system.

3 Results

We carry out the univariate spectral analysis for the 16 stations. In Figure 2, we show the results for three atmospheric and

three oceanic stations, which represent the northern, central and southern regions of Chile. The complete set of results is in Ap-

pendix B. The oceanic stations that show spectral peaks with the longest periodicities are Valparaíso with 27 years; Talcahuano195

with 20 years; Antofagasta with 18 years; and Arica with 14 years. Four stations have periodicities with an intermediate value,

6 to 10.6 years. Three stations (Antofagasta, Valparaíso and Talcahuano) present a 4-year periodicity. Two stations have peaks

around 3 years, and six stations present 2 year periods. In the eight stations, periodicities between 1.3 and 2 years were also

found: most stations show periods of around 1.5 years.

The atmospheric stations that show spectral peaks with the longest periodicities are Antofagasta and Serena with 20 years;200

Arica with 19 years; Iquique with 18.8 years; Concepción with 16.4 years and Puerto Montt with 16 years. Furthermore,

Arica and Antofagasta share a periodicity of 5.1 years. There are 3 stations with periodicity around 4 years, and 5 stations

9



1010.10.01

3
Spectrum
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Spectrum

 (´10) 1010.10.01

Arica195.1 3.6
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0.51.5

Rodelillo 1.0
1.57.5 0.52.8

0 0.001 0.002 0.003 0.004 0.005 0.006Frequency

Puerto Montt
16 2.0

1.0
0.53.8 1.4

0 0.001 0.002 0.003 0.004 0.005 0.006Frequency

Puerto Montt
10.6 1.8

1.0
0.53.2

3
Spectrum

 (´10) 1010.10.01

b)a)

Figure 2. Spectral analysis for three representative stations from the northern, central and southern regions of Chile. Column a) corresponds

to sea surface temperature time series (oceanic stations) and column b) to atmospheric surface temperature time series (atmospheric stations).

Dominant peaks are indicated together with their associated periods in years.

with periodicity around 3 years. Periodicities around 1.5 years were also found, as in the oceanic case. In general, longer

periodicities can be observed for atmospheric surface temperature time series than for sea surface temperature. Possible causes

for these periodicities can be found in the discussion in Section 4.1.205

We estimate the trend by means of the local polynomial smoother as detailed in Section 2.1.2. For the estimation of the

long-term trend the degree of the polynomial was set to one to mitigate boundary effects, otherwise the order is two. The

confidence bands at level 95 % for the non-parametric estimator of the trend were derived using an autoregressive wild bootstrap

scheme, which is robust against the presence of missing data, serial dependence and heteroskedasticity. We show the results

for Antofagasta (SST, AST) and Iquique (SST, AST) in Fig. 3. The estimated long-term trend for Antofagasta and Iquique210

might seem to indicate a tendency, but this is ruled out if we take into account the uncertainty (confidence bands in light blue).

This suggests that the process that has generated the time series for both stations is mean-stationary and this holds for all the

stations. For more details, see Appendix B1.

We estimate the largest Lyapunov exponent of the series and derive a rigourous (asymptotic) statistical test for chaos by

following Shintani and Linton (2004). The approach is based upon a single-layer, feed forward, neural network model of the215

map and its Jacobian. More details on the procedure are reported in Section 2.2 and Appendix C. The null hypothesis of no
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1980 1990 2000 2010 20201416
1820
2224
26 Iquique-AST

Time(years)1960 1970 1980 1990 2000 2010 20201214
1618
2022
24 Antofagasta-AST

1960 1980 2000 20201416
1820
2224 Antofagasta-SST

Time(years)
Temperatur

e(ºC)
1990 2000 2010 20201416

1820
22

Temperatur
e(ºC) Iquique-SST

Figure 3. Temperature time series of Antofagasta and Iquique. Top left: Antofagasta sea surface temperature; top right: Antofagasta atmo-

spheric surface temperature. Bottom left: Iquique sea surface temperature; bottom right: Iquique atmospheric surface temperature. Interpo-

lated original (light blue), trend-cycle (blue) and long-term trend (black), together with confidence bands at 95 % (light blue).

chaos (H0 : λ1 ≤ 0) is tested against the alternative hypothesis of a positive exponent (H1 : λ1 > 0). One of the critical issues

is the selection of the best neural network model, which we solve by means of the generalized Bayesian Information Criterion

(BIC), where the global minimum is searched on a grid of embedding dimensions from d= 3 to d= 20 and time delays from

τ = 1 to τ = 4. The results are presented in Tables 3 and 4 for the oceanic and atmospheric stations respectively. Besides the220

station name and the time period, the tables report the values of the embedding dimension d, time delay τ and number of

hidden units k of the network that produce the minimized BIC criterion over the parameter grid. The last two columns contain

the value of the test statistic Z∗ and the p-value of the test based on the asymptotic Gaussian null distribution, respectively. All

the estimated exponents are negative and the test never rejects the null hypothesis of absence of chaos, both for the oceanic and

the atmospheric stations.225

This result is an important indication that the dynamics behind temperature in Chile is most probably nonlinear but not

chaotic (Lorenz, 1963). We use local Lyapunov exponents (LLEs) to characterize local predictability throughout the stations.

We varied the number of steps ahead, M , from 4 to 52 (i.e., from 1 month to 1 year) for oceanic stations and up to 260 steps

ahead (5 years) for atmospheric stations. In order to uncover any association with El Niño, we chose three specific windows

corresponding to the short (0 to 3 months), medium (6 to 9 months) and long term (12 to 22 months) and paid particular230

attention to the results obtained for the 1, 6 and 12 month windows. In Figures D1 to D3 of the Appendix we show the time

series of the oceanic stations where the information on the 1 month, 6 months and 1 year LLEs, respectively, is superimposed:

red corresponds to a positive LLE whereas green indicates a negative LLE. The same information for the atmospheric stations

is reported in Fig. D4 to D6. Likewise, in Fig. 4 and 5, we present the phase space portraits of the attractors for the stations

with superimposed information on the LLEs in red and green.235
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Table 3. Output from the best neural network fit from the grid search test for chaos of the time series of the oceanic stations. The table reports

the embedding dimension d, the time delay τ , the number of hidden units k, the value of the minimized BIC, the global Lyapunov exponent

λ̂1 together with the value of the test statistic Z∗ and the p-value of the test.

Station Time period d τ k BIC λ̂1 Z∗ p-value

Arica 1951–1970 10 1 1 -811.84 -0.045 -22.05 1

Arica 1982–1999 11 4 11 -21.33 -0.027 -28.45 1

Arica 2004–2020 8 1 8 -509.49 -0.114 -22.79 1

Iquique 1984–2020 3 1 3 -2094.32 -0.083 -34.38 1

Antofagasta 1946–2020 12 1 1 -4298.17 -0.017 -25.81 1

Coquimbo 1982–2020 11 1 11 -1281.49 -0.041 -28.06 1

Valparaíso 1961–2020 12 1 12 -2918.70 -0.056 -37.36 1

Talcahuano 1949–1974 12 1 3 -853.68 -0.040 -12.79 1

Talcahuano 1976–1989 12 1 1 -215.38 -0.050 -33.62 1

Talcahuano 1991–2020 12 4 12 165.70 -0.054 -12.36 1

Corral 1985–2020 12 1 12 -668.83 -0.035 -15.95 1

Puerto Montt 1982–2020 11 1 59 -364.38 -0.032 -19.92 1

Table 4. Output from the best neural network fit from the grid search test for chaos of the time series of the atmospheric stations. The table

reports the embedding dimension d, the time delay τ , the number of hidden units k, the value of the minimized BIC, the global Lyapunov

exponent λ̂1 together with the value of the test statistic Z∗ and the p-value of the test.

Station Time period d τ k BIC λ̂1 Z∗ p-value

Arica 1960–2020 12 1 12 -3170.93 -0.014 -15.46 1

Iquique 1981–2020 12 1 12 -1685.18 -0.013 -13.21 1

Antofagasta 1960–2020 13 1 12 -2804.60 -0.014 -13.05 1

Serena 1973–2020 17 1 17 -871.98 -0.013 -9.53 1

Rodelillo 1971–1995 19 4 79 1325.28 -0.016 -13.73 1

Rodelillo 1973–2020 18 3 58 1065.62 -0.012 -8.42 1

Concepción 1970–2020 20 1 20 1373.17 -0.010 -12.06 1

Valdivia 1968–2020 18 1 18 2950.07 -0.007 -7.81 1

PuertoMontt 1970–2020 19 4 79 2337.82 -0.012 -8.09 1

Comparing the LLEs of the oceanic stations with their atmospheric counterparts for the different windows, we found that

for the 1 month window, both classes of stations showed unstable behaviour throughout the record, except for Iquique-SST

that shows patterns of both stability and instability. For the 6 month window in SST and AST, mixed stability/instability is

observed, except for Iquique, where there is stability throughout the record. In the Antofagasta and Puerto Montt SSTs similar
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Puerto MonttCorralTalcahuano3

Talcahuano2Talcahuano1Valparaíso

CoquimboAntofagastaIquique

Arica3Arica2Arica1

Figure 4. Attractors for sea surface temperature with superimposed information on the local Lyapunov exponents. Red corresponds to a

positive LLE whereas green indicates a negative LLE. The subsections indicate the latitudinal order of the stations. In the case of Arica and

Talcahuano there are three courts, which are numbered from 1 to 3. The temporal windows are 1 month for Iquique; 4 months for Arica; 5

months for Coquimbo, Valparaiso and Talcahuano and 6 months for Antofagasta, Corral and Puerto Montt.

behaviour can be observed, showing instability at the extremes and stability in the middle part. Finally, for the 1 year window,240

all oceanic stations showed stability throughout the record, except for Talcahuano and Puerto Montt, that is, the southern region.

Of the atmospheric stations, Arica, Iquique and Antofagasta showed instability in the extremes and stability in the middle part

of the record; Rodelillo behaves totally stably, while Serena, Concepción and Valdivia present totally stable or unstable parts

throughout the series; this is not the case for Puerto Montt, which presents very little instability. The boxplots of the LLEs
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Puerto MonttValdiviaConcepción

Rodelillo2Rodelillo1Serena

AntofagastaIquiqueArica

Figure 5. Attractors for atmospheric surface temperature with superimposed information on the local Lyapunov exponents. Red corresponds

to a positive LLE whereas green indicates a negative LLE. The subsections indicate the latitudinal order of the stations. For the case of

Rodelillo, there are two courts. The temporal windows are 5 months for Serena, Rodelillo, Concepción and Valdivia and 6 months for Arica,

Iquique, Antofagasta and Puerto Montt.

versus steps ahead (M ) are shown in Fig. 6 and 7. Clearly, the sea surface temperature series approach the global exponent245

faster than the atmospheric series. For instance, for M = 28 steps ahead, the boxplots of the LLEs are already negative for all

the SST series, with the exception of Puerto Montt, Fig. 6. On the contrary, for M = 28 all AST time series still have positive

LLEs, Fig. 7. Overall, the results indicate a qualitative difference in the temperature dynamics of the two types of series. This

can be explained by considering that, on average, λ̂1 ≈−0.05 for the sea surface series but λ̂1 ≈−0.01 for the atmospheric

series, so the latter are globally more stable. The presence of the ocean and its exchanges of heat and momentum with the250

atmosphere can easily reduce the instability properties of the atmospheric flow (Vannitsem et al., 2015).

In the following, we compare the information conveyed by local Lyapunov exponents with the Oceanic Niño Index (ONI).

El Niño is characterized by a positive ONI greater than or equal to +0.5 °C. La Niña is characterized by a negative ONI, less

than or equal to -0.5 °C. To be classified as a fully-fledged El Niño or La Niña episode, these thresholds must be exceeded

for a period of at least 5 consecutive overlapping 3 month seasons. The Climate Prediction Center of the US National Oceanic255
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Figure 6. Boxplots of the local Lyapunov exponents λ̂M versus steps ahead (M in weeks) for the sea surface temperature series. The series

are arranged latitudinally.
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Figure 7. Boxplots of the local Lyapunov exponents λ̂M versus steps ahead (M in weeks) for the atmospheric surface temperature series.

The series are arranged latitudinally.

and Atmospheric Administration (NOAA) considers El Niño or La Niña conditions to occur when the monthly Niño 3.4 SST

departures meet or exceed +/-0.5 °C along with consistent atmospheric features. These anomalies must also be forecast and
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should persist for 3 consecutive months. In the case of the oceanic stations, we note the following: in Antofagasta the expected

behaviour is observed, that is, the whole series shows persistent instability for the 1 and 6 month windows throughout the

record (Fig. D1c). This might be due to the warm water pool that is always found here simulating an El Niño. The same pattern260

is observed for the 1 year window, but, in this case, the behaviour is consistently stable (Fig. D3c). Arica shows instability

throughout the record for the 1 month window, where instability decreases during El Niño events of 1953–54, 1958–59, 1963–

64, 1965–66, 2009–10 and 2014–16 (Fig. D1a). During the 6 month and 1 year windows, it becomes more stable than unstable

and shares the same behaviour with Talcahuano, where the third cut can be located lower than the other two and a very marked

variability in the LLE can be seen (Fig. D2a, f and D3a, f). In these two stations the trajectory of the phase space for the265

second cut is interrupted (Fig. 4). In Talcahuano, interesting behaviour, with respect to the ONI, is only observed for the

1 month window, where the instability for the first cut, 1949–1974, decreases during El Niño events of 1953–54, 1958–59,

1963–64, 1965–66, 1968–69 and 1972–73, to show rising behaviour in the third cut of 1991–2020 during El Niño events of

1991–92, 1994–95, 1997–98; 2002–03, 2004–05, 2009–10 and 2015–16 (Fig. D1f). In the case of Iquique, the 1 month and

1 year windows have stable/unstable behaviour; it is the only series in which the peaks of both the stable and unstable part270

coincide with several El Niño events of 1987–88, 1991–92, 1994–95, 1997–98, 2002–03, 2004–05, 2006–07, 2009–10, 2014–

16, 2018–19, 2019–20 (Fig. D1b and D3b). For the 6 month window, the behaviour is stable throughout the record, but the

stability peaks continue to coincide with the same El Niño events, with the exception of 2002–03, 2004–05, 2006–07, 2018–19

and 2019–20 (Fig. D2b). Finally, Valparaíso, in the 1 month window, shows a decrease in the unstable part that corresponds to

El Niño events of 1968–69, 1972–73, 1982–83, 1997–98 and 2014–16 (Fig. D1e).275

As concerns atmospheric stations, in Antofagasta the 1 month window shows unstable behaviour throughout the entire record

and shows a temperature decrease during the 1972–73, 1982–83 and 1997–98 El Niño events see the highest temperature peaks

in Fig. D4c). In the case of Arica, for the same window, a decrease in the unstable part is observed for the same El Niño events

plus that of 2014–16 (see the highest temperature peaks in Fig. D4a). Puerto Montt behaves in the same way as Antofagasta

in its oceanic record, that is, it shows continuous unstable behaviour throughout the entire time span Fig. D1h and D4h). The280

same occurs with Rodelillo for the 1 month window (Fig. D4e); its behaviour is similar to that of Antofagasta and Puerto

Montt. Finally, for the 1 year window in Serena, instability increases from 1971 to 1982–83, which is where it coincides with

the El Niño event of that year, the behaviour decreases and increases again to coincide with El Niño of 1987–88 and likewise,

a peak of instability coincides with El Niño of 2014–16 (Fig. D6d).

In summary, in the case of the oceanic stations, in Arica, Valparaíso and Talcahuano, the unstable part decreases significantly285

during various El Niño events, while for Antofagasta the behaviour is persistent throughout the record, both for the stable

and the unstable part; on the other hand, in Iquique the unstable behaviour increases during El Niño events and the stability

decreases after them. For the atmospheric stations, it is in Arica, Iquique and Antofagasta where a decrease in instability during

several El Niño events can be seen, contrary to what Serena shows with an increase in instability, only that the latter shows this

for the 1 year window, while the previous stations show an interesting behaviour of decrease for the 1 month window.290

In order to go beyond this visual comparison and to corroborate whether there is a relationship between the ONI index

and the dynamics of climate variability in Chile seen through the LLEs, we compute the cross entropy measure proposed in
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Giannerini et al. (2015) and Giannerini and Goracci (2023); see Appendix D. Rejection bands under the null hypothesis of

cross-independence are derived through the moving block bootstrap and the series have been pre-whitened using an autore-

gressive filter in order avoid spurious rejections due to serial dependence. The test was performed for all stations before and295

after pre-whitening. The most significant results are shown in Fig. 8, whereas the full set of results can be found in Appendix E.

For Iquique-SST, the cross-entropy test indicates a significant dependence at lag +1 and −2 with 1-month and 6-month LLEs,

respectively. For the atmospheric stations, only Arica-AST showed a significant dependence at lags +2 and −3. This implies

that the ONI index at time t is correlated with the LLE at times t+1, t−2, t+2 and t−3, respectively, for the aforementioned

stations. For the 6-month time horizon, Corral also presents a significant dependence, which could be a false positive; see300

Fig. E4. We also applied the test to correlate the ONI index and 1 year ahead LLEs for Serena. The results in Fig. E7 do not

show any significant cross-dependence. We offer further discussion in Section 4.2.3 below.

4 Discussion

4.1 Spectral Analysis

The periods of 18, 18.8 and 19 years found for Antofagasta-SST, Iquique-AST and Arica-AST could be linked to the PDO.305

They might also be associated with the lunar nodal cycle of 18.61 years, popularly known as “lunar wobble” — this low-

frequency tidal cycle is due to the oscillation of the maximum lunar declination with respect to the equator (Rossiter, 1962;

Black et al., 2009) —, since the variations of the lunar cycle influence the movement of ocean currents. The 4-year periods

found in Antofagasta, Valparaíso and Talcahuano might be linked to the lunar perigee subharmonic of 4.4 years. The external

forcing caused by the Moon is important, not only because of the changes caused in interannual time scales to the variability310

of the tidal range, but also because it influences the hydrodynamic energy of the ocean, altering sedimentation patterns (Oost

et al., 1993; Gratiot et al., 2008) and coastal erosion (Smith et al., 2007), water level and coastal flood risk (Thompson et al.,

2021), as well as ocean stratification (Devlin et al., 2017b, a, 2019).

Interannual periods can also be observed in the oceanic stations, 2.7 years for Iquique and Valparaíso; 2.6 for Arica; 2.5 for

Coquimbo and Talcahuano; 2.4 for Antofagasta; 2.0 for Corral and 1.8 for Puerto Montt. In the case of atmospheric stations,315

2.7 years was found for Serena; 2.8 for Rodelillo; 2.3 for Valdivia and 2.0 for Puerto Montt. These periods could be related to

the Quasi-Biennial Oscillation (QBO), a climatic alteration located in the Pacific Ocean that consists of zonally symmetrical

easterly and westerly wind regimes that regularly alternate with a period that varies between 24 and 30 months and is manifested

through hydroclimatological variables such as wind and temperature. Its eastern phases appear to be alternately related to the

warm component of ENSO (Riveros et al., 2020). The QBO has already been seen in other records from the Chilean region,320

between 39° and 43° S (Villalba et al., 1998). Fagel et al. (2008), when analysing layered sediments from Lake Peyuhue, 40°

S, 72° W, found that the frequency bands of the thickness of the layers were mainly related to QBO periodicities. In our case,

we found this oscillation in oceanic and atmospheric surface temperature records. For the oceanic records it was found in all

the stations, something that did not happen with the atmospheric records, where it is only seen for the stations in the central
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Figure 8. Cross entropy Sk for k =−12, . . . ,12 between the 1 month and 6 month LLEs (Iquique-SST) and 1 month LLEs (Arica-AST)

and the ONI index. Left column: original time series. Right column: pre-whitened time series. Iquique 1 month and 6 months correspond to

the first two upper graphs and the two central ones; while Arica 1 month corresponds to the lower two graphs.

and southern parts of Chile. Similarly, periods related to ENSO and PDO were obtained, as well as some others that we believe325

may be related to local events, however, it should be noted that QBO has also been related to ENSO.
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Regarding the periodicity of 1.5 years found in both classes of station, Jiang et al. (2020) have noted this periodicity in modes

of tropical Pacific surface wind anomalies, also referred to as the so-called combination mode (C-mode). This C-mode emerges

from nonlinear interactions between the warm pool annual cycle and ENSO variability (Stuecker et al., 2013). Sakova et al.

(2006) likewise found an 18-month signal in altimeter sea surface height over the whole Indian Ocean, which they associate330

with Indian Ocean dipole events, similar to ENSO, and statistically linked to it (Stuecker et al., 2017), but taking place in the

equatorial Indian Ocean.

4.2 Nonlinear Analysis and ONI index

The effects of changes in the SST and AST on biota range from the redistribution of species (Lubchenco et al., 1993; Ihlow

et al., 2015), to the increase in vulnerability as occurs in the HCS due to the expansion of oxygen minima associated with335

the increase in SST (Mayol et al., 2012; Stramma et al., 2008), to increases in extreme events (Harris et al., 2018; Garreaud,

2018), up to subtle changes in biological–climatic feedbacks (Bradford et al., 2019; Bardgett et al., 2008), all of which invite

discussions about the contribution of the oceans in these feedbacks (Joos, 2015). For these reasons, understanding the effects

of climate variabilities such as El Niño on the behaviour of long time series of coastal temperature records can contribute

to improving forecasts and understanding the effects of climate change and climate variability in systems such as the HCS340

(Harris et al., 2018). The results indicate consistently the presence of nonlinear, non-chaotic, oscillators for both oceanic

and atmospheric stations. LLE analysis highlights patterns of reduced and enhanced stability and predictability in the phase

space. Where the asymptotic behaviour of the LLEs towards the negative global Lyapunov exponent differs in oceanic versus

atmospheric stations, since stability is reached faster in oceanic stations, where the oceanic environment is less perturbable

than the atmosphere due to the great heat capacity of water.345

4.2.1 Oceanic stations

In both oceanic and atmospheric stations, Antofagasta shows the slowest speed of convergence; in the oceanic case, accompa-

nied by Corral. Antofagasta is characterized by the constant presence of warm water inside its bay (Piñones et al., 2007), so its

climate possesses a type of local permanent El Niño, keeping the bay in a state of external forcing. This makes the dynamics

of the Antofagasta system look unstable in the LLEs, and when comparing with ONI it is not possible to distinguish different350

behaviour when a general El Niño event occurs. Regarding Corral, there is a cooling trend in the coastal upwelling regime

along northern Chile and southern Peru, which contrasts with the warming trend in the last 350 years in an offshore area of

the Humboldt Current system at 36° S (Vargas et al., 2007). Such El Niño-type conditions found also in Corral might explain

its reduced speed of convergence. The case of Iquique-SST is peculiar due not only to its attractor, which shows an abrupt

change, but also because of the estimated embedding dimension (d= 3), much lower than that of the other stations, a mixed355

dynamics for the window of 1 month and a positive cross-dependence between the ONI index and the LLE. This indicates

a strong relationship between the climate variability of this region and the El Niño phenomenon. Fuenzalida (1985), through

an analysis for El Niño 1982–83, showed that an increase in temperature in Iquique is associated with this phenomenon. In

our case, the cross-dependence test showed a significant correlation at lag +1 for the 1-month LLEs and at lag −2 for the
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6-month LLEs. The difference between the two is that the record observed at 1 month presents stabilities and instabilities360

which, together with other factors discussed below, favour a leading effect and could be associated with the warm phase of

ENSO. As for the 6-month LLEs, the behaviour of the area is completely stable; perhaps for this reason there is a lagging effect

associated with the cold phase of ENSO. Notably, like La Serena and Valdivia, where a similar dynamics occurs between them

— discussed below —, Iquique is also in a transition zone, the faunal transition zone, located south of the subtropical and north

of the subantarctic zone (Bé and Tolderlund, 1971). In addition, the northern part of Chile, in which Iquique is located, is an365

area with wind-driven coastal upwelling throughout the year. Barbieri et al. (1995) analyzed the northern region and found four

sources of upwelling in Iquique. The upwelling south of Iquique is the most important due to its latitudinal extension. For this

area the highest correlation between wind and SST is observed.

Due to the peculiar oceanic and environmental characteristics of the Iquique area, we can hypothesize that the abrupt change

observed in the trajectory of the SST transition could be due to the climate of 1976–77, which, according to Namias (1978);370

Houghton et al. (2001) and Solomon et al. (2007) was a coupled global variation of the atmosphere–ocean system that links

the variability of the sea surface temperature of the Pacific and climatic parameters in most of the world. Although this was

a global variation, this abrupt trajectory change is present in Iquique, contrarily to the other stations, where the shape of the

attractors indicates the presence of nonlinear oscillators, possibly forced. Likely, these peculiar features associate Iquique’s

dynamics with ENSO events. Also, we found similarity between the dynamics of Arica — upwelling throughout the year —375

and Talcahuano — seasonal upwelling. This could be the result of large-scale oceanic processes that occur simultaneously

in both places. In Castro et al. (2020), similar variations of δ13C of particulate organic matter were noted in Iquique and

Talcahuano, despite being two totally different areas; this was hypothesized to be influenced by coastal outcrop. In our case,

since Arica is not very far from Iquique, we can think of this outcrop as part of the explanation for the similarity of the

dynamics that we found. On the other hand, we have the northward currents that carry subantarctic water, as well as the380

intrusion of subtropical waters to the south, which during El Niño conditions can approach the coastal zone, the propagation of

trapped waves to the coast and a poleward subsurface flow. From a dynamical point of view, this variability can affect currents,

the mixing of the water column, the intensity of upwelling, as well as the temperature and sea level on the continental shelf

and slope throughout the Humboldt Current system (Shaffer et al., 1997, 1999). In addition to this, the Chilean continental

shelf is extremely narrow compared to the Atlantic coast, with a maximum width close to 45 km in the Talcahuano area and385

a maximum depth in general of 150 m, except for the Valparaíso area, where it reaches up to 800 m (Camus, 2001). So, these

may be other possible explanations for the similarity in dynamics found in these two regions. However, something else must

be happening between the two stations to maintain this dynamics in the three study windows.

4.2.2 Atmospheric stations

Rodelillo, Puerto Montt and Antofagasta-AST present similarities with Antofagasta-SST. The former three stations present390

persistent behaviour throughout the time span, for both northern and southern regions of Chile. Therefore, we can conjecture

the presence of teleconnection processes throughout the zone. Gómez (2008) made hydrographic and meteorological obser-

vations during the period 1996–2005, finding for the central-southern zone of Chile, an interannual and decadal modulation
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of the beginning of the upwelling season during the period 1968–2005. This modulation would be linked to changes in atmo-

spheric circulation patterns, associated with teleconnections triggered during El Niño. According to this study, the presence of395

teleconnections in oceanographic processes is needed. Finally, for the atmospheric stations of Arica, Iquique and Antofagasta,

a decrease in unstable behaviour can be seen during El Niño events, possibly due to the effects of the Pacific anticyclone.

Regarding Arica, the cross entropy test showed a significant cross-dependence between ENSO and 1-month LLEs, at lags +2

and −3. Puerto Montt is the southernmost station, on the northern border of Patagonia (Garreaud et al., 2013). This station is

located well inside the continent, on the coast of an inland sea, with greater thermal amplitudes due to the continental effect.400

As this station is located south of the southern limit recognized for the influence of El Niño, it is possible that El Niño is not

responsible for the climate variability in this station, but rather Southern Annual Mode (SAM) (González-Reyes, 2013), since

we can see an unstable dynamics also in the oceanic part (Puerto Montt-SST). However, for this region there is already a high

degree of disturbance, so what could be happening here are further intensifications induced by El Niño. This may be the reason

why a behaviour similar to that of Antofagasta-SST is also observed when we compare the ONI index and the LLE-AST of405

both stations.

In the case of Rodelillo, we can hypothesize that the local climate is greatly influencing the results obtained; this series was

divided into two parts, which showed homogeneous results for the three different types of windows, that is, if the first segment

of Rodelillo for the 1 year window was stable, the second was, too. This area is in the central zone of Chile and both the central

and central-southern zones of Chile (32°–43° S) concentrate most of the wildfire activity in the country (Soto et al., 2015;410

Urrutia-Jalabert et al., 2018), where ENSO and the Antarctic Oscillation (AAO) have significant influence (Urrutia-Jalabert

et al., 2018). This may be what maintains homogeneous results in Rodelillo’s dynamics.

For their part, La Serena and Valdivia show a similar dynamics for the 6 months windows. La Serena, in a transition zone

between the hyperarid northern Atacama Desert and the more mesic Mediterranean region of southern central Chile, is strongly

affected by ENSO, which is the primary driver underlying the high interannual variability in precipitation, and which promotes415

higher average rainfall during the warm phase (Rutllant and Fuenzalida, 1991). On the other hand, Valdivia is located within a

transitional area between the influence of ENSO and SAM. The dynamics of both seasons are influenced by ENSO; however,

the effect of the Tropical South Pacific Anticyclone also plays an important role in this similarity, as the effects of this semi-

permanent high pressure system change from 35° S, 90° W in January to 25° S, 90° W in July (Kalthoff et al., 2002; Montecinos

et al., 2015), that is, in a period of 6 months, which is one of the windows that we use and in which important changes in the420

dynamics of the systems can be seen. The influence of the anticyclone is permanent to the north of 30° S, maintaining dry

conditions, and weak south of 40° S (Camus, 2001), where there is rain throughout the year, which is why it has important

effects in Valdivia. For La Serena, the cross-entropy test did not show significance; Fig. E7. This indicates that, although

the instability of the dynamics in Serena is influenced by ENSO, it is not this phenomenon that contributes the most to the

instabilities. We found similar results for Valdivia. This was expected because this area is also influenced by SAM and it is425

likely that the latter has a greater influence on the area.
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4.2.3 ONI index

Of all the oceanic stations tested, only Iquique-SST (1- and 6-month LLEs) showed a significant cross-dependence with ENSO.

In the case of atmospheric stations, only Arica-AST (1-month LLEs) showed a significant cross-dependence with ENSO. This

indicates that the association between LLEs and ENSO only occurs in the northern part of Chile. A possible explanation for430

this may be the disturbances coming from the equator that only influence the northern part of Chile and that can affect the

physical environment (Pizarro et al., 1994). On the other hand, the correlations obtained with a forward or backward lag could

be related to the initial conditions that influence the westerly winds, since, according to Fedorov (2002) and Fedorov et al.

(2003), during the beginning of a warm event, a westerly wind can accelerate the development of the event, while one after the

peak of El Niño will simply prolong its duration. The majority of the published studies on ENSO in Chile report findings for435

the northern and central regions (Gutiérrez and Meserve, 2003; Holmgren et al., 2001; Guera and Portflitt, 1991; Vilina et al.,

2002; Ulloa et al., 2001; Acosta-Jamett et al., 2016); although ENSO is a phenomenon that affects the climate globally, it has

a greater influence on the northern part of our study region. Each El Niño event it is likely to affect the various areas of the

Chilean region differently. This can be seen in Barbieri et al. (1995), who observed that during the 1987 El Niño the mean SST

showed values above 1.5°C throughout the year, while during the 1992 El Niño these anomalies occurred from March to May440

and from September to November. It is a fact that El Niño influences the regional climate, as well as the PDO and the SAM.

5 Conclusions

We examined with a LLE analysis the patterns of local instability for the 16 stations, and these correlate on some occasions

with ENSO events. However, it is only for the northern stations, specifically Iquique-SST and Arica-AST that a significant

correlation can be observed. ENSO, despite being a phenomenon that affects the climate globally, has greater influence in the445

northern part of Chile.

Teleconnections are noted throughout the entire region that may be associated with ENSO, PDO, SAM, the Pacific Anti-

cyclone, upwelling zones, QBO and C–mode. A link can be seen between the climate variability of the region and different

internal forcings (PDO, ENSO, SAM, C–mode and Pacific Anticyclone) and external ones (QBO, Lunar Cycle) that contribute

to the complexity of the system and favour a change in the variability as we move in latitude, which is due, in part, to the fact450

that it is necessary to take regional characteristics into account if one wants to understand the response of the different study

systems, oceanic and atmospheric, to the different forcings.

Previously unused Chilean naval temperature data from a large latitudinal spread of stations have helped us to uncover a

great variety of factors involved in the temperature dynamics of the Chilean region. We find a non-chaotic climate variability,

but with a nonlinear behaviour; reinforcing what has been mentioned in the literature. Our study invites more detailed work on455

the northern part of Chile, especially on Iquique and its sea surface temperature, where the behaviour of the system was very

peculiar both in its low embedding dimension, and in the shape of the attractor and the significant correlation with ENSO for

time horizons of 1 and 6 months.
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Data availability. We obtained access to Chilean naval temperature data; the rights to those data remain with the navy.

Appendix A: The Humboldt Current system, El Niño–Southern Oscillation, and Southern Annual Mode460

The Humboldt Current System (HCS) that brings water from the tropical and sub-polar regions is characterized by evident

interannual and seasonal variabilities (Mayol et al., 2012). The system is composed of: (i) the Humboldt Current predominantly

away from the equatorial coast that moves at an average surface velocity of 6 cm s−1; (ii) coastal currents formed by the

Peru–Chile current and countercurrent; and (iii) the Peru–Chile equatorial coastal current. The currents towards the Pole are

responsible for transporting equatorial and subtropical subsurface waters to the Chilean coasts, while the flow towards the465

equator brings cold Antarctic and Antarctic intermediate waters. The HCS is controlled to a large extent by the equatorial

coastal winds linked to the Pacific subtropical anticyclone, which promotes the coastal upwelling associated with the primary

productivity in the north and centre of Chile, extending its influence to the south of Chile in summer (Montecino et al., 2006).

Around the western tropical zone of the Pacific there are ocean–atmosphere interactions that have effects at the planetary level

(Enfield and Allen, 1980). In particular there is the El Niño–Southern Oscillation (ENSO) phenomenon, characterized by two470

opposite phases: one of warming and rainfall in the Eastern Pacific, known as El Niño, and a second of cooling and dry years

called La Niña (Pizarro and Montecinos, 2004). The redistribution of temperature in the water column can be associated with

the passage of low-frequency coastal trapped waves (CTW) (days at the intra-seasonal scale) and cool and warm interannual

anomalies produced by equatorial waves due to the Southern Oscillation of El Niño (Shaffer et al., 1997; Montecinos and

Gomez, 2010). In addition to ENSO, there is the Pacific Decadal Oscillation (PDO), which develops in the northern Pacific475

Ocean. It may be described as a long period ENSO (Núñez et al., 2013), since it also has a positive or warm phase and a

negative or cold phase, but a different time scale. The PDO can intensify or diminish the impact of ENSO, depending on the

relative phase in which these two oscillations are found. When ENOS and PDO are in phase, the impacts induced by El Niño

or La Niña will be magnified with respect to normal patterns. Conversely, if ENSO and PDO are in opposite phases, the effects

on global climate variability will be weaker (Wang et al., 2014). The Southern Annual Mode (SAM) or Antarctic Oscillation480

defines the changes in the westerly winds that are driven by atmospheric pressure contrasts, which in turn generate pressure

differences between the tropics and the southern polar areas. The change of position of the western wind band, produced from

west to east in latitudes between 30° and 60° of both hemispheres, influences the strength and position of cold fronts and

mid-latitude storm systems. In the positive phases of SAM, a belt of strong westerly winds contracts towards Antarctica. This

results in weaker than normal westerly winds and high pressures in southern Australia, restricting the entry of colds fronts.485

SAM differentially affects the surface temperature of the four continental masses of the Southern Hemisphere, including part

of the area influenced by the HCS at mid latitudes (Gillett et al., 2006). In conjunction with ENSO, SAM also explains part of

the coastal temperature anomalies at high (Fogt and Bromwich, 2006), and also at mid latitudes (Yeo and Kim, 1992).
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Figure B1. Spectral analyses for oceanic stations. The numbers indicate the spectral peaks with the highest energy.

Appendix B: Spectral Analysis

Figures B1 and B2 show spectral analyses performed for the oceanic and atmospheric stations. Numbers are given for the490

spectral peaks with the highest energies.
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Figure B2. Spectral analyses for atmospheric stations. The numbers indicate the spectral peaks with the highest energy.

B1 Trend Estimation

In Figures B3 and B4 trend estimations are given for the 16 stations in a latitudinal manner, north to south.
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Figure B3. Trend estimation for oceanic stations. Interpolated original (light blue), trend-cycle (blue) and long-term trend (black), together

with confidence bands at 95 % (light blue).
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Appendix C: Neural Network Models for Random Dynamical Systems

As in Section 2.2, the dynamical system has the following representation:495

Xt+1 = F (Xt)+Et+1, Xt ∈ Rd, (C1)

where Et is an error process in Rd. We assume that the data {Xt} are generated by the nonlinear autoregressive model

Xt+1 = fd(Xt,Xt−1, . . . ,Xt−d+1)+ εt, (C2)

where Xt ∈ R and {εt} is a sequence of independent random variables with E(εt) = 0 and Var(εt) = σ2. Also, we denote

with Jt the Jacobian of the map, evaluated at Xt. The model of Eq. (C1) can be seen as the state-space representation of the500
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system of Eq. (C2), where Xt = (Xt,Xt−1, . . . ,Xt−d+1) and Et = (εt,0,0, . . . ,0). We derive a consistent estimator for the

map F and its Jacobian through a neural-network estimator of fd. Neural networks are a class of nonlinear models inspired by

the neural architecture of the brain (Nychka et al., 1992). These are made up of layers that in turn have connected “neurons”,

which send messages and share information with each other. Layers are classified into three groups: 1) input, 2) hidden, and 3)

output. The input values Xt are received by the input units, which simply pass the input forward to the hidden units uj . Each505

connection (indicated by an arrow) performs a linear transformation determined by the connection strength ωij so that the total

input to unit uj is

d∑
i=1

ωijXt−i+1 +ω0j (C3)

and each unit performs a nonlinear transformation on its total input:

uj = ψ

(
d∑
i=1

ωijXt−i+1 +ω0j

)
. (C4)510

The activation function ψ is a sigmoidal function with limiting values 0 and 1 as x→−∞ and +∞, respectively. Here we use

ψ(x) =
x(1+ |x2 |)
2+ |x|+ x2

2

. (C5)

Other choices of the activation function are possible even if it does not have a major impact upon the final output. The hidden

layer outputs uj are passed along to the single output unit, which performs an affine transformation on its total input. Therefore,515

the network output fd, for d inputs and k units in the hidden layer can be represented as

fd(Xt) = fd(Xt,Xt−1, . . . ,Xt−d+1) = β0 +

k∑
j=1

βjuj = β0 +

k∑
j=1

βjψ

(
d∑
i=1

ωijXt−i+1 +ω0j

)
.

We made use of the R nnet package to implement the estimator and we used least squares minimization (Venables and

Ripley, 2002). We also experimented with conditional maximum likelihood without noticing major discrepancies in the results.

The major challenge in regression with neural network models is selecting among the many possible combinations of d and k.520

Here we choose the best model that minimizes the BIC defined as

BIC = log(σ̂2)+
log(n)

n
[1+ k(d+2)], (C6)

where the error variance is estimated through the residual sum of squares σ̂2 = n−1RSS = n−1
∑n
t=1(Xt− f̂d(Xt−1))

2. Once

the estimator f̂d is obtained, a consistent estimator for the map F and its Jacobian J can be derived with plug-in methods, as

described in Shintani and Linton (2004).525

Appendix D: Local Lyapunov Exponents

In Figures D1 to D6 local Lyapunov exponents are shown for all 16 stations for 1 month, 6 month and 1 year windows.
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Figure D1. Temperature record for ocean stations with superimposed information on 1 month local Lyapunov exponents: positive values for

the LLEs are shown in red, negative values are shown in green. Stations are given in a latitudinal arrangement.
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Appendix E: Cross entropy tests with the measure Sk

Let {Xt} and {Yt}, t ∈ N, be two stationary random processes, where FXt,Yt
(x,y) = P (Xt ≤ x,Yt ≤ y), FXt

(x) = P (Xt ≤
x), FYt

(y) = P (Yt ≤ y). Then, the metric entropy Sρ at lag k is a normalized version of the Bhattacharya–Hellinger–Matusita530

distance, defined as

Sk =
1

2

∫ ∫ (√
dF(Xt,Yt+k)(x,y)−

√
dFXt

(x)dFYt+k
(y)
)2

= 1−
∫ ∫ √

dF(Xt,Yt+k)(x,y)dFXt
(x)dFYt+k

(y). (E1)

In the case where Yt =Xt for all t, Sk measures the serial dependence of {Xt} at lag k and can be interpreted as a nonlinear

auto/cross-correlation function that overcomes the limits of Pearson’s correlation coefficient. As pointed out in Maasoumi

(1993); Granger et al. (2004), and Giannerini et al. (2015), Sρ satisfies many desirable properties, including the seven Rényi535

axioms and the additional properties described in Maasoumi (1993). We compute the cross entropy tests for dependence as

detailed in Giannerini and Goracci (2023). The estimator of Sk is based on univariate and bivariate nonparametric kernel density

estimation and numerical integration. The confidence bands are derived under the null hypothesis of mutual independence

between series. In Figures E1–E6 we show the results of the cross-entropy test between the ONI and LLEs for the oceanic

stations with a time horizon of 1 and 6 months, and for the atmospheric stations with a time horizon of 1 month. For Serena540

we also tested the 1 year-ahead LLEs, see Fig. E7. For the atmospheric stations, only 1 month LLEs are shown, since no

relationship was found between the ONI index and 6 month-ahead LLEs.
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