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Abstract. Earth System Models (ESMs) and General Circulation Models (GCMs) are heavily used to provide inputs to 
sectoral impact and multisector dynamic models, which include representations of energy, water, land, economics, and their 
interactions. Therefore, representing the full range of model uncertainty, scenario uncertainty, and interannual variability that 
ensembles of these models capture is critical to the exploration of the future co-evolution of the integrated human-Earth 10 
system. The pre-eminent source of these ensembles has been the Coupled Model Intercomparison Project (CMIP).  With 
more modeling centers participating in each new CMIP phase, the size of the model archive is rapidly increasing, which can 
be intractable for impact modelers to effectively utilize due to computational constraints and the challenges of analyzing 
large datasets. In this work, we present a method to select a subset of the latest phase, CMIP6, models for use as inputs to a 
sectoral impact or multisector dynamics models, while prioritizing preservation of the range of model uncertainty, scenario 15 
uncertainty, and interannual variability of the full CMIP6 ensemble results. This method is intended to help impact modelers 
select climate information from the CMIP archive efficiently for use in downstream models that require global coverage of 
climate information. This is particularly critical for large ensemble experiments of multisector dynamic models that may be 
varying additional features beyond climate inputs in a factorial design, thus putting constraints on the number of climate 
simulations that can be used. We focus on temperature and precipitation outputs of CMIP6 models as these are two of the 20 
most used variables among impact models and many other key input variables for impacts are at least correlated with one or 
both of temperature and precipitation (e.g. relative humidity). Besides preserving the multi-model ensemble variance 
characteristics, we prioritize selecting CMIP6 models in the subset that preserve the very likely distribution of equilibrium 
climate sensitivity values as assessed by the latest IPCC report. This approach could be applied to other output variables of 
climate models and, possibly when combined with emulators, offers a flexible framework for designing more efficient 25 
experiments on human-relevant climate impacts. It can also provide greater insight into the properties of existing CMIP6 
models. 
 

1 Introduction 

The future evolution of the integrated human-Earth system is highly uncertain, but one common 30 
approach to begin addressing this uncertainty is to use outputs from a variety of computationally 
expensive, highly detailed process-based Earth System Models (ESMs) and General Circulation Models 
(GCMs) run under different scenarios. This approach has been facilitated by the Coupled Model 
Intercomparison Project (CMIP; Eyring et al. 2016), which has organized experiments that are 
standardized across modeling centers. Scenario simulations from CMIP, most recently through 35 
ScenarioMIP (O’Neill et al. 2016), are commonly used as inputs to downstream sectoral impact and 
multisector dynamic models, both by individual modeling efforts and by large, coordinated impact 
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modeling projects, like AgMIP or ISIMIP (e.g. Rosenzweig et al. 2013; Rosenzweig et al. 2014; 
Warszawski et al. 2014; Frieler et al. 2017). Using such multi-model ensembles captures the process 
and structural uncertainties represented by sampling across ESM/GCMs, scenario uncertainty, and, to 40 
the extent that an ESM/GCM runs multiple initial condition ensemble members for a scenario, internal 
variability of the individual ESM (Hawkins and Sutton 2009; Hawkins and Sutton 2011; Lehner et al. 
2020). These Earth system uncertainties can then be propagated through an impact model (perhaps after 
bias-correction (Lange 2019)) to understand possible human-relevant outcomes. 
 45 
From the Earth system modelers who produce climate data to the impact and multisector dynamic 
modelers who use it, each step in this process is computationally expensive. For Earth system modelers, 
variability across ESM/GCMs’ projections of future climate variables can be significant (Hawkins and 
Sutton 2009; Hawkins and Sutton 2011; Lehner et al. 2020) and so the participation of multiple 
modeling centers running multiple scenarios is critical to understanding the future of the Earth system. 50 
Further, statistical evaluation (Tebaldi et al. 2021) suggests that 20-25 initial condition ensemble 
members for each scenario an ESM/GCM provides are needed to estimate the forced component of 
extreme metrics related to daily temperature and precipitation, which are key inputs to many impacts 
models covering hydrological, agricultural, energy and other sectors. Fortunately, emulation of 
ESM/GCM outputs to infill missing scenarios and enrich initial condition ensembles continues to 55 
improve (Beusch, Gudmundsson, and Seneviratne 2020; Nath et al. 2022; Quilcaille et al. 2022; 
Tebaldi, Snyder, and Dorheim 2022). This suggests that ESM/GCMs don’t necessarily have to provide 
all of the runs desired for capturing possible futures, but instead a subset of scenarios including initial 
condition ensembles for emulator training. The total burden across the modeling and analysis 
community to sample across ESM/GCMs and scenarios still remains high, even with the potential 60 
efficiency provided by emulators. Downstream from the physical climate science community, impact 
modelers often seek to understand future climate impacts in the context of ESM uncertainty by using 
the outputs of multiple ESMs under multiple scenarios as inputs to impact models (e.g. (Prudhomme et 
al. 2014; Müller et al. 2021)). In a world unburdened by time and computing constraints, an impact 
model would take as input every projected data set available (possibly weighted according to 65 
observation and/or by model independence) to have a full understanding of the total variance in possible 
outcomes. Our world includes those burdens, made even larger when impact models require bias-
corrected climate data as input. This can quickly become an intractably-sized set of runs to perform and 
analyze for impact modelers.  For the multisector dynamics community, whose modelers often attempt 
to integrate results from multiple impact models to understand interactions of different sectors (like 70 
energy, water, land, and economics) of the integrated human-Earth system (Graham et al. 2020) this 
challenge multiplies. Finally, multisector dynamic models are beginning to run large ensemble 
experiments that vary additional features beyond climate inputs in a factorial design (e.g. (Dolan et al. 
2021, 2022; Guivarch et al. 2022)) further adding to the computational costs to be faced. The 
multisector dynamics approach is the approach that the examples in this work focus on: downstream 75 
models that require global coverage of a variety of climate model output variables at different temporal 
scales. Were a study to be focused on particular regions or localized impacts and dynamics, other 
selection criteria, such as model skill (closeness to observation, ability to replicate modes of variability 
known to be particularly important to that region, etc.) and the effect of downscaling and bias 
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correction, known to introduce additional sources of variability and uncertainty (Lafferty and Sriver 80 
2023) in that region could be explored. 
 
For all communities involved, an efficient way to design and then use climate model runs is critical. 
While there is likely no perfect solution to balance the tension between the competing priorities of 
different climate data creators and climate data users, this work describes a method for selecting a 85 
subset of CMIP6 models that prioritizes retaining the overall uncertainty characteristics of the entire 
data set, particularly in dimensions relevant to impact and multisectoral modelers. The method proposed 
here exists in the context of a rich literature on model selection, with methods focused on model skill in 
comparison to observation and/or tracking and controlling for climate model dependence (Abramowitz 
et al. 2019; Brands 2022; Merrifield et al. 2023; Parding et al. 2020). These are critical aspects to 90 
consider when sub-selecting climate models for downstream use. Merrifield et al (2023) does include 
model spread as a critical consideration for model selection, but to our knowledge, there is no 
uncertainty-first consideration of climate model selection. The method we present in this work is an 
adaptable framework that could complement other approaches based on skill and climate model 
independence, and some of the choices made in implementing this method may be adaptable for other 95 
uses or priorities. 

2 Methods 

We approach the question of uncertainty in the full collection of CMIP6 models as being one of 
understanding the total variance in the CMIP6 outputs, which, following the Hawkins and Sutton 
framing of the problem (Hawkins and Sutton 2009; Hawkins and Sutton 2011; Lehner et al. 2020), we 100 
understand as coming from three sources: internal variability, scenario and model uncertainties. Rather 
than attributing fractions of total variance to different sources and optimizing that as part of the 
selection process, however, we focus on projecting the data into a new coordinate basis designed to 
maximize total variance. Principal Component Analysis (PCA) does exactly this: it identifies a new set 
of basis vectors maximizing total variance that data can be projected into. Once climate model data has 105 
been projected into this space (e.g. as in Figure 3), it’s possible to sample a subset of climate models 
that cover the spread of the projections of the full set of climate model outputs in this variance-
maximizing space.  
 
The overall steps of this method are summarized in Table 1. Sections 2.1 and 2.2 provide fuller details 110 
on using PCA to characterize the full set of climate model data (2.1) and selecting a representative 
subset of climate models within that characterization (2.2). Table 1 especially highlights the choices 
made for this particular effort, based on the authors’ experience with multisectoral impact modeling.  
Section 2.3 outlines our approach to evaluating the extent to which our model subset preserves the 
uncertainty properties of the full data set. Nothing in the method prevents its being adapted with 115 
different regions of interest, indices of behavior, or ESM/GCM output variables, although evaluation of 
results in new implementations would be necessary.  
 
Table 1. Summary of method 

https://paperpile.com/c/0wIsxO/PlcK+t9GQ+B1KF+Oz1T
https://paperpile.com/c/0wIsxO/PlcK+t9GQ+B1KF+Oz1T
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Step Description Experiment 1 Experiment 2 

1 Identify relevant climate model output 
variables  

Temperature, precipitation 
from all (22) ScenarioMIP 
Tier 1-participating 
models 

Temperature, precipitation 
from independent* (16) 
ScenarioMIP Tier 1-
participating models 

2 Aggregate gridded time series to 
region-levels  

IPCC WG1 non-arctic 
land 

IPCC WG1 non-arctic 
land 

3 Identify and extract region indices for 
each variable, for each Model-
Scenario to capture characteristics of 
uncertainty of interest 

Ensemble averaged: mid-
century anomaly, end of 
century anomaly, 
interannual standard 
deviation 

Ensemble averaged: mid-
century anomaly, end of 
century anomaly, 
interannual standard 
deviation 

4 Form a matrix of  Model*Scenario 
rows and Region*Indices columns for 
the full data and perform PCA; 
identify number of eigenvectors, N, 
responsible for majority of variance 

N=5 eigenvectors N=5 eigenvectors 

5 Create candidate subsets of models 
based on heuristic filters of interest 

Model subset size = 5; 
heuristic filter is that each 
subset must preserve the 
IPCC distribution of 
equilibrium climate 
sensitivity. 

Model subset size = 5; 
heuristic filter is that each 
subset must preserve the 
IPCC distribution of 
equilibrium climate 
sensitivity. 

6 Calculate the summary metric for each 
subset and select the subset with the 
smallest value 

Minimize distance from 
out-of-subset model to a 
subset model across the 
N=5 dimensions. 

Minimize distance from 
out-of-subset model to a 
subset model across the 
N=5 dimensions. 

7 Calculate the Hawkins and Sutton 
partitions for the full set of data and 
selected subset and use as 
independent, qualitative evaluation 
data 

Full data = 22 models 
Subset = ACCESS-CM2, 
ACCESS-ESM1-5, 
CMCC-ESM2, 
MRI-ESM2-0, 
GFDL-ESM4 

Full data = 16 models 
Subset = IPSL-CM6A-LR, 
ACCESS-ESM1-5, 
MRI-ESM2-0, 
BCC-CSM2-MR, 
MIROC6 

 
* independent as defined in this work, many definitions 
exist 
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 120 

2.1 Data preparation and characterization 

Impact models often require multiple output variables from a climate model on daily or monthly time 
scales, with temperature and precipitation being the most common variables needed. For tractability, we 
focus on the IPCC WG1 non-arctic land regions (Iturbide et al. 2022), as these regions are primarily 
where humans live, consume water, generate electricity, and grow food. I.e., the places most relevant in 125 
multisectoral models of the integrated human-Earth system. We also limit ourselves to ESM/GCMs that 
completed all four ScenarioMIP Tier 1 experiments (Table 2). This still results in more than 600 
trajectories across models, scenarios, and ensemble members for each region.   
 
In this work, we are treating this collection of ESM/GCMs and scenario results in these regions as the 130 
full set of data of which we would like to faithfully represent the uncertainty characteristics, and then 
select a subset of climate models for impact modelers to use, based on preserving those 
characteristics. Critically, however, is that once the full set of climate data is characterized, as we 
outline in this section, the selection step of the method includes a step to restrict the ECS distribution of 
the model subset to reflect that of the IPCC AR6-defined most likely distribution (Core Writing Team, 135 
H. Lee and J. Romero (eds. ) 2023). This shifts the average ECS value of the selected subset down 
relative to the existing full data covered in Table 2. Following this ECS distribution, a single high ECS 
climate model is allowed to be included in the subset, allowing both the ‘hot model problem’ 
(Hausfather et al. 2022) to be addressed as part of the model subset selection process as well as ensuring 
that a range of model behaviors across different ECS values are included. Models for which we could 140 
not readily identify ECS values in the literature are included in the characterization of the full space but 
they are not eligible for selection in the subset, as preserving the IPCC distribution of ECS values is a 
critical filter in this selection process for the examples outlined in this work (more details in Section 
2.2). 
  145 
 
Table 2. Models and scenarios making up the full set of data, as well as their equilibrium climate sensitivity (ECS) values sourced 
from (Meehl et al. 2020; Lovato et al. 2022; Zelinka et al. 2020).  Note that even the Earth System Models in CMIP6 run these 
experiments in concentration-driven mode rather than emissions-driven mode. 

ESM ECS SSP126 Ensemble 
size 

SSP245 Ensemble 
size 

SSP370 Ensemble 
size 

SSP585 
Ensemble 
size 

ACCESS-CM2 4.7 5 5 5 5 

ACCESS-
ESM1-5 

3.9 40 10 30 40 

BCC-CSM2- 3.0 1 1 1 1 

https://paperpile.com/c/0wIsxO/Pxrp
https://paperpile.com/c/0wIsxO/Pxrp
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MR 

CAMS-CSM1-0 2.3 2 2 2 2 

CESM2 5.2 3 3 3 3 

CESM2-
WACCM 

4.8 1 3 1 3 

CMCC-CM2-
SR5 

3.52 1 1 1 1 

CMCC-ESM2 3.57 1 1 1 1 

CanESM5 5.6 25 25 25 25 

EC-Earth3-Veg-
LR 

4.2 3 3 3 3 

FGOALS-f3-L 3.0 1 1 1 1 

FGOALS-g3 2.87 4 4 4 4 

GFDL-ESM4 2.6 1 3 1 1 

INM-CM4-8 1.8 1 1 1 1 

INM-CM5-0 1.9 1 1 5 1 

IPSL-CM6A-LR 4.6 6 11 11 6 

MIROC6 2.6 50 33 3 50 

MPI-ESM1-2-
HR 

3.0 2 2 10 2 

MPI-ESM1-2-
LR 

3.0 10 10 10 10 

MRI-ESM2-0 3.2 5 5 5 5 

NorESM2-MM 2.5 1 2 1 1 

UKESM1-0-LL 5.3 13 14 13 5 
 150 
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For each scenario, region, and available ensemble member in each in each ESM/GCM, we extract the 
following temperature and precipitation outputs:  mid-century (2040-2059) average anomaly relative to 
that model’s historical average (1995-2014), the end of century (2080-2099) anomaly relative to 
historical average, and the interannual standard deviation (IASD). Interannual standard deviation is 
calculated by detrending the regional average level temperature and precipitation time series from 1994-155 
2100 using non-parametric locally weighted smoothing (LOESS as implemented in the python 
statsmodels package), and then taking the standard deviation of the residuals. For each scenario and 
model, these ensemble-member values are used to calculate the ensemble average to form our final 
indices in each region. These six indices (three for each of temperature and precipitation) per ESM-
scenario-region combination are selected to result in data that represents the model uncertainty, scenario 160 
uncertainty, and interannual variability of our full set of data.  By focusing on ensemble averages, 
models that performed more realizations are not over-represented in the overall space. When an 
ensemble size is only one realization, that realization’s value is used. The key question is how to 
efficiently characterize this collection of data in a way that enables an efficient subsampling of models 
that still preserves the main dimensions of variations of the full ensemble.  165 
 
This full data can be written as a matrix A with Nmodel*Nscenarios rows and Nindices*Nregions 
columns. In the case of considering all 22 models listed in Table 2 as representative of the full space, 
this is 88 rows and 258 columns and we use these numbers for simplicity in some of the vector 
descriptions that follow. Below, we outline two experiments that highlight the adaptability of this 170 
method by considering model dependency in the CMIP6 models versus not. In the case of restricting to 
independent models only to make up the full data, these numbers of course change.   
 
 Principal components analysis (PCA) is then a natural technique to understand the variance of this full 
data set by forming the covariance matrix S = ATA. The eigenvectors of S are a set of orthogonal basis 175 
vectors (each vector is length 258) that are ordered by how much variance of the full data each 
eigenvector explains. Mathematically, this means that each row of A, ({𝑎!###⃗ |𝑖 = 1…88}) representing the 
indices in all regions for a single climate model-scenario) can be projected into the space of 
eigenvectors ,𝑃𝐶!######⃗ /𝑖 = 1…88}  and written as 𝑎!###⃗ = Σ"𝑐#" 	𝑃𝐶$######⃗   
for projection coefficients (coordinates in the basis of eigenvectors), 𝑐#". Thus 𝑃𝐶%#######⃗ , for example 180 
represents some pattern of joint, spatiotemporal temperature and precipitation behaviors that explains 
the greatest variance across ESM/GCM-scenario observations. Each CMIP6 model-scenario 
combination has some contribution from this pattern described by its projection coefficient, 𝑐#%. This 
projection can be done over all eigenvectors, or as is common with PCA, a small subset of the 
eigenvectors that explain the majority of variance. 185 
 
 
To demonstrate the flexibility of this approach to characterizing data, we perform the same analysis in 
two different experiments: 

• Experiment 1 assumes all 22 models listed in Table 2 make up the full data. 190 
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• Experiment 2 assumes the full data is made up of only 16 of the models in Table 2, with 
ACCESS-CM2, CESM2-WACCM, CMCC-CM2-SR5, FGOALS-f3-L, INM-CM4-8, and MPI-
ESM1-2-HR being removed from consideration as they share clear model dependencies with 
other models in the full data. When deciding which of two related models to keep, we chose 
based on keeping the model with greater number of realizations as this is valuable for 195 
downstream uses. Other criteria could be used to define model dependency and make selections, 
as determining model independence is itself a rich field of study (Abramowitz et al. 2019; 
Brands 2022; Merrifield et al. 2023). 

 
 Figure 1 is a plot of the fraction of variance explained by each of the first 15 eigenvectors in each 200 
experiment. Based on this figure, we restrict ourselves to the first five eigenvectors for projections (just 
after the ‘elbow’), explaining more than 70% of total variance for each experiment. The number of 
eigenvectors considered is another area of flexibility of this method. There is no reason this method 
could not be applied to more or even all of the eigenvectors. However, the more eigenvectors that are 
considered, the higher dimensional the space that model selection must take place in. This slows down 205 
the calculations for selecting a subset considerably, at the benefit of explaining only a few extra percent 
of total variance with each vector added.  
 

 
Figure 1: fraction of variance explained by each eigenvector of the principal component analysis on scaled data for Experiment 1 210 
(left) and Experiment 2 (right)), for the first 15 eigenvectors. 

 
Figure 2 is a visual representation of these five eigenvectors for each experiment. Each row is a map of 
all indices for each eigenvector. While it is tempting to interpret differences in sign as meaningful, note 
that these are centered and scaled variables. Interpretation of the eigenvectors is also less meaningful 215 
than the fact that they represent an orthogonal coordinate system that maximizes total variance. For both 
experiments 𝑃𝐶%#######⃗   is dominated by temperature and, to a lesser extent, high latitude precipitation, 
highlighting that these features are responsible for 38.7% of the total variance of our full set of data 
(from Fig. 1). This is not the only contribution to total variance of temperature, of course, but it is a 

https://paperpile.com/c/0wIsxO/PlcK+t9GQ+B1KF
https://paperpile.com/c/0wIsxO/PlcK+t9GQ+B1KF
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good sanity check that temperature anomalies are the most dominant feature in the dimension 220 
explaining the highest fraction of total variance. 𝑃𝐶&#######⃗   is dominated by temperature interannual 
variability and high latitude precipitation interannual variability.  𝑃𝐶'#######⃗ 	 to 𝑃𝐶(#######⃗   feature a mix of the 
indices, with strong emphasis on precipitation related behaviors. Note that because we treated 
temperature and precipitation indices together in one matrix, the eigenvectors include joint temperature-
precipitation behaviors that may be missed if the variables were treated separately. When comparing 225 
each map between the two experiments, it is worth noting that the spatial patterns are very similar 
between Experiment 1 and Experiment 2. Specifically, it is primarily in the southern latitudes in 𝑃𝐶(#######⃗    
(explaining	only	~5%	of	total	variance	in	the	full	data	in	either	experiment)	that	clear	differences	
between	the	two	experiments	begin	to	emerge.		This suggests that the patterns of total variance in 
this data set are dominated by differences beyond those that might be captured in our definition of 230 
model dependence. For example, maybe different representations of ocean physics are playing a large 
role. Testing of this hypothesis is outside the scope of this method description work but highlights the 
potential value of characterizing an archive of CMIP data in this way. In Figures 1 and 3, we also see 
that the fraction of total variance explained by each eigenvector is similar across the two experiments. 
Overall, this similarity when accounting for model dependence versus not is not entirely surprising. The 235 
full data set in Experiment 1, with all of the model dependencies it includes, does include over-
representation of whatever physics (for example) that are used in the most ESM/GCMs. However, 
because PCA is focused on maximizing total variance, this over-representation does get mitigated to an 
extent.  
 240 
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Figure 2: Maps of the first five eigenvectors of our full data. Each row is a single eigenvector, with maps presented for each of the 
indices. Note that the colorbar scales are all standardized. A larger, landscape-oriented version of this figure is included in 245 
Appendix A (Fig. A1) for easier inspection. 
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By treating the span of these five eigenvectors as the representative space of full data, we can project all 
data into this space and visualize its behavior by two-dimensional plots of all five PCs combinations. 
Figure 3 shows these 2-d slices of the projection coefficients for each ESM/GCM and scenario into this 250 
space for each experiment. These points in space are the 𝑐#" values	in	the	principal	component	
decomposition 𝑎!###⃗ = Σ"𝑐#" 	𝑃𝐶$######⃗ , where 𝑎!###⃗ 	contains the indices in all regions for a single climate model-
scenario. Because eigenvectors are orthogonal in PCA, together these panels are a complete visual 
representation of our ESM/GCM index data characterized in each 𝑎!###⃗ , truncated to the first five 
projection dimensions (since they account for more than 70% of total variance in the full data in each 255 
experiment). If an impact modeler wished, they could run every model-scenario combination here for 
all available ensemble members. In practice, however, this may not be computationally tractable to 
either run or analyze. This view also motivates our approach for selecting our subset of climate models 
that preserve the uncertainty characteristics defined by this space. Because we want to represent the 
same characteristics of variance with fewer ESM/GCMs, our selection of a subset of ESM/GCMs is 260 
seeking to essentially sample this cloud at its extremes, middle, and throughout as subset size allows.  
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Figure 3: 2-d slices of the projection coefficients for each ESM/GCM-scenario combination into the space spanned by the first five 
eigenvectors. 

 

2.2 Selection criteria of subset of CMIP6 models 

Once the full set of data has been projected into the new basis identified to maximize total variance by 270 
PCA (as in Figure 3), selecting a representative subset of climate models across that space is relatively 
straightforward, and so is adding additional selection criteria, like constraining the distribution of ECS 
values. The subset of climate models that minimizes distance to all other climate models across this 
five-dimensional space is the subset selected. In more detail, first, subsets of candidate models are 
formed (in this work, five models per subset, but the approach can be applied to any target                        275 
subset size). While it would be possible to consider any combination of five models from the full set of 
22, in this work we add a pre-filtering step. From all 22 choose 5 potential subsets, we only consider as 
candidate subsets the 150 subsets that roughly preserve the IPCC distribution of equilibrium climate 
sensitivity values and for which we could identify ECS values in the literature (Core Writing Team & 
(eds.), 2023; Lovato et al., 2022; Meehl et al., 2020; Zelinka et al. 2020). Then for each subset, we step 280 
through each non-candidate model and calculate the minimum Euclidean distance to any of the subset’s 
climate model’s coefficients. The summary metric for each subset of candidates is then the average over 
all non-candidate model minimum distances, and the subset of candidate models with the smallest 
summary metric is the selected subset. Unlike many metrics (e.g. (Nash & Sutcliffe, 1970; Tebaldi et 
al., 2020)), there is unfortunately not a clear threshold for ‘good enough’ performance based on this 285 
metric and so in the so in the next section, we provide a qualitative evaluation framework that assesses 
whether the selected subset is successful at preserving the major characteristics of the full ensemble’s 
uncertainty characteristics.  
 
 290 

2.3 Method for subset evaluation 

The Hawkins and Sutton breakdown of total variance into relative sources of uncertainty inspired our 
choices of regional indices, both anomalies and interannual standard deviations. However, our subset 
selection is made in the space of the climate models’ absolute positions, without formally considering 
the relative breakdowns into fraction of total variance explained by model uncertainty, scenario 295 
uncertainty, and internal variability. Therefore, the partitioning of relative uncertainty calculated in the 
style of Hawkins and Sutton (Hawkins & Sutton, 2009, 2011) is a useful independent framework to 
evaluate the extent to which our climate model subset preserves the characteristics of the full ensemble. 
We don’t expect perfect agreement in the Hawkins and Sutton (HS) fractions between our climate 
model subset and the full data because we do change the distribution of ECS values in the subset we 300 
select. However, even qualitative discrepancies in the HS fractions between the full ensemble and the 
chosen subset can be useful to understand whether decisions such as constraining the distribution of 
ECS values are moving the relative contribution of each source of uncertainty in an explainable way.  
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The calculations of HS fractions are as follows: Consider a set of trajectories for a given climate 305 
variable produced by various model ESMs and scenarios. For example, this could be the annual average 
temperature or precipitation in a given world region. At each time step, t, there will be variation in the 
estimates from each observation in the set. The goal for a given set is to attribute a proportion of the 
variation or uncertainty at each time step to one of the three sources: interannual variation, model 
uncertainty, and scenario uncertainty. In our application, we want to do this for a “full” model set and 310 
compare the distribution of assigned variance to the same analysis on a selected subset of models. 
 
The crux of this method for separating uncertainty is to write the raw predictions for each observation as 
𝑋),+,, = 𝑥),+,, + 𝑖),+ + ε),+,,, where 𝑋),+,, is the raw prediction for model m scenario s at time t, 𝑥),+,, 
is a smoothed fit of the variable anomaly with reference period 1995-2014, 𝑖),+ is the average variable 315 
value over the reference period, and ε),+,, is the residual, representing interannual variation (IAV). Note 
that while internal variability is itself a constant value for each climate model-scenario, the fraction of 
total variance that internal variability explains can change over time as the model and scenario 
components change. Similarly, while we do not want to select subsets of scenarios, understanding the 
relative contribution of scenario uncertainty is critical to appreciate the variability across the different 320 
models. 
 
 
We can then essentially calculate the interannual variation component as the variance of all ε, the model 
uncertainty component at each time step as the variation in 𝑥 over the different models, and the scenario 325 
uncertainty at each time step as the variation in 𝑥 over the different scenarios. The variance calculations 
can have a weighting component, although in this work we treat all models included in each 
experiment-specific full ensemble as uniformly weighted. The	interannual	variability	component	is	
computed	as	𝑉 = ∑ 𝑣𝑎𝑟+,,Xε),+,,Y) .		The	model	uncertainty	component	is	𝑀(𝑡) =
%
-!
∑ 𝑣𝑎𝑟)X𝑥),+,,Y+ 	for	the	number	of	scenarios	used	𝑁+	(four	in	this	study).	The	scenario	330 

uncertainty	component	is		𝑆(𝑡) = 𝑣𝑎𝑟+X∑ 𝑥),+,,) Y.	
	
Note	that	each	of	these	components	may,	for	example,	be	weighted	based	on	each	climate	model’s	
closeness	to	some	observational	set,	but	in	this	work	we	weight	them	uniformly,	as	we	are	not	
concerned	with	model	validation.	Furthermore,		following	the	assertion	by	Hawkins	and	Sutton	335 
(2009)	assert	that	final	fractions	of	total	variability	are	not	strongly	affected	by	using	different	
weights.	 
 

3 Results and discussion 

The selected subset of ESM/GCMs and their respective ECS values are provided in Table 3 for each 340 
experiment. Figure 4 presents an identical plot to Fig. 3 but with the selected ESM/GCMs highlighted 
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by black box outlines to emphasize the extent to which the subset covers the full ensemble. We also 
perform a validation exercise based on the work of Hawkins and Sutton (Hawkins & Sutton, 2009, 
2011) using the whole time series data rather than the 6 metrics that guided our subset selection to 
provide an additional perspective on the ability of the method to preserve the characteristics of 345 
variability of the whole ensemble. 
 
Table 3. Selected Model subset and ECS values for each experiment. Models selected in both experiments in bold. 

Experiment 1 Model (ECS value) Experiment 2 Model (ECS value) 

ACCESS-CM2 (4.70) IPSL-CM6A-LR (4.6) 

ACCESS-ESM1-5 (3.9) ACCESS-ESM1-5 (3.9) 

MRI-ESM2-0 (3.2) MRI-ESM2-0 (3.2) 

BCC-CSM2-MR (3.0) MPI-ESM1-2-0 (3.0) 

MIROC6 (2.6) MIROC6 (2.6) 
 

 350 
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 355 
Figure 4: Same as Figure 3 but with the selected ESM/GCMs highlighted by black box outlines or Experiment 1 (top) and Experiment 
2 (bottom). 

3.1 Subset Evaluation 

As noted in Section 2.3, the partitioning of total variance into the relative contribution of different 
sources calculated by Hawkins and Sutton (Hawkins & Sutton, 2009, 2011) is a useful independent 360 
framework to evaluate the extent to which our climate model subset preserves the characteristics of the 
full ensemble. As we did not calculate the specific time series of Hawkins and Sutton (HS) fractions for 
internal variability (there, as here, quantified as interannual variability after detrending the annual mean 
time series), scenario uncertainty, and model uncertainty to form any part of our selection procedure, we 
can use these HS fractions as independent evaluation criteria. We calculate the time series of HS 365 
fractions for temperature and precipitation separately in each region, for the full set of data and over just 
our selected subset of data, i.e., for each experiment, over the selection of CMIP6 models making up the 
full data set in that experiment, and only using the subset of 5 ESM/GCMs that our method identified. 
Details of these calculations are provided in Section 2.3. To manage the inspection of three time series 
for each of 86 region-variable combinations, we use root mean square error (RMSE) to compare the full 370 
data time series and the subset data time series from 2040 onward (as that is the focus of our indices) for 
each uncertainty partition, for each variable in each region.  
 
Because of the large number of regions we wish to examine for two variables over time in each of two 
separate experiments, we seek some criteria to narrow this down. To identify specific region-variable 375 
combinations that are due for closer inspection, we set a threshold on the RMSE values for each 
uncertainty partition for each region-variable combination. As we note in Section 2.3, a discrepancy 
between the HS fractions for the subset and the full data is not a sign of poor selection. Rather, it merely 
means it is a region to inspect more closely and consider whether the discrepancies follow from our 
constraint of ECS values as part of our selection procedure. If any of the three uncertainty partitions 380 
have RMSE>0.1, we flag that region-variable combination for closer inspection. While thresholds like 
this are often arbitrary to set, each uncertainty partition for the subset data explaining the fraction of 
total variance within 10% of the full data’s partition seems a good place to start. We show in Appendix 
A the results of a less stringent choice, namely, if we relax this to 20%, far fewer regions-variables get 
flagged for inspection in each experiment. Lowering this inspection threshold will of course flag more 385 
region-variables combinations, but as we point out below, a portion of the combinations flagged with a 
threshold of 0.1 still actually perform reasonably when plotted over time. Figure 5 provides a color-
coded map of regions where temperature, precipitation, both, or neither have RMSE <= 0.1 for all three 
uncertainty partitions to give a sense of the spatial extent of performance. 
 390 
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Figure 5. a color-coded map of regions where temperature, precipitation, both, or neither have RMSE <= 0.1 for all three 
uncertainty partitions. 

 395 
The time series of HS fractions for the remaining region-variable combinations for which RMSE > 0.1 
are plotted in Figure 6 (temperature) and Figure 7 (precipitation). For temperature in both experiments, 
we see that interannual variability is often performing well, with increasingly better performance over 
time. The partitioning of model and scenario uncertainty is where the subset’s behavior begins to depart 
from the full data, although this too tends to have smaller discrepancies as time goes on. This is not 400 
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surprising: in the full set of data, a good portion of model uncertainty is driven by different ECS values. 
As provided in Table 2, the values across ESM/GCMs that participated in Tier 1 ScenarioMIP 
experiments do not match the IPCC very likely distribution. By contrast, we are only selecting subsets 
of ESM/GCMs that match this distribution, overall resulting in a cooler collection of climate models 
than the full data. This accounts for much of the discrepancy in the balance between scenario and model 405 
uncertainty contributions being different between our full and our subset data. Enforcing a different 
distribution of ECS values in the selected subset relative to the full data will also explain many of the 
discrepancies for precipitation, given the known strong correlation between temperature and 
precipitation changes. For precipitation, we overall see total uncertainty in the subset having a greater 
fraction explained by interannual variability and less by model uncertainty across time. For both 410 
temperature and precipitation, the direction of these discrepancies is not surprising given our choice to 
reshape the distribution of ECS to an overall cooler collection than the full data. What we want to see in 
all panels of Figures 6 and 7, is a qualitative agreement with the relevance of the three sources of 
uncertainty in the full ensemble. We note that even in the regions we have flagged for closer inspection 
in Figures 6 and 7, model uncertainty is evolving in the subset in much the same way it evolves in the 415 
full set, albeit with a shift.  According to this criterion, most of the regions flagged by the application of 
the 0.1 threshold remain consistent with the full ensemble representation of the three uncertainty 
sources, for both variables and across both experiments. A small portion of the regions inspected in 
Figure 6 and 7 do ultimately simply differ more dramatically in the representations in the full set versus 
subset, such as TIB in  Experiment 1 in Figure 6. This is often unavoidable in a few regions when 420 
seeking to represent the entire globe with a subset of ESM/GCMs, again noting that even more 
substantial quality discrepancy such as this isn’t a sign of failure of the method due to the constraints on 
ECS distributions.  
 
  425 
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Figure 6: Regions flagged for closer inspection of their HS fraction time series for temperature. The color-blocked time series are 
the HS fractions from the full set of data, and the white curves overlaid are the respective boundaries for the subset data’s 430 
uncertainty partitions. 

 



21 
 

 

 
Figure 7: Same as Figure 6 but for precipitation. 435 

 

4 Conclusions 

This work outlines and documents the success of a method for selecting a subset of climate models from 
CMIP6 that overall preserve the uncertainty characteristics of the full CMIP ensemble, particularly for 
use with multisectoral dynamics models that require global coverage and consistency across regions. 440 
The methodology is not focused on advocating for a particular set of models as superior, instead 
focusing on managing uncertainty. Our methodology relies on pre-identifying regional indices of 
behavior for ESM/GCM output variables, as well as other filters (such as preserving the IPCC 
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distribution of ECS values) judged to be critical for the robustness of impact and multisectoral 
modeling. With these assumptions, far fewer climate inputs are needed to span the range of 445 
uncertainties seen in CMIP6, resulting in fewer impact model runs needing to be performed and 
analyzed. There are likely many situations in which a modeler could adapt the details of the method 
(outlined in Table 1) and code for their purposes, re-run to identify a subset of climate models, and 
validate that new subset in much less time and with much fewer computing resources needed than 
simply running impact models with all scenarios and ensemble members available for the 22 450 
ESM/GCMs documented in Table 2. For multisectoral modelers integrating multiple different impacts, 
or running large ensemble experiments, the time saved only grows, even when accounting for method 
adjustment and re-validation of results.  For researchers focused on emulators, there may be 
opportunities to identify fewer climate models that would benefit from generating more initial condition 
ensemble members, focusing efforts.  Finally, Earth system modelers can gain new insights into their 455 
individual climate models by adding the approach to uncertainty characterization outlined in this work 
to their existing analyses. 
 
The methodology outlined in this paper is an adaptable approach to both retain the major uncertainty 
characteristics of a large collection of global-coverage climate model data and to make changes (as we 460 
did to the full ensemble ECS distribution). While there are resulting regions for both temperature and 
precipitation where the uncertainty partitions of the subset of ESM/GCMs differ from the full set of 
CMIP6 models, these differences are primarily expected based on the different ECS distribution 
represented by our subset ESM/GCMs compared to the full data.  For those interested in using our 
chosen subset, we hope that by providing detailed information about where the subset differs in Figures 465 
5-7, impact modelers may be able to infer how results would change if the full set of data were used, 
with far lower computational burden than running all available data. Further, because the method is 
adaptable, an impact modeler particularly interested in a specific region could weight the outcomes in 
that region more heavily for selection of the subset.  
 470 
As noted, this work is primarily coming from the perspective of a multisectoral dynamics modeler 
requiring global coverage of a range of climate model output variables at different time scales, and 
naturally other perspectives will come with their own caveats. Impacts can be estimated and worked 
with at a range of spatial scales; impact modelers concerned with finer scale or local impacts, or 
modelers focused on a single region rather than global coverage, may very well be served by 475 
prioritizing other factors like skill in their climate model subselection. Bias correction and downscaling 
are also tools heavily used to get to these finer spatial scales, and these processes introduce their own 
sources of uncertainty, particularly for very local phenomenon and over complex terrain (Kendon et al. 
2010; Mearns et al. 2013; Barsugli et al. 2013; Lafferty and Sriver 2023). Generally, the method 
outlined in this work is more appropriate to work with raw CMIP6 data in its native resolutions or an 480 
ensemble of bias-adjusted and downscaled climate data that has been processed using a consistent bias-
adjustment and downscaling method. On a final note for adaptations of this method, we focused on 
temperature and precipitation because many variables used in impacts modeling are correlated to or 
derived from these variables. This is especially true in agriculture, e.g. Sinha et al. 2023; Sinha et al. 
2023; Peterson and Abatzoglou 2014; Allstadt et al. 2015; Gerst et al. 2020, although it holds in other 485 
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sectors as well. One area for potential expansion of this method that would have more direct relevance 
to those derived variables would be to incorporate a time dimension more explicitly.  
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Appendix A Additional figures  

 

 490 
Figure A1: A color-coded map of regions where temperature, precipitation, both, or neither have RMSE <= 0.2 for all three 
uncertainty partitions. 
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 495 
Figure A2: Same as Figure 6 but for RMS > 0.2 rather than 0.1 
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Figure A3: Same as Figure 7 but for RMS > 0.2 rather than 0.1. 500 
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