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Abstract. Given the role of the ocean in mitigating climate change through CO2 absorption, it is important to improve our

ability to quantify the historical ocean CO2 uptake, including its natural variability, for carbon budgeting purposes. In this

study we present an exhaustive intercomparison between two ocean modelling practices that can be used to reconstruct the his-

torical ocean CO2 uptake. By comparing the simulations to a wide array of ocean physical and biogeochemical observational

datasets, we show how constraining the ocean physics towards observed temperature and salinity results in a better representa-5

tion of global biogeochemistry. We identify the main driver of this improvement to be a more vigorous large scale meridional

overturning circulation together with improvements in mixed layer depth and sea surface temperature. Nevertheless, surface

chlorophyll was rather insensitive to these changes, and, in some regions, its representation worsened. We identified the causes

of this response to be a combination of a lack of robust parameter optimization and limited changes in environmental conditions

for phytoplankton. We conclude that although the direct validation of CO2 fluxes is challenging, the pervasive improvement10

observed in most aspects of biogeochemistry when applying data assimilation of observed temperature and salinity is encour-

aging; therefore, data assimilation should be included in multi-method international efforts aimed at reconstructing the ocean

CO2 uptake.

1 Introduction

The ocean is responsible for absorbing approximately 25% of CO2 emissions derived from human activities (Gruber et al.,15

2023). However, a growing body of evidence highlights the need to understand better the links between natural climate vari-

ability and ocean carbon cycle dynamics, pointing to the ocean carbon sink being more variable than previously assumed

(DeVries et al., 2023; Gruber et al., 2019; McKinley et al., 2017). Understanding the mechanisms behind this variability can

lead to better estimates of the ocean carbon sink. In a context of declining CO2 emissions, the relative importance of variability

in air-sea CO2 fluxes (driven by natural climate variability) increases with respect to the net uptake of the anthropogenic frac-20

tion of CO2. This means that being able to quantify the natural variability becomes paramount for the detection and attribution

of a changing trend in ocean CO2 uptake, which can have significant implications for stocktacking activities. For this reason,

the global carbon cycle scientific community has devoted increasing efforts over the past few decades to refine our model-based

estimates of past ocean carbon uptake. These estimates are hindered by the scarcity of year-round observations in vast global
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ocean regions and by natural variability in air-sea CO2 fluxes. The natural variability is superimposed on a long-term trend25

driven by the increase of atmospheric CO2 concentration. Moreover, since climate change is affecting the ocean’s physical

state, it is reasonable to expect that this will, in turn, also affect the ocean’s ability to absorb carbon. However, since the obser-

vational record spans only 3 decades, detecting trends in air-sea CO2 fluxes that are driven by climate change is challenging.

As an example, large variability in the Southern Ocean was in the past interpreted to possibly be an effect of climate change

(Le Quéré et al., 2007; Lovenduski et al., 2007), while a decade later, these variations are being explained as a result of natural30

variability in regional atmospheric circulation (Landschützer et al., 2015; Keppler and Landschützer, 2019).

Coordinated international efforts, like the global carbon project (Friedlingstein et al., 2022) try to quantify and possibly

predict the global carbon budget (GCB) by estimating the amount of CO2 emitted each year and the fractions being absorbed

by the ocean and land vegetation. Because of the scarcity of observations, these efforts rely heavily on modelling work. For the35

oceans, traditionally, the evolution of the air-sea CO2 flux has been estimated using Ocean Biogeochemical General Circulation

Models (OBGCMs). These are forced with atmospheric reanalysis (based on observations of physical atmospheric variables)

for a given period, usually spanning around 60 years. In these simulations the ocean physics and biogeochemistry are left free

to evolve in response to the atmospheric forcing and the prescribed atmospheric CO2 concentrations.

40

In parallel, over the last two decades, climate models have been increasingly used to predict climatic conditions from a

few months up to a decade ahead (Merryfield et al., 2020; Bilbao et al., 2021), with experiments commonly referred to as

decadal climate predictions. This field of research lies in between weather forecasts and climate projections because it relies

on both available observations to initialise the models to leverage the predictability from internal variability sources and future

emissions, prescribed as boundary conditions, to faithfully capture the expected human-driven trends. Moreover, even more45

recently, decadal climate prediction has been extended to global biogeochemical properties, including the ocean carbon cycle

(Séférian et al., 2018; Li et al., 2019; Lovenduski et al., 2019). In climate predictions, available observations are assimilated in

both the atmosphere and the ocean to drive the model to an initial state consistent with the observed climate. This is done for the

historical period up to present, to provide initial conditions also for predictions of the past, known as retrospective predictions,

which are needed to verify the skill of the predictions, as well as to diagnose the forecast drift, which is needed to correct the50

future predictions. These climate simulations of the historical period in which available observations are assimilated are known

as reconstructions.

When reconstructions are performed with Earth System Models (ESMs), the ocean biogeochemistry is also expected to

evolve according to the observed variability. In this paper, we use the EC-Earth3 Earth System Model (Döscher et al., 2021)55

to explore whether and how the methodology used to perform reconstructions impacts the simulated representation of ocean

biogeochemistry. In particular, we explore the differences between the standard GCB approach, which exclusively relies on

prescribing boundary conditions from atmospheric reanalyses, and the additional assimilation of observed ocean physical

variables. Recent work has already highlighted the advantage of using climate reconstructions to complement the GCB (Li
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et al., 2023). Moreover, past work has investigated the impact of assimilating biogeochemical observations to ocean simulations60

with uncertain results, mostly due to the scarcity of such observations (Valsala and Maksyutov, 2010; While et al., 2012).

However, few efforts have been focused on investigating the impact on biogeochemistry of assimilating only physical variables,

for which we have a far more complete dataset than for biogeochemical variables (Visinelli et al., 2016; Raghukumar et al.,

2015). Here, we provide a detailed evaluation of the improvement of the representation of biogeochemical variables when

observations of temperature and salinity are assimilated. We make use of several observation-based products that encompass65

surface pCO2 air-sea CO2 fluxes, nutrients, and surface chlorophyll to quantify the improvement of the biogeochemistry

simulated by the model when observed physical fields are assimilated.

2 Methodology

We used the ocean component of the Earth System Model EC-Earth3-CC (Döscher et al., 2021). This is composed by the

NEMO ocean general circulation model v3.6, (Madec et al., 2017), coupled with the ocean biogeochemical model PISCESv270

(Aumont et al., 2015). We designed two types of simulations in which we apply atmospheric forcing from reanalysis prod-

ucts. In the first type, in line with the usual GCB practice, we apply the omip protocol, (Griffies et al., 2016), where only

sea surface salinity (SSS) restoring towards observed climatological values is applied, besides the atmospheric forcing (here-

after, omip). The second type is a reconstruction, where we also apply surface restoring of sea surface temperature (SST) and

three-dimensional nudging of temperature and salinity towards time varying observations (hereafter, Data Assimilation or DA).75

This two-tier approach is then duplicated using two different combinations of atmospheric reanalysis to assess the impact of

observational uncertainty. Details of the simulations and references for the data products used are given in Table 1.

All simulations were first equilibrated by repeating 4 times the historical period encompassed by the respective atmospheric

forcing. This procedure allows the equilibration of the thermohaline circulation for the two omip simulations (Tsujino et al.,80

2020). In the case of the data assimilated (DA) reconstructions, a steady-state of the circulation is already achieved at the first

cycle due to the 3D nudging of temperature and salinity towards observations. For all simulations, the ocean biogeochemistry

is left free to evolve responding to the ocean physics evolution. Ocean physical fields (temperature and salinity) were initialised

from EN4.2.2 (Good et al., 2013) in all cases, while dissolved inorganic carbon (DIC) and total alkalinity (TALK) were ini-

tialised from GLODAPv2 (Olsen et al., 2016; Lauvset et al., 2016), macronutrients (nitrate, phosphate, silicate) and oxygen85

were initialised from the World Ocean Atlas 2013 (Garcia et al., 2013b, a). Moreover, dissolved organic carbon (DOC) was

initialised from the fields provided by an adjoint model (Hansell et al., 2009) while dissolved iron (Fe) was initialised using the

median model results from the Iron Model Intercomparison Project (Tagliabue et al., 2016). The rest of biogeochemical tracers

were initialised using low uniform values.

90

Since this first spinup period was not enough to fully equilibrate the ocean biogeochemical fields, an extension of the spinup

was performed by repeating cyclically the physics of the 4th cycle but letting the ocean biogeochemical fields free to evolve.
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The total spinup time was 525 years for JRA55 simulations and 513 years for the ERA5 simulations. To be consistent with

the simulation protocol designed for the Global Carbon Budget 2022 (Friedlingstein et al., 2022), during the spinup phase,

atmospheric CO2 concentration was held constant at 278 ppm, corresponding to the value in the year 1777. The spinup phase95

was enough to bring the air-sea CO2 flux drift in all simulations to within 0.1 PgC yr−1 on a long-term average (Jones et al.,

2016). At the end of the spinup, the historical period (1778-2021) was simulated by repeating the atmospheric forcing and by

prescribing the observed atmospheric CO2 time-series used in the GCB2022.

In DA simulations, the procedure includes restoring of SST and SSS as well as 3D temperature and salinity Newtonian dump-100

ing below the mixed layer. We modified the restoring timescale distribution of Sanchez-Gomez et al. (2016) below the mixed

layer, to provide a smooth vertical variation between 10 days (above 800m) and 360 days (below 800m). This relaxation is

applied everywhere except for the equatorial band between 15oS-15oN (where we leave a 10-times weaker nudging) due to the

highly dynamical nature of this region which makes nudging problematic, resulting in spurious vertical velocities that intro-

duce unrealistic injections of nutrients into the surface layers (Sanchez-Gomez et al., 2016; Park et al., 2018). At the surface,105

SST is restored using a feedback coefficient between flux and temperature of -200 W/m2/K while the feedback parameter for

freshwater fluxes is set at -750 mm/day.

In all model simulations, river nutrient input was prescribed as a climatology based on the GLOBAL-NEWS2 dataset (May-

orga et al., 2010), while DIC and alkalinity river input are based on the output of the Global Erosion Model (Ludwig et al.,110

1996). We note here that this procedure is in contrast with the GCB protocol, which recommends river fluxes of nutrients and

carbon to be switched off. However, in agreement with the GCB procedure (Hauck et al., 2020), for every simulation, we also

performed a control simulation, where atmospheric CO2 concentration was kept constant at the preindustrial value. When cal-

culating global air-sea CO2 fluxes, we fit a linear trend to the global air-sea CO2 flux time-series of the control simulation and

then subtract this linear trend from the respective historical simulation. With this approach, we do not remove the interannual115

variability of the historical but we remove the drift (assuming it’s the same in control and historical), any long-term trend in

the natural carbon flux due to climate variability and change, as well as the outflux caused by the imbalance between river flux

of carbon and sediment burial. The latter is slightly higher in the two omip simulations (0.26 – 0.28 Pg C yr−1) than in the two

DA simulations (0.21-0.23 Pg C yr−1).

120

The control simulations were also used to estimate the distribution of anthropogenic DIC (DICant) by taking the difference in

DIC distribution between each of the four simulations and their respective control.

We use several observational datasets to evaluate the performance of our simulations. Details of the datasets used are given in

Table 2. For SOCAT and GLODAP variables we used the point-values (i.e. not interpolated) and matched the model’s output125

in space and time to calculate evaluation metrics. For DICant we used the estimate that was distributed with the first release of

GLODAPv2.2016, which is representative of accumulated DICant in 2002. GCB2022 provides a central estimate of the global
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ocean CO2 flux which is an average of 7 observation-based products and 10 OBGCM’s estimates. The latter are produced with

a suite of ocean biogeochemical models and using omip-like simulations (i.e. no data assimilation). For NOAA ERSST, IAPv4,

EN4.2.2 and SEANOE-MLD climatology, we used the gridded versions to calculate evaluation metrics. For OC-CCIv6.0 we130

used the level-3 gridded monthly data and subsampled model’s output to match only valid points in the satellite images, before

calculating differences. Finally, we used the most recent RAPID-MOCHA-WBTS (RAPID – Meridional Overturning Circula-

tion and Heatflux Array- West Boundary time series, hereafter RAPID array) monitoring time series and compared it with our

modelled vertically integrated transport at 26oN. References for these datasets are reported in Table 2.

To better characterise the differences in large scale global circulation between omip and DA simulations, we also consider135

the meridional volume streamfunction as a representation of the meridional overturning circulation (MOC) for the Atlantic,

Pacific and Southern oceans. Moreover, we use the idealised age tracer to describe differences in ocean ventilation patterns

across simulations. This tracer represents the time passed since a given parcel of water was last in contact with the atmosphere

and it is particularly useful to highlight changes in the rate and position of water masses formation.

3 Results140

We compare the total carbon uptake in our simulations with the estimate from the GCB2022 (Table 3). The average uptake per

decade is in general, lower in our simulations than for the GCB2022 estimate, however, when comparing the omip simulations

with their respective DA counterparts, the uptake is generally increased in the latter, bringing it closer to the GCB estimate.

This is confirmed by the time series of yearly integrated ocean uptake showing that data assimilation moves both the JRA55

and the ERA5 estimates upward, closer to the GCB2022 estimate (Fig. 1). In particular, it is worth noticing how the omip sim-145

ulations are very close to the multi-model mean of the GCB2022 while the DA simulations separate from this, moving upward

and getting closer to the GCB2022 estimate that also includes observation-based products. To further compare our simulations

with the GCB2022, we provide a correlation matrix where all our simulations and all the individual GCB2022 models are

correlated with the GCB2022 central estimate as well as with the observation-based products that contributed to it. We have

ranked the models from high to low depending on their correlation with the central GCB2022 estimate and we notice that our150

simulations are overall comparable with the rest of models but, more importantly, the DA simulations have a higher correlation

with GCB2022 than the omip simulations (Fig. 2). These results indicate that data assimilation is beneficial to improving the

trajectory of the yearly globally integrated time-series, when assuming as benchmark the central GCB2022 estimate. However,

this estimate is also dependent on models that share similar characteristics to our model and thus, likely, the same biases.

155

To provide an independent evaluation of the effect data assimilation has on the representation of the ocean carbon cycle

we turn to the most comprehensive observational dataset of surface pCO2. We sample the model’s output in time and space to

match available observations in SOCAT. These are averaged globally and then in time to give annual averages values (Hauck

et al., 2020). From these time series we calculate the root mean square error (RMSE) and correlation coefficients between each

simulation and SOCAT (Fig. 3). The differences among the model time series are small and barely discernible. Nevertheless,160
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everywhere except in the tropics we see an increase of the correlation coefficient and a decrease of the RMSE when moving

from the omip to the DA simulations, confirming the beneficial effect of data assimilation on the representation of the carbon

cycle.

In a similar effort, we compared our simulations to other available observations, besides surface pCO2. We used the GLO-165

DAPv2 database and repeated the same method we used for SOCAT to calculate the RMSE between each simulation and the

observations, for six biogeochemical variables. In Fig. 4 we show the relative reduction of RMSE for every variable, when

moving from omip to DA. Depending on the variable, the reduction of RMSE ranges from approximately 40% for DIC to

close to 10% for nitrate, phosphate and oxygen. Despite this variability, the representation of all variables is systematically

improved when using DA with respect to omip. Such a pervasive and consistent improvement is likely related to a better rep-170

resentation of the three-dimensional large scale circulation. Although the 500 years biogeochemical spinup of our simulations

(cf. methodology) may not be enough to equilibrate ocean biogeochemical tracers completely, we consider it sufficient for

the ocean dynamic to influence their large-scale distribution. As a further confirmation, we separate the ocean volume in two

layers, the upper layer (0-1000m) and the deep layer (1000m-bottom) and repeat the same procedure to calculate again the

RMSE between the available observations and the model’s output (Table 4). Even when considering the two portions of the175

ocean’s volume separately, the error reduction is generalised to all variables and has similar values to those observed for the

global assessment done in Fig. 4.

To verify that indeed large-scale circulation is improved when using data assimilation, we compare the maximum transport

at 26 o N in the Atlantic Ocean with the measurements taken by the RAPID array as a proxy for the strength of the Atlantic180

Meridional Overturning Circulation (AMOC; Fig.5). Again, we observe how data assimilation is associated with a reduced

distance with respect to the observational reference. The omip simulations are characterised by low AMOC values that are

strengthened when using data assimilation. This is confirmed by looking at the meridional volume streamfunction for different

ocean sectors (Fig.6 and 7). We see an increased and deeper transport in the Atlantic Ocean in both simulations when apply-

ing data assimilation. Also, in the Southern Ocean, transport is increased along the pathway of mode and intermediate water185

formations, between 50o-45oS, pointing to an increased ventilation up to 1000m depth. In the North Pacific intermediate depth

ventilation seems also to increase with a peak at around 40oN. In the deep ocean, below 2000m depth, the lower limb of the

meridional overturning circulation is also strengthened in the Southern Ocean, in the whole Pacific Ocean and, although less

markedly, also in the Atlantic ocean.

190

As a result of these changes in global circulation the ideal age tracer also shows consistent changes, where younger water

penetrates deeper in the North Atlantic, Southern Ocean and North Pacific (Fig. 8). At the same time, water age increases

in the upper 1500m of the subtropical gyres while there is a general increased ventilation in the deep ocean, below 2000m,

particularly in the Pacific Ocean. Important differences can be observed in the Atlantic ocean between ERA5 and JRA55, as

the penetration of younger waters in ERA5 is restricted mainly between 1000-2000m depth, while for JRA55, the increased195
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ventilation seems to extend deeper, below 3000m depth.

We also evaluated the effect data assimilation has on Mixed Layer Depth (MLD), an important metric for mass and energy

exchanges between the atmosphere and the ocean. In this case, we use the climatology from de Boyer Montégut et al. (2004) as

a reference. In Fig. 9 we can see how the bias is reduced in DA simulations with respect to the omip ones. This is particularly200

true in regions that are important hot-spots of CO2 exchange between the ocean and the atmosphere. For example, a deep bias

is reduced in the North Atlantic for ERA5 while for JRA55 the bias reduction goes in the opposite direction, towards correcting

a shallow bias. In the Southern Ocean a shallow bias is clearly reduced in the Pacific and Atlantic sectors for ERA5, while the

changes for JRA55 are less evident.

205

To better understand the reasons for the differences in CO2 uptake between omip and DA simulations, we have looked at

the distribution of DICant and the respective differences in the accumulation within the ocean interior (Fig. 10). Overall, when

applying DA, we can see how DICant decreases in the shallow water of the subtropical gyres while there is a generalised

increase of DICant at high latitudes, even in shallow waters. In particular, the regions that show the largest increases in DICant

are the North Atlantic and the Southern Ocean, where the increase is also visible at 2000m depth. In the meridional sections210

in Figure 11, we can observe the increase in DICant in the formation region of intermediate and mode waters in the Southern

Ocean, particularly in the Pacific and Atlantic sectors, and the increase in the deep North Atlantic associated with an increase

in AMOC. Here, consistently with the behaviour of the age tracer, there is an important difference between ERA5 and JRA55,

with the former showing a decrease in DICant located below 2500m depth while the latter shows a marked increase.

215

We have also compared the distribution of DICant with the estimate from GLODAP (Fig. 12 and 13). Here we can see

how the negative bias with respect to the observation-based reference is reduced when applying data assimilation in both

ERA5 and JRA55. This is particularly true for the Southern Ocean where an increased ventilation allows for a deeper penetra-

tion of DICant. Overall, there is a reduction in RMSE when applying data assimilation (-10.2% for ERA5 and -7% for JRA55).

220

For completeness, we have evaluated the impact of data assimilation on Sea Surface Temperature (SST), using observation-

based products different from those used for the data assimilation itself (see Table 2). Although we notice that all SST products

must share the majority of the observations on which they are based, and therefore cannot be considered completely indepen-

dent from each other, we use this exercise to assess once more whether the data assimilation is pushing the model’s solution

towards the observed state in a consistent way between the two different atmospheric forcings. We consider here three products225

and in all cases data assimilation is closer to these estimates than the omip simulations, in particular after 1990 (Fig. 14).

To complete our evaluation, we also compared surface chlorophyll produced by our simulations with the OC-CCIv6.0 dataset

( Fig. 15). Similarly to what was done for the Mixed Layer Depth, we show the difference between model and observations,

using a yearly climatology. In this case, we can observe how the effect of data assimilation is overall negligible except in a230
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narrow band between 30o N-40o N in both the North Atlantic and the North Pacific, where the bias is actually slightly increased.

4 Discussion

We have compared two pairs of simulations performed with different atmospheric forcing reanalysis to evaluate the impact of

assimilating observations of temperature and salinity on the overall representation of ocean biogeochemistry. The evaluation235

of CO2 fluxes is problematic because there is no accepted observation-based product to be used as a single benchmark. All

the existing estimates begin from the same surface pCO2 dataset and each uses its own method to fill the blanks. We have

shown that data assimilation consistently produces estimates of CO2 fluxes that are better aligned with the central estimate

of the Global Carbon Budget 2022 than their omip counterpart. However, the estimate of the GCB2022 is a combination of

observation-based products and omip-type simulations performed with a suite of ocean biogeochemical models. That is, only240

atmospheric forcing is provided as a surface boundary condition to the ocean model and no data assimilation is done. For this

reason, showing that our estimates produced with data assimilation correlate better with the GCB22 estimate is informative but

not enough to determine with confidence whether one practice (DA) is better than the other (omip).

For the above reasons, we decided to evaluate the performance of our simulations using the most comprehensive obser-245

vational datasets available for several biogeochemical variables. When evaluating our simulations directly against the in-situ

observations of pCO2 we observed a consistent improvement when applying data assimilation. Similarly, for other biogeo-

chemical variables the evaluation gives consistent results going in the same direction. It is important to remember that no direct

data assimilation is provided for these variables and the degree to which they are impacted by the representation of the physical

state of the ocean varies depending on the variable.250

The distribution of macronutrients (nitrate, phosphate and silicate) is controlled by large-scale three-dimensional circulation

(e.g. MOC), vertical mixing (e.g. MLD) as well as by primary productivity at the surface (e.g. chlorophyll here is used as a

proxy for phytoplankton biomass). The same considerations apply to surface pCO2 and related CO2 fluxes because these are

impacted by both the large scale distribution of DIC and Alk but also by vertical mixing and, in some regions by primary255

productivity. The same is true for oxygen as intermediate and deep water ventilation, together with vertical mixing, represent

the main input of this gas into the interior of the ocean. However, the solubility of both O2 and CO2 is strongly dependent on

temperature, and thus, the data assimilation of this variable is likely to have a positive direct impact in their representation.

Based on these considerations, it is reasonable to assume that an improvement in the representation of the large-scale circula-260

tion is the main responsible for an improved distribution between the upper and lower layers of all the tracers considered here.

We have shown how data assimilation led to AMOC values that are closer to observations with respect to the omip simulations.

This result is in line with Karspeck et al. (2017), who also found that subsurface constraining resulted in a greater AMOC mean
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strength and enhanced variance with respect to reference simulations with no data assimilation. The changes observed in the

meridional volume streamfunction in the Southern ocean, North Atlantic and North Pacific together with the changes observed265

in the distribution of the ideal age tracer, all point to a more ventilated ocean which in turn have direct consequences in the

distribution of biogeochemical tracers like oxygen and nutrients.

The improvement observed in the representation of the MLD is due to the ameliorated density profile obtained with data

assimilation as the wind stress doesn’t change between omip and DA simulations. The MLD can have a significant impact270

on the flux of CO2, especially in those regions where we observed a bias reduction in the MLD itself. This impact becomes

evident in the North Atlantic, where we observe marked changes in the penetration of DICant when applying data assimilation.

Since the target observation dataset used for assimilating temperature and salinity in the ocean interior is the same between

ERA5 and JRA55 (see Table 1), the resulting AMOC is rather similar in the two DA simulations due to the dominance of the

resulting thermohaline structure (see Fig. 6 and 7, upper row), over other factors (e.g. atmospheric forcing). Yet, the changes275

in DICant distribution caused by DA are different between ERA5 and JRA55 (see Fig. 11). This is due to a different response

of the MLD over this region, where data assimilation causes MLD to deepen in the case of JRA55 and to shoal in the case of

ERA5. This difference results in a deeper penetration of DICant for JRA55-DA than for ERA5-DA with respect to their omip

counterparts. However, it’s important to notice that the resulting DICant distribution in this region is rather similar between

ERA5-DA and JRA55-DA because these simulations share a very similar AMOC and a MLD that gets closer to observations280

from opposite ends.

We acknowledge that the global thermohaline structure resulting from assimilating temperature and salinity in the interior of

the ocean strongly depends on the observation-based product used. Each product comes with its own problems and advantages.

The product used here, EN4.2.2, displays for some regions a higher error variance than climatology while, at depth, there is285

evidence that the climatological error variance is underestimated (Good et al., 2013). The decision to use this specific product

was the result of a thorough analysis and trial/error attempts, testing also other products, to obtain a robust reconstruction

that could provide initial conditions for near-term climate predictions (Bilbao et al., 2021). The same reasoning applies to

our choices of dataset for surface restoring of temperature and salinity which were guided by the necessity to make sure that

both SST and SSS fields were physically consistent with each other and with the atmospheric forcing applied. This exercise290

is repeated periodically with the objective to continuously improve the seasonal-to-decadal predictive system and thus, in the

future, using a different or improved dataset could lead to further improvement in the representation of ocean biogeochemistry.

Overall, data assimilation results in a more ventilated ocean and, consequently, a deeper penetration of DICant in the inte-

rior of the ocean, below the thermocline. Considering the comparison with the estimate of DICant based on observations, this295

increase of DICant in the deep ocean seems to be a change in the right direction. However, similarly to what occurs for CO2

fluxes, estimates of DICant suffer from great uncertainty because the concentration of DICant cannot be measured directly and

must be derived using a variety of methods (Khatiwala et al., 2013). Still, for all variables considered so far, there is a strong
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indication of a general improvement in their representation when applying data assimilation of temperature and salinity.

300

Certainly more difficult to explain is the limited response of surface chlorophyll, despite an overall better representation of

nutrients distribution and MLD. In fact, both nutrients availability and MLD have a direct impact on primary production and

therefore on surface chlorophyll concentration. It is often the case that the default parameter set in an ocean biogeochemical

model is chosen to reasonably reproduce both the large scale distribution of nutrients and that of surface chlorophyll. In this

study, the default configuration of PISCESv2 (Aumont et al., 2015) was used without any further adjustment of parameters.305

Because of the improvement in the large-scale distribution of nutrients and in their input into the productive layer, related to

more realistic MLD, the model is presented with a different nutrient availability, when applying data assimilation, with respect

to the omip simulations. Similarly, the average light exposure of phytoplankton changes with changes in MLD. In some regions,

the bias in the chlorophyll surface fields is actually increased with data assimilation. This is the case for the North Atlantic

and North Pacific regions where a shallower MLD seems to coincide with an increase in surface chlorophyll, between 30o310

N-40o N. In these regions, the model responds by increasing the distance with respect to the reference chlorophyll observations

because the parameter set used was somehow selected to reproduce the same chlorophyll fields under different nutrient and

light availability conditions. In the rest of the ocean, the chlorophyll field seems rather insensitive to the changes brought by

data assimilation. For some regions, this is likely due to upper oligotrophic waters experiencing changes in nutrient input that

are too little to significantly impact primary production. For regions with higher surface chlorophyll, like the equatorial Pacific315

and the Southern Ocean, the reason for the weak response probably resides in the availability of iron not changing significantly

with the changes in circulation and MLD. In fact, a significant part of iron input in these regions is from atmospheric deposition

that is left unchanged in all simulations.

5 Conclusions

We conclude that the assimilation of observations for temperature and salinity has a beneficial effect in the representation320

of large-scale circulation and mixed layer depth, and this, in turn, translates into an improved representation of most of the

ocean biogeochemical variables evaluated. Additionally, in the case of CO2 and O2, the improvements are most likely driven

also by the direct beneficial effect that an ameliorated temperature field has on the solubility of these gases. In general, data

assimilation drives a more vigorous overturning circulation, resulting in a more ventilated deep ocean. Ventilation increases

in regions that are important hot-spots for CO2 fluxes, like the Southern Ocean, the North Atlantic and the North Pacific. The325

higher CO2 uptake with data assimilation determines an increase in DICant in the interior of the ocean, below the thermocline

and a decrease in shallow waters, particularly in the subtropical gyres. This deeper distribution of DICant, with respect to omip

simulations, is in better agreement with an observation-based product for DICant. Because of this overall beneficial effect on

the representation of ocean biogeochemistry, we conclude that CO2 fluxes are most likely improved as well, although their

direct validation is not straightforward. We have shown how not all aspects of biogeochemistry are improved as the surface330

chlorophyll field’s representation is actually rather insensitive or even degraded when using data assimilation. We impute this

10



result to the choice of parameters for the biogeochemical model that was based also on a realistic representation of surface

chlorophyll as a reference. Because of this, we suggest that whenever possible, ocean biogeochemical models be fine-tuned

using simulations that include some degree of data assimilation of the physical fields. Finally, since simple data assimilation

practices, like the one presented here, can be included in simulations at negligible computational cost, we recommend that335

efforts like the Global Carbon Budget take into account this type of simulations in the future.
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Figures

Figure 1. Globally integrated ocean CO2 flux estimates for omip (orange and light blue) and DA (brown and dark blue) simulations, together

with the central estimate of the GCB2022 (black) and the average estimate of both models (green) and observation-based products (purple)

from the GCB2022. For the last two, individual estimates are also shown along the average estimates (thin lines of with same color code)
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Figure 2. Correlation matrix between GCB2022 model’s estimates of global CO2 flux and observation-based estimates from the same

exercise. Models are ranked from high to low based on their correlation with the central GCB2022 estimate (last column). Both DA and omip

simulations are also ranked among the GCB models.
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Figure 3. Yearly averages of surface pCO2 values from the SOCATv3 database, compared to the four model’s estimates of spCO2 sampled

to match in space and time the SOCATv3 values. The global ocean has been divided in three regions with boundaries at 20º N and 20º S.
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Figure 4. Relative change of RMSE when applying DA with respect to omip. For every variable, the available GLODAP observations were

matched in time and space with the corresponding model’s estimates to calculate RMSE.
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Figure 5. Maximum transport at 26.5 oN from model’s output, compared to the observations from the RAPID array.
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Figure 6. Meridional volume streamfunction for the Atlantic, Pacific and Southern oceans for ERA5 simulations. The third column shows

the differences between DA and omip.
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Figure 7. Same as Fig. 6 but for JRA55.
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Figure 8. Zonal averages of the idealised age tracer for the Atlantic, Pacific and Indian oceans. The figure shows the differences of the last

20 years average between DA and omip simulations for ERA5 (left) and JRA55 (right).
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Figure 9. Yearly climatological (1970-2021) mean of mixed layer depth. The four maps show the difference between each simulation and the

observation-based gridded product from de Boyer Montégut et al. (2004). RMSE for the year average as well as for each season are reported

on top and below of each map, respectively.
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Figure 10. Differences between DA and omip simulations for DICant in year 2021 for ERA5 (left) and JRA55 (right) at 500m depth (upper

row) and 2000m depth (bottom row).
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Figure 11. Differences between DA and omip simulations for DICant in year 2021 for ERA5 (left) and JRA55 (right). The figure shows

zonal averages for the Atlantic, Pacific and Indian oceans.
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Figure 12. Differences between ERA5 simulations and GLODAP estimate for DICant in year 2002. Zonal averages are shown for the

Atlantic, Pacific and Indian oceans.
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Figure 13. Differences between JRA55 simulations and GLODAP estimate for DICant in year 2002. Zonal averages are shown for the

Atlantic, PAcific and Indian oceans.
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Figure 14. Globally averaged SST from the four simulations, compared with NOAA-ERSSTv5, IAPv4andEN4.2.2.

Figure 15. Yearly climatological (1998-2021) mean of surface chlorophyll. The four maps show the difference between each simulation and

the OC-CCIv6.0 product. RMSE for the year average as well as for each season are reported on top and below of each map, respectively.
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Tables

Simulation SST restoring T&S 3D nudging SSS restoring Atmospheric forcing Period

JRA55-omip None None JRA55-do-v1.5

(Tsujino et al., 2018)

JRA55-do-v1.5

(Tsujino et al., 2018)
1958-2021

JRA55-DA
COBE-SST

(Ishii et al., 2005)

EN4.2.2

(Good et al., 2013)

ERA5-omip None None ORAS5

(Zuo et al., 2019)

ERA5

(Hersbach et al., 2020)
1959-2021

ERA5-DA
ORAS5

(Zuo et al., 2019)

EN4.2.2

(Good et al., 2013)

Table 1. Re-analysis and observation-based products used in the two kinds of simulations here performed: omip-like (omip) and Data

Assimilation (DA)
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Dataset Version Variables Period and frequency Reference

SOCAT v3-v2022 surface pCO2 1970-2021 (grouped by month) Bakker et al. (2016)

GCB2022 v2022 CO2 flux

1959-2021 (models)

1990-2021 (obs.-based)

Yearly global integral

Friedlingstein et al. (2022)

GLODAP v2.2022
NO3, PO4, DIC,

TAlk, Si(OH)4, O2

1972-2021 (grouped by month) Lauvset et al. (2016)

GLODAP v2.2016 DICant 2002 (cumulated) Lauvset et al. (2016)

NOAA-ERSST v5.2023 SST 1960-2021 (monthly) Huang et al. (2017)

IAP v4.2024 SST 1960-2021 (monthly) Cheng et al. (2024)

EN4 v2.2 SST 1960-2021 (monthly) Good et al. (2013)

SEANOE-MLD v2023 MLD 1970-2021 (monthly climatology) de Boyer Montégut et al. (2004)

RAPID AMOC v2022.1 Transport at 26.5 o N 2004-2021 (yearly average) Moat et al. (2022)

OC-CCI v6.0 Surface chlorophyll 1997-2021 (monthly) Sathyendranath et al. (2019)

Table 2. Observation products used for the validation of simulations results

1960s 1970s 1980s 1990s 2000s 2012-2021 2021

GCB2022 1.1 ± 0.4 1.4 ± 0.4 1.8 ± 0.4 2.1 ± 0.4 2.3 ± 0.4 2.9 ± 0.4 2.9 ± 0.4

ERA5-omip 1.0 1.1 1.5 1.8 2.1 2.7 2.6

ERA5-DA 1.1 1.2 1.6 1.9 2.3 2.9 2.8

JRA55-omip 0.9 1.1 1.7 1.9 2.1 2.6 2.4

JRA55-DA 1.0 1.2 1.7 2.1 2.3 2.8 2.6

Table 3. Global carbon uptake (Pg C yr−1) averaged over each decade from the 1960s to 2021 for the four simulations and the estimate of

the GCB2022.
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ERA5-omip ERA5-DA Rel. Change (%) JRA55-omip JRA55-DA Rel. Change (%)

TAlk
50.87

50.77

38.10

38.01

-25.11%

-25.12%

54.15

53.81

39.12

38.92

-27.76%

-27.68%

DIC
62.93

62.95

43.69

43.45

-30.58%

-30.98%

66.29

65.44

43.71

43.30

-34.06%

-33.84%

O2

41.80

42.27

33.67

33.69

-19.47%

-20.31%

34.55

33.81

30.89

30.51

-10.58%

-9.77%

NO3

04.08

04.06

3.77

3.79

-7.01%

-6.68%

4.54

4.50

3.68

3.65

-19.00%

-18.82%

PO4

0.36

0.35

0.31

0.31

-14.21%

-12.61%

0.38

0.37

0.30

0.30

-19.45%

-17.78%

Si(OH)4
21.98

22.67

14.58

14.49

-33.67%

-36.05%

20.10

19.90

14.40

14.27

-28.34%

-28.31%

Table 4. RMSE calculated between each simulation and GLODAP. For each variable the RMSE is calculated for the upper 1000m (upper

row of each variable) and below (lower row of each variable). The 4th and 7th columns show the relative change in RMSE between omip

and DA, where a negative percentage value means a reduction of the error in DA with respect to omip.
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Code and data availability. The data used in this study have been made publicly available on Zenodo: 10.5281/zenodo.10233501. Further in-

formation on the data or extra files will be available upon request. All the simulations have been run with EC-Eeath3-CC: https://ec-earth.org/340

(Döscher et al., 2021), using the workflow management Autosubmit (https://autosubmit.readthedocs.io/en/master/introduction/index.html,

(Manubens-Gil et al., 2016; Uruchi et al., 2021)). The codes used for the analysis and plots, including jupyter notebooks, will be avail-

able upon request to the author. They will be put in the following repository: https://earth.bsc.es/gitlab/es/bsc-ocean-reconstructions. All

the analysis and plots have been realized with open source codes: Octave (octave.org/), Python3 (python.org/), Xarray (xarray.dev), CDO

(code.mpimet.mpg.de/projects/cdo) and Earthdiagnostics, in house tool for EC-EARTH model postprocessing345

(https://earthdiagnostics.readthedocs.io/en/latest/). All the observational data are publicly available on their corresponding websites.EN.4.2.2

data were obtained from https://www.metoffice.gov.uk/hadobs/en4/ and are © British Crown Copyright, Met Office, 2013, provided under a
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