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Abstract. Earth System Models (ESMs) and General Circulation Models (GCMs) are heavily used to provide inputs to 
sectoral impact and multisectoral dynamic models, which include representations of energy, water, land, economics, and 
their interactions. Therefore, representing the full range of model uncertainty, scenario uncertainty, and interannual 
variability that ensembles of these models capture is critical to the exploration of the future co-evolution of the integrated 10 
human-Earth system. The pre-eminent source of these ensembles has been the Coupled Model Intercomparison Project 
(CMIP).  With more modeling centers participating in each new CMIP phase, the size of the model archive is rapidly 
increasing, which can be intractable for impact modelers to effectively utilize due to computational constraints and the 
challenges of analyzing large datasets. In this work, we present a method to select a subset of the latest phase, CMIP6, 
models for use as inputs to a sectoral impact or multisectoral models, while prioritizing preservation of the range of model 15 
uncertainty, scenario uncertainty, and interannual variability of the full CMIP6 ESM results. This method is intended to help 
human-relevant impact and multisectoral modelers select climate information from the CMIP archive efficiently for use in 
downstream models that require global coverage of climate information. This is particularly critical for large ensemble 
experiments of multisectoral dynamic models that may be varying additional features beyond climate inputs in a factorial 
design, thus putting constraints on the number of climate simulations that can be used. We focus on temperature and 20 
precipitation outputs of CMIP6 models as these are two of the most used variables among impact models and many other 
key input variables for impacts are at least correlated with one or both of temperature and precipitation (e.g. relative 
humidity). Besides preserving the multi-model ensemble variance characteristics, we prioritize selecting CMIP6 models in 
the subset that preserve the very likely distribution of equilibrium climate sensitivity values as assessed by the latest IPCC 
report. This approach could be applied to other output variables of climate models and, when combined with emulators, 25 
offers a flexible framework for designing more efficient experiments on human-relevant climate impacts. It can also provide 
greater insight into the properties of existing CMIP6 models. 
 

1 Introduction 

The future evolution of the integrated human-Earth system is highly uncertain, but one common 30 
approach to begin addressing this uncertainty is to use outputs from a variety of computationally 
expensive, highly detailed process-based Earth System Models (ESMs) and General Circulation Models 
(GCMs) run under different scenarios. This approach has been facilitated by the Coupled Model 
Intercomparison Project (CMIP) (Eyring et al. 2016), which has organized experiments that are 
standardized across modeling centers. Scenario simulations from CMIP (most recently through 35 
ScenarioMIP, (O’Neill et al. 2016) are commonly used as inputs to downstream sectoral impact and 
multisector dynamic models, both by individual modeling efforts and by large, coordinated impact 
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modeling projects, like AgMIP or ISIMIP (e.g. (Rosenzweig et al. 2013; Rosenzweig et al. 2014; 
Warszawski et al. 2014; Frieler et al. 2017)). Using such multi-model ensembles captures the process 50 
and structural uncertainties represented by sampling across ESM/GCMs, scenario uncertainty, and, to 
the extent that an ESM/GCM runs multiple initial condition ensemble members for a scenario, internal 
variability of the individual ESM (Hawkins and Sutton 2009; Hawkins and Sutton 2011; Lehner et al. 
2020). These Earth system uncertainties can then be propagated through an impact model (perhaps after 
bias-correction (Lange 2019)) to understand possible human-relevant outcomes. 55 
 
From the Earth system modelers who produce climate data to the impact and multisectoral dynamic 
modelers who use it, each step in this process is computationally expensive. For Earth system modelers, 
variability across ESM/GCMs’ projections of future climate variables can be significant (Hawkins and 
Sutton 2009; Hawkins and Sutton 2011; Lehner et al. 2020) and so the participation of multiple 60 
modeling centers running multiple scenarios is critical to understanding the future of the Earth system. 
Further, statistical evaluation (Tebaldi et al. 2021) suggests that 20-25 initial condition ensemble 
members for each scenario an ESM/GCM provides are needed to estimate the forced component of 
extreme metrics related to daily temperature and precipitation, which are key inputs to many impacts 
models covering hydrological, agricultural, energy and other sectors. Fortunately, emulation of 65 
ESM/GCM outputs to infill missing scenarios and enrich initial condition ensembles continues to 
improve (Beusch, Gudmundsson, and Seneviratne 2020; Nath et al. 2022; Quilcaille et al. 2022; 
Tebaldi, Snyder, and Dorheim 2022). This suggests that ESM/GCMs don’t necessarily have to provide 
all of the runs desired for capturing possible futures, but instead a subset of scenarios including initial 
condition ensembles for emulator training. The total burden across the modeling and analysis 70 
community to sample across ESM/GCMs and scenarios still remains high, even with the potential 
efficiency provided by emulators. Downstream from the physical climate science community, impact 
modelers often seek to understand future climate impacts in the context of ESM uncertainty by using 
the outputs of multiple ESMs under multiple scenarios as inputs to impact models (e.g. (Prudhomme et 
al. 2014; Müller et al. 2021)). In a world unburdened by time and computing constraints, an impact 75 
model would take as input every projected data set available (possibly weighted according to 
observation and/or by model independence) to have a full understanding of the total variance in possible 
outcomes. Our world includes those burdens, made even larger when impact models require bias-
corrected climate data as input. This can quickly become an intractably-sized set of runs to perform and 
analyze for impact modelers.  For the multisectoral dynamics community, whose modelers often 80 
attempt to integrate results from multiple impact models to understand interactions of different sectors 
(like energy, water, land, and economics) of the integrated human-Earth system (Graham et al. 2020) 
this challenge multiplies. Finally, multisectoral dynamic models are beginning to run large ensemble 
experiments that vary additional features beyond climate inputs in a factorial design (e.g. (Dolan et al. 
2021, 2022; Guivarch et al. 2022)) further adding to the computational costs to be faced. The 85 
multisectoral dynamics approach is the approach that the examples in this work focus on: downstream 
models that require global coverage of a variety of climate model output variables at different temporal 
scales. Were a study to be focused on particular regions or localized impacts and dynamics, other 
selection criteria, such as model skill (closeness to observation, ability to replicate modes of variability 
known to be particularly important to that region, etc.) and the effect of downscaling and bias 90 
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correction, known to introduce additional sources of variability and uncertainty (Lafferty and Sriver 
2023) in that region could be explored. 
 
For all communities involved, an efficient way to design and then use climate model runs is critical. 
While there is likely no perfect solution to balance the tension between the competing priorities of 105 
different climate data creators and climate data users, this work describes a method for selecting a 
subset of CMIP6 models that prioritizes faithfully representing the uncertainty characteristics of the 
entire data set, particularly in dimensions relevant to impact and multisectoral modelers. The method 
proposed here exists in the context of a rich literature on model selection, with methods focused on 
model skill in comparison to observation and/or tracking and controlling for climate model dependence 110 
(Abramowitz et al. 2019; Brands 2022; Merrifield et al. 2023; Parding et al. 2020). These are critical 
aspects to consider when sub-selecting climate models for downstream use. Merrifield et al (2023) does 
include model spread as a critical consideration for model selection, but to our knowledge, there is no 
uncertainty-first consideration of climate model selection. The method we present in this work is an 
adaptable framework that could complement other approaches based on skill and climate model 115 
independence, and some of the choices made in implementing this method may be adaptable for other 
uses or priorities. 

2 Methods 

We approach the question of uncertainty in the full collection of CMIP6 models as being one of 
understanding the total variance in the CMIP6 outputs, following the Hawkins and Sutton framing of 120 
the problem (Hawkins and Sutton 2009; Hawkins and Sutton 2011; Lehner et al. 2020). Rather than 
attributing fractions of total variance to different sources and optimizing that as part of the selection 
process, however, we focus on projecting the data into a new coordinate basis designed to maximize 
total variance. Principal Component Analysis (PCA) does exactly this: it identifies a new set of basis 
vectors maximizing total variance that data can be projected into. Once climate model data has been 125 
projected into this space (e.g. as in Figure 3), it’s straightforward to sample climate models that span the 
projections of the full set of climate model outputs.  
 
The overall steps of this method are summarized in Table 1. Sections 2.1 and 2.2 provide fuller details 
on using PCA to characterize the full set of climate model data (2.1) and selecting a representative 130 
subset of climate models within that characterization (2.2). Table 1 especially highlights the choices 
made for this particular effort, based on the authors’ experience with multisectoral impact modeling.  
Section 2.3 outlines our approach to evaluating the extent to which our model subset preserves the 
uncertainty properties of the full data set. Nothing in method prevents its being adapted with different 
regions of interest, indices of behavior, or ESM/GCM output variables, although evaluation of results in 135 
new implementations would be necessary.  
 
Table 1. Summary of method 
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Step Description Experiment 1 Experiment 2 

1 Identify relevant climate model output 
variables  

Temperature, precipitation 
from all (22) ScenarioMIP 
Tier 1-participating 
models 

Temperature, precipitation 
from independent* (16) 
ScenarioMIP Tier 1-
participating models 

2 Aggregate gridded time series to 
region-levels  

IPCC WG1 non-arctic 
land 

IPCC WG1 non-arctic 
land 

3 Identify and extract region indices for 
each variable, for each Model-
Scenario to capture characteristics of 
uncertainty of interest 

Ensemble averaged: mid-
century anomaly, end of 
century anomaly, 
interannual standard 
deviation 

Ensemble averaged: mid-
century anomaly, end of 
century anomaly, 
interannual standard 
deviation 

4 Form a matrix of  Model*Scenario 
rows and Region*Indices columns for 
the full data and perform PCA; 
identify number of eigenvectors, N, 
responsible for majority of variance 

N=5 eigenvectors N=5 eigenvectors 

5 Create candidate subsets of models 
based on heuristic filters of interest 

Model subset size = 5; 
heuristic filter is that each 
subset must preserve the 
IPCC distribution of 
equilibrium climate 
sensitivity. 

Model subset size = 5; 
heuristic filter is that each 
subset must preserve the 
IPCC distribution of 
equilibrium climate 
sensitivity. 

6 Calculate the summary metric for each 
subset and select the subset with the 
smallest value 

Minimize distance from 
out-of-subset model to a 
subset model across the 
N=5 dimensions. 

Minimize distance from 
out-of-subset model to a 
subset model across the 
N=5 dimensions. 

7 Calculate the Hawkins and Sutton 
partitions for the full set of data and 
selected subset and use as 
independent, qualitative evaluation 
data 

Full data = 22 models 
Subset = ACCESS-CM2, 
ACCESS-ESM1-5, 
CMCC-ESM2, 
MRI-ESM2-0, 
GFDL-ESM4 

Full data = 16 models 
Subset = IPSL-CM6A-LR, 
ACCESS-ESM1-5, 
MRI-ESM2-0, 
BCC-CSM2-MR, 
MIROC6 

 
* independent as defined in this work, many definitions 
exist 
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2.1 Data preparation and characterization 160 

Impact models often require multiple output variables from a climate model on daily or monthly time 
scales, with temperature and precipitation being the most common variables needed. For tractability, we 
focus on the IPCC WG1 non-arctic land regions (Iturbide et al. 2022), as these regions are primarily 
where humans live, consume water, generate electricity, and grow food. I.e., the places most relevant in 
multisectoral models of the integrated human-Earth system. We also limit ourselves to ESM/GCMs that 165 
completed all four ScenarioMIP Tier 1 experiments (Table 2). This still results in more than 600 
trajectories across models, scenarios, and ensemble members for each region.   
 
In this work, we are treating this collection of ESM/GCMs and scenario results in these regions as the 
full set of data of which we would like to faithfully represent the uncertainty characteristics, and then 170 
select a subset of climate models for impact modelers to use, based on preserving those 
characteristics. Critically, however, is that once the full set of climate data is characterized, as we 
outline in this section, the selection step of the method includes a step to restrict the ECS distribution of 
the model subset to reflect that of the IPCC AR6-defined most likely distribution (Core Writing Team, 
H. Lee and J. Romero (eds. ) 2023). This shifts the average ECS value of the selected subset down 175 
relative to the existing full data covered in Table 2Table 3Table 1. Following this ECS distribution, a 
single high ECS climate model is allowed to be included in the subset, allowing both the ‘hot model 
problem’ (Hausfather et al. 2022) to be addressed as part of the model subset selection process as well 
as ensuring that a range of model behaviors across different ECS values are included. Models for which 
we could not readily identify ECS values in the literature are included in the characterization of the full 180 
space but they are not eligible for selection in the subset, as preserving the IPCC distribution of ECS 
values is a critical filter in this selection process for the examples outlined in this work (more details in 
Section 2.2). 
  
 185 
Table 2. Models and scenarios making up the full set of data, as well as their equilibrium climate sensitivity (ECS) values sourced 
from (Meehl et al. 2020; Lovato et al. 2022).  Note that even the Earth System Models in CMIP6 run these experiments in 
concentration-driven mode rather than emissions-driven mode. 

ESM ECS SSP126 
Ensemble size 

SSP245 
Ensemble size 

SSP370 
Ensemble size 

SSP585 
Ensemble 
size 

ACCESS-CM2 4.7 5 5 5 5 

ACCESS-
ESM1-5 

3.9 40 10 30 40 

BCC-CSM2- 3.0 1 1 1 1 
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MR 

CAMS-CSM1-0 2.3 2 2 2 2 

CESM2 5.2 3 3 3 3 

CESM2-
WACCM 

4.8 1 3 1 3 

CMCC-CM2-
SR5 

NA 1 1 1 1 

CMCC-ESM2 3.57 1 1 1 1 

CanESM5 5.6 25 25 25 25 

EC-Earth3-Veg-
LR 

NA 3 3 3 3 

FGOALS-f3-L 3.0 1 1 1 1 

FGOALS-g3 NA 4 4 4 4 

GFDL-ESM4 2.6 1 3 1 1 

INM-CM4-8 1.8 1 1 1 1 

INM-CM5-0 1.9 1 1 5 1 

IPSL-CM6A-
LR 

4.6 6 11 11 6 

MIROC6 2.6 50 33 3 50 

MPI-ESM1-2-
HR 

3.0 2 2 10 2 

MPI-ESM1-2-
LR 

3.0 10 10 10 10 

MRI-ESM2-0 3.2 5 5 5 5 

NorESM2-MM NA 1 2 1 1 

UKESM1-0-LL 5.3 13 14 13 5 
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For each scenario, region, and available ensemble member in each in each ESM/GCM, we extract the 
following ensemble-average temperature and precipitation outputs:  mid-century (2040-2059) average 
anomaly relative to that model’s historical average (1995-2014), the end of century (2080-2099) 200 
anomaly relative to historical average, and the interannual standard deviation. Interannual standard 
deviation is calculated by detrending the regional average level temperature and precipitation time 
series from 1994-2100 using non-parametric locally weighted smoothing (LOESS as implemented in 
the python statsmodels package), and then taking the standard deviation of the residuals. For each 
scenario and model, these ensemble-member values are used to calculate the ensemble average to form 205 
our final indices in each region. These six indices (three for each of temperature and precipitation) per 
ESM-scenario-region combination are selected to result in data that represents the model uncertainty, 
scenario uncertainty, and interannual variability of our full set of data.  By focusing on ensemble 
averages, models that performed more realizations are not over-represented in the overall space. When 
an ensemble size is only one realization, that realization’s value is used. The key question is how to 210 
efficiently characterize this collection of data in a way that enables an efficient subsampling of models 
that still preserves the main dimensions of variations of the full ensemble.  
 
This full data can be written as a matrix A with Nmodel*Nscenarios rows and Nindices*Nregions 
columns. In the case of considering all 22 models listed in Table 2 as representative of the full space, 215 
this is 88 rows and 258 columns and we use these numbers for simplicity in some of the vector 
descriptions that follow. Below, we outline two experiments that highlight the adaptability of this 
method by considering model dependency in the CMIP6 models versus not. In the case of restricting to 
independent models only to make up the full data, these numbers of course change.   
 220 
 Principal components analysis (PCA) is then a natural technique to understand the variance of this full 
data set by forming the covariance matrix S = ATA. The eigenvectors of S are a set of orthogonal basis 
vectors (each vector is length 258) that are ordered by how much variance of the full data each 
eigenvector explains. Mathematically, this means that each row of A, ({𝑎!###⃗ |𝑖 = 1…88}) representing the 
indices in all regions for a single climate model-scenario) can be projected into the space of 225 
eigenvectors ,𝑃𝐶!######⃗ /𝑖 = 1…88}  and written as 𝑎!###⃗ = Σ"𝑐#" 	𝑃𝐶$######⃗   
for projection coefficients (coordinates in the basis of eigenvectors), 𝑐#". Thus 𝑃𝐶%#######⃗ , for example 
represents some pattern of joint, spatiotemporal temperature and precipitation behaviors that explains 
the greatest variance across ESM/GCM-scenario observations. Each CMIP6 model-scenario 
combination has some contribution from this pattern described by its projection coefficient, 𝑐#%. This 230 
projection can be done over all eigenvectors, or as is common with PCA, a small subset of the 
eigenvectors that explain the majority of variance. 
 
 
To demonstrate the flexibility of this approach to characterizing data, we perform the same analysis in 235 
two different experiments: 

• Experiment 1 assumes all 22 models listed in Table 2 make up the full data. 
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• Experiment 2 assumes the full data is made up of only 16 of the models in Table 2Table 3Table 
1, with ACCESS-CM2, CESM2-WACCM, CMCC-CM2-SR5, FGOALS-f3-L, INM-CM4-8, 
and MPI-ESM1-2-HR being removed from consideration as they share clear model 
dependencies with other models in the full data. When deciding which of two related models to 
keep, we chose based on keeping the model with greater number of realizations as this is 250 
valuable for downstream uses. Other criteria could be used to define model dependency and 
make selections, as determining model independence is itself a rich field of study (Abramowitz 
et al. 2019; Brands 2022; Merrifield et al. 2023). 

 
 Figure 1 is a plot of the fraction of variance explained by each of the first 15 eigenvectors in each 255 
experiment. Based on this figure, we restrict ourselves to the first five eigenvectors for projections (just 
after the ‘elbow’), explaining more than 70% of total variance for each experiment. The number of 
eigenvectors considered is another area of flexibility of this method. 
 

 260 
Figure 1: fraction of variance explained by each eigenvector for Experiment 1 (left) and Experiment 2 (right), for the first 15 
eigenvectors. 

 
Figure 2 is a visual representation of these five eigenvectors for each experiment. Each row is a map of 
all indices for each eigenvector. For both experiments 𝑃𝐶%#######⃗   is dominated by temperature and, to a lesser 265 
extent, high latitude precipitation, highlighting that these features are responsible for 38.7% of the total 
variance of our full set of data (from Fig. 1). 𝑃𝐶&#######⃗   is dominated by temperature interannual variability 
and high latitude precipitation interannual variability.  𝑃𝐶'#######⃗ 	 to 𝑃𝐶(#######⃗   feature a mix of the indices, with 
strong emphasis on precipitation related behaviors. Note that because we treated temperature and 
precipitation indices together in one matrix, the eigenvectors include joint temperature-precipitation 270 
behaviors that may be missed if the variables were treated separately. When comparing each map 
between the two experiments, it is worth noting that the spatial patterns are strikingly similar. This 
suggests that the patterns of total variance in this data set are dominated by differences beyond those 
that might be captured in our definition of model dependence. For example, maybe different 
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representations of ocean physics are playing a large role. Testing of this hypothesis is outside the scope 
of this method description work but highlights the potential value of characterizing an archive of CMIP 280 
data in this way. In Figures 1 and 3, we also see that the fraction of total variance explained by each 
eigenvector is similar across the two experiments. Overall, this similarity when accounting for model 
dependence versus not is not entirely surprising. The full data set in Experiment 1, with all of the model 
dependencies it includes, does include over-representation of certain features. However, because PCA is 
focused on maximizing total variance, this over-representation does get mitigated to an extent.  285 
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 290 
Figure 2: Maps of the first five eigenvectors of our full data. Each row is a single eigenvector, with maps presented for each of the 
indices. Note that the colorbar scales are all standardized. A larger, landscape-oriented version of this figure is included in 
Appendix A (Fig. A1) for easier inspection. 
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By treating the span of these five eigenvectors as the representative space of full data, we can project all 
data into this space and visualize its behavior by two-dimensional plots of all five PCs combinations. 
Figure 3 shows these 2-d slices of the projection coefficients for each ESM/GCM and scenario into this 
space for each experiment. If an impact modeler wished, they could run every model-scenario 300 
combination here for all available ensemble members. In practice, however, this may not be 
computationally tractable to either run or analyze. This view also motivates our approach for selecting 
our subset of climate models that preserve the uncertainty characteristics defined by this space.  
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Figure 3: 2-d slices of the projection coefficients for each ESM/GCM-scenario combination into the space spanned by the first five 
eigenvectors. 

 310 

2.2 Selection criteria of subset of CMIP6 models 

Once the full set of data has been projected into the new basis identified to maximize total variance by 
PCA (as in Figure 3), selecting a representative subset of climate models across that space is relatively 
straightforward, and so is adding additional selection criteria, like constraining the distribution of ECS 
values. The subset of climate models that minimizes distance to all other climate models across this 315 
five-dimensional space is the subset selected. In more detail, first, subsets of candidate models are 
formed (in this work, five models per subset, but the approach can be applied to any target                        
subset size). While it would be possible to consider any combination of five models from the full set of 
22, in this work we add a pre-filtering step. From all 22 choose 5 potential subsets, we only consider as 
candidate subsets the 72 subsets that roughly preserve the IPCC distribution of equilibrium climate 320 
sensitivity values and for which we could identify ECS values in the literature(Core Writing Team & 
(eds.), 2023; Lovato et al., 2022; Meehl et al., 2020). Then for each subset, we step through each non-
candidate model and calculate the minimum Euclidean distance to any of the subset’s climate model’s 
coefficients. The summary metric for each subset of candidates is then the average over all non-
candidate model minimum distances, and the subset of candidate models with the smallest summary 325 
metric is the selected subset. Unlike many metrics (e.g. (Nash & Sutcliffe, 1970; Tebaldi et al., 2020)), 
there is unfortunately not a clear threshold for ‘good enough’ performance based on this metric and so 
in the so in the next section, we provide a qualitative evaluation framework that assesses whether the 
selected subset is successful at preserving the major characteristics of the full ensemble’s uncertainty 
characteristics.  330 
 
 

2.3 Method for subset evaluation 

The Hawkins and Sutton breakdown of total variance into relative sources of uncertainty inspired our 
choices of regional indices, both anomalies and interannual standard deviations. However, our subset 335 
selection is made in the space of the climate models’ absolute positions, without formally considering 
the relative breakdowns into fraction of total variance explained by model uncertainty, scenario 
uncertainty, and internal variability. Therefore, the partitioning of relative uncertainty calculated in the 
style of Hawkins and Sutton (Hawkins & Sutton, 2009, 2011) is a useful independent framework to 
evaluate the extent to which our climate model subset preserves the characteristics of the full ensemble. 340 
We don’t expect perfect agreement in the Hawkins and Sutton (HS) fractions between our climate 
model subset and the full data because we do change the distribution of ECS values in the subset we 
select. However, even qualitative discrepancies in the HS fractions between the full ensemble and the 
chosen subset can be useful to understand whether decisions such as constraining the distribution of 
ECS values are moving the relative contribution of each source of uncertainty in an explainable way.  345 
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The calculations of HS fractions are as follows: Consider a set of trajectories for a given climate 
variable produced by various model ESMs and scenarios. For example, this could be the annual average 370 
temperature or precipitation in a given world region. At each time step, t, there will be variation in the 
estimates from each observation in the set. The goal for a given set is to attribute a proportion of the 
variation or uncertainty at each time step to one of the three sources: interannual variation, model 
uncertainty, and scenario uncertainty. In our application, we want to do this for a “full” model set and 
compare the distribution of assigned variance to the same analysis on a selected subset of models. 375 
 
The crux of this method for separating uncertainty is to write the raw predictions for each observation as 
𝑋),+,, = 𝑥),+,, + 𝑖),+ + ε),+,,, where 𝑋),+,, is the raw prediction for model m scenario s at time t, 𝑥),+,, 
is a smoothed fit of the variable anomaly with reference period 1995-2014, 𝑖),+ is the average variable 
value over the reference period, and ε),+,, is the residual, representing interannual variation. Note that 380 
while internal variability is itself a constant value for each climate model-scenario, the fraction of total 
variance that internal variability explains can change over time as the model and scenario components 
change. Similarly, while we do not want to select subsets of scenarios, understanding the relative 
contribution of scenario uncertainty is critical to appreciate the variability across the different models. 
 385 
 
We can then essentially calculate the interannual variation component as the variance of all ε, the model 
uncertainty component at each time step as the variation in 𝑥 over the different models, and the scenario 
uncertainty at each time step as the variation in 𝑥 over the different scenarios. The variance calculations 
can have a weighting component, although in this work we treat all models included in each 390 
experiment-specific full ensemble as uniformly weighted. The	interannual	variability	component	is	
computed	as	𝑉 = ∑ 𝑣𝑎𝑟+,,Nε),+,,O) .		The	model	uncertainty	component	is	𝑀(𝑡) =
%
-!∑ 𝑣𝑎𝑟)⬚N𝑥),+,,O+ 	for	the	number	of	scenarios	used	𝑁+	(four	in	this	study).	The	scenario	

uncertainty	component	is		𝑆(𝑡) = 𝑣𝑎𝑟+N∑ 𝑥),+,,) O.	
	395 
Note	that	each	of	these	components	may,	for	example,	be	weighted	based	on	each	climate	model’s	
closeness	to	some	observational	set,	but	in	this	work	we	weight	them	uniformly,	as	we	are	not	
concerned	with	model	validation.	Furthermore,		following	the	assertion	by	Hawkins	and	Sutton	
(2009)	assert	that	final	fractions	of	total	variability	are	not	strongly	affected	by	using	different	
weights.	 400 
 

3 Results and discussion 

The selected subset of ESM/GCMs and their respective ECS values are provided in Table 3 for each 
experiment. Figure 4 presents an identical plot to Fig. 3 but with the selected ESM/GCMs highlighted 
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by black box outlines to emphasize the extent to which the subset covers the full ensemble. We also 
perform a validation exercise based on the work of Hawkins and Sutton (Hawkins & Sutton, 2009, 
2011) using the whole time series data rather than the 6 metrics that guided our subset selection to 
provide an additional perspective on the ability of the method to preserve the characteristics of 
variability of the whole ensemble. 415 
 
Table 3. Selected Model subset and ECS values for each experiment. Models selected in both experiments in bold. 

Experiment 1 Model (ECS value) Experiment 2 Model (ECS value) 

ACCESS-CM2 (4.70) IPSL-CM6A-LR (4.6) 

ACCESS-ESM1-5 (3.9) ACCESS-ESM1-5 (3.9) 

MRI-ESM2-0 (3.2) MRI-ESM2-0 (3.2) 

BCC-CSM2-MR (3.0) MPI-ESM1-2-0 (3.0) 

MIROC6 (2.6) MIROC6 (2.6) 
 

 420 
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Figure 4: Same as Figure 3 but with the selected ESM/GCMs highlighted by black box outlines or Experiment 1 (top) and Experiment 
2 (bottom). 

3.1 Subset Evaluation 

As noted in Section 2.3, the partitioning of total variance into the relative contribution of different 435 
sources calculated by Hawkins and Sutton (Hawkins & Sutton, 2009, 2011) is a useful independent 
framework to evaluate the extent to which our climate model subset preserves the characteristics of the 
full ensemble. As we did not calculate the specific time series of Hawkins and Sutton (HS) fractions for 
internal variability (there, as here, quantified as interannual variability after detrending the annual mean 
time series), scenario uncertainty, and model uncertainty to form any part of our selection procedure, we 440 
can use these HS fractions as independent evaluation criteria. We calculate the time series of HS 
fractions for temperature and precipitation separately in each region, for the full set of data and over just 
our selected subset of data, i.e., for each experiment, over the selection of CMIP6 models making up the 
full data set in that experiment, and only using the subset of 5 ESM/GCMs that our method identified. 
Details of these calculations are provided in Section 2.3. To manage the inspection of three time series 445 
for each of 86 region-variable combinations, we use root mean square error (RMSE) to compare the full 
data time series and the subset data time series from 2040 onward (as that is the focus of our indices) for 
each uncertainty partition, for each variable in each region.  
 
To identify specific region-variable combinations that are due for closer inspection, we set a threshold 450 
on the RMSE values for each uncertainty partition for each region-variable combination. As we note in 
Section 2.3, a discrepancy between the HS fractions for the subset and the full data is not a sign of poor 
selection. Rather, it merely means it is a region to inspect more closely and consider whether the 
discrepancies follow from our constraint of ECS values as part of our selection procedure. If any of the 
three uncertainty partitions have RMSE>0.1, we flag that region-variable combination for closer 455 
inspection. While thresholds like this are often arbitrary to set, each uncertainty partition for the subset 
data explaining the fraction of total variance within 10% of the full data’s partition seems a good place 
to start. We show in Appendix A the results of a less stringent choice, namely, if we relax this to 20%, 
far fewer regions-variables get flagged for inspection in each experiment. Lowering this inspection 
threshold will of course flag more region-variables combinations, but as we point out below, a portion 460 
of the combinations flagged with a threshold of 0.1 still actually perform reasonably when plotted over 
time. Figure 5 provides a color-coded map of regions where temperature, precipitation, both, or neither 
have RMSE <= 0.1 for all three uncertainty partitions to give a sense of the spatial extent of 
performance. 
 465 
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Figure 5. a color-coded map of regions where temperature, precipitation, both, or neither have RMSE <= 0.1 for all three 485 
uncertainty partitions. 

 
The time series of HS fractions for the remaining region-variable combinations for which RMSE > 0.1 
are plotted in Figure 6 (temperature) and Figure 7 (precipitation). For temperature in both experiments, 
we see that interannual variability is often performing well, with increasingly better performance over 490 
time. The partitioning of model and scenario uncertainty is where the subset’s behavior begins to depart 
from the full data, although this too tends to have smaller discrepancies as time goes on. This is not 
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surprising: in the full set of data, a good portion of model uncertainty is driven by different ECS values. 500 
As provided in Table 2, the values across ESM/GCMs that participated in Tier 1 ScenarioMIP 
experiments do not match the IPCC very likely distribution. By contrast, we are only selecting subsets 
of ESM/GCMs that match this distribution, overall resulting in a cooler collection of climate models 
than the full data. This accounts for much of the discrepancy in the balance between scenario and model 
uncertainty contributions being different between our full and our subset data. Enforcing a different 505 
distribution of ECS values in the selected subset relative to the full data will also explain many of the 
discrepancies for precipitation, given the known strong correlation between temperature and 
precipitation changes. For precipitation, we overall see total uncertainty in the subset having a greater 
fraction explained by interannual variability and less by model uncertainty across time. For both 
temperature and precipitation, the direction of these discrepancies is not surprising given our choice to 510 
reshape the distribution of ECS to an overall cooler collection than the full data. What we want to see in 
all panels of Figures 6 and 7, is a qualitative agreement with the relevance of the three sources of 
uncertainty in the full ensemble. According to this criterion, most of the regions flagged by the 
application of the 0.1 threshold remain consistent with the full ensemble representation of the three 
uncertainty sources, for both variables and across both experiments. 515 
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 535 
Figure 6: Regions flagged for closer inspection of their HS fraction time series for temperature. The color-blocked time series are 
the HS fractions from the full set of data, and the white curves overlaid are the respective boundaries for the subset data’s 
uncertainty partitions. 
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Figure 7: Same as Figure 6 but for precipitation. 

 

4 Conclusions 545 

This work outlines and documents the success of a method for selecting a subset of climate models from 
CMIP6 that overall preserve the uncertainty characteristics of the full CMIP ensemble, particularly for 
use with multisectoral dynamics models that require global coverage and consistency across regions. 
Our methodology relies on pre-identifying regional indices of behavior for ESM/GCM output variables, 
as well as other filters (such as preserving the IPCC distribution of ECS values) judged to be critical for 550 
the robustness of impact and multisectoral modeling. With these assumptions, far fewer climate inputs 
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are needed to span the range of uncertainties seen in CMIP6, resulting in fewer impact model runs 
needing to be performed and analyzed. There are likely many situations in which a modeler could adapt 
the details of the method (outlined in Table 1) and code for their purposes, re-run to identify a subset of 
climate models, and validate that new subset in much less time and with much fewer computing 560 
resources needed than simply running impact models with all scenarios and ensemble members 
available for the 22 ESM/GCMs documented in Table 2. For multisectoral modelers integrating 
multiple different impacts, or running large ensemble experiments, the time saved only grows, even 
when accounting for method adjustment and re-validation of results.  For researchers focused on 
emulators, there may be opportunities to identify fewer climate models that would benefit from 565 
generating more initial condition ensemble members, focusing efforts.  Finally, Earth system modelers 
can gain new insights into their individual climate models by adding the approach to uncertainty 
characterization outlined in this work to their existing analyses. 
 
The methodology outlined in this paper is an adaptable approach to both retain the major uncertainty 570 
characteristics of a large collection of global-coverage climate model data and to make changes (as we 
did to the full ensemble ECS distribution). While there are resulting regions for both temperature and 
precipitation where the uncertainty partitions of the subset of ESM/GCMs differ from the full set of 
CMIP6 models, these differences are primarily expected based on the different ECS distribution 
represented by our subset ESM/GCMs compared to the full data.  For those interested in using our 575 
chosen subset, we hope that by providing detailed information about where the subset differs in Figures 
5-7, impact modelers may be able to infer how results would change if the full set of data were used, 
with far lower computational burden than running all available data. Further, because the method is 
adaptable, an impact modeler particularly interested in a specific region could weight the outcomes in 
that region more heavily for selection of the subset.  580 
 
As noted, this work is primarily coming from the perspective of a multisectoral dynamics modeler 
requiring global coverage of a range of climate model output variables at different time scales, and 
naturally other perspectives will come with their own caveats. Impacts can be estimated and worked 
with at a range of spatial scales; impact modelers concerned with finer scale or local impacts, or 585 
modelers focused on a single region rather than global coverage, may very well be served by 
prioritizing other factors like skill in their climate model subselection. Bias correction and downscaling 
are also tools heavily used to get to these finer spatial scales, and these processes introduce their own 
sources of uncertainty, particularly for very local phenomenon and over complex terrain (Kendon et al. 
2010; Mearns et al. 2013; Barsugli et al. 2013; Lafferty and Sriver 2023). Generally, the method 590 
outlined in this work is more appropriate to work with raw CMIP6 data in its native resolutions or an 
ensemble of bias-adjusted and downscaled climate data that has been processed using a consistent bias-
adjustment and downscaling method. On a final note for adaptations of this method, we focused on 
temperature and precipitation because many variables used in impacts modeling are correlated to or 
derived from these variables. This is especially true in agriculture, e.g. Sinha et al. 2023; Sinha et al. 595 
2023; Peterson and Abatzoglou 2014; Allstadt et al. 2015; Gerst et al. 2020, although it holds in other 
sectors as well. One area for potential expansion of this method that would have more direct relevance 
to those derived variables would be to incorporate a time dimension more explicitly.  
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Appendix A Additional figures  

 

 
Figure A1: A color-coded map of regions where temperature, precipitation, both, or neither have RMSE <= 0.2 for all three 
uncertainty partitions. 620 
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 645 

 
Figure A2: Same as Figure 6 but for RMS > 0.2 rather than 0.1 
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Figure A3: Same as Figure 7 but for RMS > 0.2 rather than 0.1. 
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