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Abstract. Warm-water coral reefs are facing unprecedented human driven threats to their continued existence as biodiverse,
functional ecosystems upon which hundreds of millions of people rely. These impacts may drive coral ecosystems past critical
thresholds, beyond which the system reorganises, often abruptly and potentially irreversibly, this is what the IPCC (2022)
define as a tipping point. Determining tipping point thresholds for coral reef ecosystems requires robust assessment of multiple
stressors and their interactive effects. In this perspective piece we draw upon the recent Global Tipping Points Report initiative
(Lenton et al., 2023) and a literature search to identify and summarise the diverse range of interacting stressors that need to be
considered for determining tipping point thresholds for warm-water coral reef ecosystems. Considering observed and projected
stressor impacts we endorse the Global Tipping Points Report conclusion of a global mean surface temperature (relative to
pre-industrial) tipping point threshold of 1.2°C (range 1-1.5°C) and the long-term impacts of atmospheric CO concentrations
above 350 ppm, whilst acknowledging that comprehensive assessment of stressors, including ocean warming response
dynamics, overshoot and cascading impacts, have yet to be sufficiently realised. These tipping point thresholds have already
been exceeded and therefore these systems are in an overshoot state and are reliant on policy actions bringing stressor levels
back within tipping point limits. Fuller assessment of interacting stressors is likely to further lower tipping point thresholds in
most cases. Uncertainties around tipping points for such crucially important ecosystems underlines the imperative of robust
assessment and, in the case of knowledge gaps, employing a precautionary principle favouring lower range tipping point

values.
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1. Introduction

Warm-water coral reefs (tropical and subtropical) support one quarter to one third of marine biodiversity (Plaisance et al.,
2011), including over 25% of marine fish species (Laffoley and Baxter, 2016). The estimated annual economic value of coral
reef ecosystem services ranges from US$29.8 billion (Cesar, Burke & Pet-Soede, 2003) up to US$2.7 trillion (Souter et al.,
2021), upon which at least 500 million people are reliant (IPBES 2019). They are also among the most sensitive ecosystems
to anthropogenic driven stressors with approximately 50% of global live coral cover lost with accelerated declines seen over
the last 30 years (IPBES 2019), primarily due to ocean warming, but other factors have contributed locally such as fishing,
pollution, disease, nutrient enrichment and predation by crown of thorns starfish (IPCC 2022). IPBES (2019) states that over
80% of the world’s coral reefs are severely over-fished or have degraded habitats (McClanahan et al., 2015). Eddy et al., (2021)
estimate coral reef ecosystem services have halved since the 1950s. Although local stressors continue to impact coral reef
health, climate driven stressors have become the dominant threat to the functional viability of these ecosystems (IPBES 2019;
IPCC 2022).

It is well established that coral reef ecosystems are vulnerable to multiple interacting tipping points (TPs) (Norstrom et al.,
2016; Heinze et al., 2021; Armstrong-McKay et al., 2022; IPCC 2022). IPCC (2022) defines a TP as “a critical threshold
beyond which a system reorganises, often abruptly and/or irreversibly”. Coral reefs are prone to TPs that can produce coral
die offs and replacement by other ecological communities such as macroalgae, soft corals, or urchin barrens (Norstrom
et al., 2016), with reductions in biodiversity and degradation of ecosystem services (IPBES 2019). Warm water coral reefs
cross a threshold of ecosystem collapse (Bland et al., 2018) when they cease to have sufficient live coral cover (typically ~
10%) necessary for supporting the wide diversity of taxa, ecological interactions and positive carbonate production state typical
of a coral reef (Perry et al., 2013; Darling et al., 2019; Sheppard et al., 2020; Vercelloni et al., 2020; Armstrong-McKay et al.,
2022). Coral mortality may take weeks or a few months for acute events (e.g. bleaching), or years for chronic threats (e.g.

diseases), but prolonged failure to recover over a decade is necessary to qualify a coral reef as ‘collapsed’.

Coral reef losses have accelerated in recent decades due to climate change and other stressors (IPBES 2019; Souter et al.,
2021), with high variability among regions, but some localised recovery and resilience observed (e.g. Richards et al., 2021).
Localised responses of corals to increasing scales and intensities of stressors are aggregating at scales now exceeding 1000 km
and manifesting as regional die-offs (e.g. Western and Central Indian Ocean, Great Barrier Reef, Mesoamerican Reefs) (Le
Nohaic et al., 2017; Muiiz-Castillo et al., 2019; Sheppard et al., 2020; Obura et al., 2022; Amir 2022), with most regions
experiencing multiple die-off events (Darling et al., 2019; Cramer et al., 2020; IPCC 2022). Coral reef bleaching TPs have

already been reached in seven ocean systems (IPCC 2022).
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2. Considerations for assessing coral reef TPs.

Direct and indirect local human activities are increasingly degrading coral reef ecosystems through a combination of coastal
development, water quality reduction, over-harvesting, invasive species and disease spread. At the local level, these stressors
have already tipped some areas from coral to macroalgae dominated ecosystems (Bruno et al., 2009; IPBES 2019; Souter et
al., 2021). Local stressor impacts are increasingly exacerbated by anthropogenic climate change, for example, high abundance

of macroalgae or urchins exacerbating coral loss after bleaching (Donovan et al., 2021).

It’s important to consider the combined impact of multiple stressors. Doing so can significantly alter assessments of coral reef
futures (Setter et al., 2022; Lenton et al., 2023). Interactions between different stressors can be antagonistic (the combined
effect is less than the additive), additive (the combined effect is equal to the sum of their individual effects) or synergistic (the
combined effects exceed their individual effects) (Good and Bahr 2020). Some studies find antagonistic interactions between
multiple stressors (Darling et al., 2010; Johnson et al., 2022). However, a wide variety of synergistic interactions also occur
(ICRS 2021; IPCC 2022; Setter et al., 2022; Lenton et al., 2023), generally lowering the thermal threshold for bleaching and/or
mortality, accelerating collapse, or even surpassing thermal stress in local importance (Ban et al., 2013; Edmunds et al., 2014;
Rocha et al., 2015; Anthony 2016; Darling et al., 2019; IPBES 2019; Cramer et al., 2020; Setter et al., 2022; Lenton et al.,
2023). Stressor onset rate can have a major effect on significance, for example for reef fish mortality (Genin et al., 2020).
Depending on onset rate and magnitude, the same interacting stressors may initially have antagonistic effects but may transition

to additive or synergistic (e.g., Fisher et al., 2019).

Increasing atmospheric greenhouse gas (GHG) concentrations, especially carbon dioxide (CO3), are disrupting Earth Energy
Balance. The resultant Earth Energy Imbalance (EEI) is increasing atmospheric and ocean temperatures (IPCC 2021; Loeb et
al., 2021; Von Schuckmann et al., 2023). CO, concentrations are the dominant driver of rate and magnitude of ocean warming
and acidification (Meinshausen et al., 2020). Because of its large thermal inertia the ocean takes hundreds of years to fully
respond to the atmospheric temperature increases that human driven GHG concentrations are causing (IPCC;. 2021; Abraham
etal., 2022; Cheng et al.; 2022). The resultant committed heating and sea level rise (SLR) needs to be calculated for any given
GHG/temperature level. Although both ocean heat uptake and SLR take centuries to fully respond, it takes approximately 25-
50 years for the majority of committed ocean warming to be realised (Hansen et al; 2005; Abrams et al., 2023), with the upper
ocean level having the shortest response time. Due to these inertia considerations, TP thresholds can be exceeded decades

before the full physical impacts are observed.

Overshoot describes warming pathways that temporarily increase global mean temperature over a specific temperature target
(IPCC 2022). Overshoot of multiple decades implies severe risks and irreversible impacts in many ecosystems (Meyer et al.,
2022; Wunderling et al., 2022; Schleussener et al., 2024), including coral reefs from heat-related mortality and associated

ecosystem transitions (high confidence) (IPCC 2022). Overshoot is an urgent consideration for coral reefs because CO; levels
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and global mean surface temperature have already exceeded critical thresholds and so as such we are already in overshoot, and

this problem is compounded by stressor rate and magnitude (Lenton et al., 2023).

TP cascades describe a TP in one system triggering, or stabilising, subsequent TPs in other systems (Rocha et al., 2018;
Armstrong-McKay etal., 2022; IPCC 2022; Wunderling et al., 2022). Here we summarise the most important stressors relevant

to TP sensitivity for coral reefs and explore interactions between them.

3. Ocean warming and heatwaves

Warmer ocean temperatures, driven by Anthropogenic climate change, compounded by El Nifio heating events, is the primary
stressor of regional-scale and ocean-basin-scale mortality of scleractinian corals. Heat stress, in combination with irradiance,
results from small increases in seawater temperature above the summer maxima to which corals are acclimatised, destabilising
the symbiosis between host corals and their symbiotic algae, commonly referred to as coral bleaching (Hughes et al., 2017;
Houk et al., 2020; UNEP 2020; IPCC 2022).

Mass bleaching occurs when sea temperatures persist at more than 1 degree above established summer maxima for 8-12 weeks
(known as 8-12 Degree Heating Weeks or DHW). Although mass bleaching has resulted in significant coral morality, we note
that with the loss of sensitive corals, acclimation and adaptation, the definition of DHW may require adjustment (Lenton et al.,
2023).

Previous assessments have highlighted consequences of different levels of warming:

0.7°C - “In the late 1990s when global warming was around 0.7°C large-scale coral reef bleaching also became apparent ...
supporting the lower boundary for this transition in respect of coral reefs” (Veron et al., 2009; IPCC, 2022)

1.0°C - “temperatures of just 1°C above the long-term summer maximum ... over 4—6 weeks are enough to cause mass coral
bleaching ... and mortality (very high confidence)” (Hoegh-Guldberg et al., 2018; Skirving et al., 2019).

1.2°C - “Warm water (tropical) coral reefs are projected to reach a very high risk of impact at 1.2°C ..., with most available
evidence suggesting that coral-dominated ecosystems will be non-existent at this temperature or higher (high confidence). At
this point, coral abundance will be near zero at many locations and storms will contribute to ‘flattening’ the three-dimensional
structure of reefs without recovery, as already observed for some coral reefs (Alvarez-Filip et al., 2009).” (Hoegh-Guldberg et
al., 2018). Coral reef bleaching TPs have already been passed in seven ocean systems (IPCC 2022; Lenton et al., 2023).
1.5°C - “...coral reefs... will undergo irreversible phase shifts due to marine heatwaves with global warming levels >1.5°C
and are at high risk this century even in <1.5°C scenarios that include periods of temperature overshoot beyond 1.5°C (high
confidence).” (IPCC 2022). Projections predict 70-90% coral loss at 1.5°C (Hoegh-Guldberg et al., 2018; IPBES 2019; Souter
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et al., 2021; Armstrong McKay et al., 2022), whereas finer scale modelling projects a 95-98% loss (Kalmus et al., (2022) and
suggest 99% loss (Dixon et al., 2022).

2.0°C - “literature since AR5 has provided a closer focus on the comparative levels of risk to coral reefs at 1.5°C versus 2°C
of global warming ... reaching 2°C will increase the frequency of mass coral bleaching and mortality to a point at which it
will result in the total loss of coral reefs from the world’s tropical and subtropical regions.” (IPCC 2018). Predictions show
99% coral loss at 2.0°C (Frieler et al., 2013; Hoegh-Guldberg et al., 2018; IPBES 2019; Knowlton et al., 2021; Souter et al.,
2021; Armstrong McKay et al., 2022; Wang et al., 2023). Finer scale modelling projects 100% loss at 2.0°C. (Dixon et al.,
2022; Kalmus et al., 2022).

Since the first global bleaching event of 1998, up to 71% of the world’s reefs have experienced three further global mass

bleaching events, with a fourth event being experienced in 2023/2024 (https://www.noaa.gov/news-release/noaa-confirms-

4th-global-coral-bleaching-event).

Assessments of risk to corals from heating typically don’t consider co-occurring or interacting stressors or the delayed heating
response to atmospheric greenhouse gas concentrations. Ocean warming inertia may mask the impact severity of stated
greenhouse gas and temperature levels. When emissions-driven temperature overshoot is considered, lower target temperatures
can have similar impacts to higher, with little difference in coral survival between an overshoot scenario that peaks at 2°C and
subsequently reduces temperatures to 1.5°C versus a 2°C scenario without a subsequent reduction in temperatures (Tachiiri et
al., 2019).

Tanaka and Van Houtan (2022) confirm the normalisation of extreme heating events. The frequency and duration of bleaching
events are likely to increase, occurring earlier in the year and potentially overlapping with critical spawning periods (Mellin et
al., 2024). The compounding heat stress of EI Nifio events (Claar et al., 2018; Hughes et al., 2018b; Lough et al., 2018) may
increase with projected Arctic and Antarctic sea ice loss (England et al., 2020; Liu et al., 2022). Real world observations from
the NOAA coral reef watch program demonstrate that coral reef damage is accelerating and underscores the threat

anthropogenic climate change poses for the irreversible transformation of these essential ecosystems (Eakin et al., 2022).

Interactions of ocean warming and heatwaves with other stressors

Warming effects are so far reaching in their impacts that they can adversely impact many other coral stressors, these stressors,
in turn, can increase vulnerability to thermal stress. For example, heating-induced bleaching increases disease risk and lowers
calcification which increases the impact of ocean acidification (Davis et al., 2021; Burke et al., 2023). Corals that survive
bleaching can have compromised growth rates and reproduction (Rodrigues and Padilla-Gamino, 2022; Speare et al., 2022;
Briggs et al., 2024). Furthermore, warming oceans and heatwaves increase storm intensity and raise sea-level through thermal

expansion and cryosphere melting.


https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event
https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event

173

174
175
176
177
178
179
180
181
182
183
184
185

186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

4. Stratification

Ocean stratification is the layering of water masses, based on density. Stratified water layers are a barrier to mixing, which
impacts the exchange of heat, oxygen, nutrients and carbon between shallow and deep water. This impacts marine organisms
in a number of significant ways, including impacting primary productivity and potentially the entire marine food chain.
Stratification has increased globally by 5.3% in recent decades (L. et al., 2020).

Interactions

Stratification is strongly linked with warming oceans. Stratification magnifies the warming effect at the upper layers, thus
increasing thermal stress to warm water reefs, this is a vicious circle as warming oceans further increase stratification.
Additionally, stratification reduces CO; uptake, further exacerbating anthropogenic warming. Stratification impedes ocean
mixing impacting nutrient flows. Stratification is strongly linked with deoxygenation. Stratification is also linked with melting
of Antarctic ice shelves and sea-level rise (Reed and Harrison 2016; Li at al., 2020; Auger et al., 2021). Stratification is

increasing which has dramatic consequences for sea temperatures and CO; concentrations (Goreau and Hayes, 2024)

5. Ocean acidification

Ocean acidification (OA) is the process of the increasing absorption of atmospheric CO- by the surface seawaters of the oceans
(Raven 2005), which in turn reduces the calcification rates of most scleractinian tropical and subtropical corals (Comeau et al.,
2014; Kornder et al., 2018), and can alter the photo-physiology and calcification physiology of some corals (Comeau et al.,
2018). OA causes a change in the speciation of dissolved inorganic carbon and an increase in protons (Caldeira and Wickett
2003; Feely et al., 2004; Sabine et al., 2004; Raven et al., 2005). This results in increased dissolution of exposed calcareous
material due to decreased saturation state of CaCOs, and also inhibition of calcification through increasing proton concentration

with the calcifying space in corals and calcareous algae (Comeau et al., 2018; Comeau et al., 2019).

OA causes declines in coral calcification rates (Comeau et al., 2018). Early work predicted large-scale loss of coral calcification
at catastrophic levels, whereby OA was projected to result in coral bleaching and in some cases net dissolution of corals (see
data within Leung et al., 2022). Contemporary research demonstrates that some corals are resistant to OA (Comeau et al.,
2018; Kornder et al., 2018). The most comprehensive modelling estimates are that by year 2100 coral calcification would
decline by 1% under RCP2.6, 4% under RCP4.5 and 15% at RCP8.5 (Cornwall et al., 2021). When combined solely with the
metabolic effects of temperature increases, this decline would be 1% (RCP2.6), 8% (RCP4.5), and 33% (RCP8.5). However,
the calcification rates of susceptible coral taxa (e.g., Acropora spp.) would decline by much more, and resistant species (e.g.,

Pocillopora spp. or Porites spp. generally) could be unaffected.
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The direct metabolic impacts of OA do not manifest a TP, but TPs at ecological levels are likely. Recent evidence
indicates that ecological TPs within coral reefs caused solely by ocean acidification would occur around 550
ppm, roughly the same concentration of atmospheric CO; that would cause detectable declines in both coral and
coralline algal calcification (Cornwall et al., 2024). However, ecosystem trajectories are uncertain, and much
more future research is required to determine the generality of these findings.

The adverse impacts on coral and coralline algal calcification are direct negative effects, when combined with the
direct positive effects on other taxa (such as opportunistic turfing algae). Susceptible species would start to give
way to tolerant species over time (as generally occurs at natural analogues in the field (Fabricius et al., 2011;
Comeau et al., 2022), and other non-coral taxa would start to dominate space on what once were traditional coral
reefs. Species that are capable of maintaining stable internal carbonate chemistry or compensate for these changes

tend to be more tolerant to OA.

Interactions

Reduced calcification increases disease risk and weakened skeletons are vulnerable to storms (Suwa et al., 2010; Anthony et
al., 2011; Steffen et al., 2015; Setter et al., 2022). There is also some evidence that elevated CO, will exacerbate heat stress
induced declines in coral calcification and physiological performance, though the strength and direction of these interactions
varies widely by coral reef taxa, and even within different coral genera (Kornder et al., 2018). However, of greater immediate
importance to the majority of corals will be successive marine heatwaves that will reduce the coral cover of less heat tolerant
species, populations and genotypes over the majority of the oceans in the near future (van Hooidonk et al., 2014; Cornwall et
al., 2021; Logan et al., 2021; Cornwall et al., 2023). Survivors of this human-driven evolutionary force will not necessarily be

those that are tolerant to OA also, and thus numerous TPs in time could occur.

6. Deoxygenation

Deoxygenation on coral reefs is perhaps the least studied of the major threats directly linked to climate change such as warming
and acidification (Hughes et al., 2020). However, there is sufficient evidence to say that dissolved oxygen is a critical resource
on coral reefs, and that oxygen limitation (i.e. hypoxia) results in non-linearities and feedbacks that contribute to ecological
tipping points (Nelson and Altieri 2019). The consequences of crossing these TPs are perhaps most dramatically evident in
sudden mass mortality events, which has led to calls to accelerate the research agenda on deoxygenation on coral reefs (Altieri
et al., 2017). The oxygen concentration threshold at which corals lose their ability to maintain homeostasis is 2 mg/L with
lethal doses between 0.5-2 mg/L (Hughes et al., 2020; Johnson et al., 2021a). Previous mass extinctions have been linked to

deoxygenation, indicating the potential severity of this threat (Liu et al., 2019).
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The problem of deoxygenation on coral reefs is becoming more prevalent and severe in the Anthropocene from a combination
of global climate change (Altieri and Gedan 2015; Pezner et al., 2023), as well as local pollution in the form of excess nutrient
and organic matter (Diaz and Rosenberg 2008), which are magnified by local oceanographic patterns (Adelson et al., 2022).
Around 13% of coral reefs are at risk of deoxygenation, and this is likely to increase with continued climate change (Altieri et
al., 2017; Pezner et al., 2023).

We suggest that evidence to date for feedbacks and non-linear thresholds indicates that a TP framework should be used to
guide future research on deoxygenation in coral reefs, and that hypoxia should be considered in studies of thermal stress and

acidification.

Interactions

Climate-related variables of temperature and acidification are also likely to exacerbate deoxygenation by affecting the
physiological responses of corals and other reef organisms. It is widely recognized that increased temperatures lead to increased
metabolic demand and decreased tolerance thresholds in marine organisms including corals (Vaquer-Sunyer and Duarte, 2011;
Alderdice et al., 2022; Weber et al., 2012). Considering the co-occurrence and synergistic effects of these co-stressors with
deoxygenation, a multi-stressor perspective is essential, and many of the assumed thresholds for TPs on coral reefs based on
single or even double stressor treatments under laboratory experiments are likely overly conservative estimates. Coral reefs
are vulnerable to a number of feedbacks that exacerbate deoxygenation events, these include: bleaching (Altieri et al., 2017;
Alderdice 2021; Johnson et al., 2021a,b;), excessive dead material from mass mortality events (Simpson et al., 1993), coral

disease and algal growth (Dinsdale and Rohwer, 2011), and shifts in the coral microbiome (Howard et al., 2023).

7. Storm intensity

The direct force of wind and waves, along with changes in storm direction, increases risks of physical damage and exposure
to reduced water quality and sediment runoff (IPCC 2018). Storms contribute to unstable rubble substrate, compromising coral
settlement (Sheppard et al., 2020). Furthermore, frequent intense storms can hinder reef recovery (Puotinen et al., 2020). Setter

etal., (2022) ascribe a threshold value of storm strength category <4 with a return time of >5 years.

Interactions

Ocean warming may increase the severity of cyclones (IPCC 2021; Setter et al., 2022) and coral bleaching has likely reduced
the ability of reefs to recover from cyclone damage (Laffoley and Baxter 2016). The likelihood of more intense cyclones within
time frames of coral recovery by mid-century poses a global threat to coral reefs and dependent societies (Cheal et al., 2017).
Storms can have an antagonistic interaction with heat stress, reducing bleaching severity, but also generate sediment

resuspension (Gardner et al., 2005; Manzello et al., 2007; Carrigan and Puotinen, 2014; Puotinen et al., 2020; Setter et al.,
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2022). Reduced calcification increases susceptibility to storm impacts (Suwa et al., 2010; Anthony et al., 2011; Steffen et al.,
2015; Setter et al., 2022).

8. Sea level rise

Sea-level rise (SLR) can cause ‘reef drowning’ from exceeding Darwin Point thresholds (Grigg 2008). Saunders et al., (2016)
note that while individual corals may keep pace with SLR, likely maximum reef framework accretion rate on reef flats is only
3 mm yr-. Saintilan et al., (2023) estimate likely vulnerability to relative SLR at 7 mm yr-* for coral reef islands. Global mean
sea level between 2006 and 2018 increased to 3.7 mm yr-1 (IPCC 2021). Under SSP1-2.6, due to the risk of loss of reef
structural integrity and transitioning to net erosion by mid-century the rate of sea level rise is very likely to exceed that of reef
growth by 2050, absent adaptation (IPCC 2022). Depending on reef type and location suggested SLR threshold rates range

from 4-9 mm yr-1,

Closely connected seagrass and mangrove ecosystems (Guannel et al., 2016) are very vulnerable to projected SLR (Saunders
etal., 2014; Torngvist et al., 2021; Saintilan et al., 2023) which will further compromise coral reef resilience and functionality.
In summary, SLR rate and magnitude looks increasingly likely to overwhelm the accretion ability of coral reefs which will be
further challenged by increased wave energy, sedimentation, turbidity and resultant compromised light conditions for symbiont
photosynthesis (Saunders et al., 2014; Woodroffe and Webster 2014; Toérnqvist et al., 2021; Saintilan et al., 2023).

Interactions

Moderate rates of sea level rise may potentially provide cooling for some reefs contending with thermal stress and thus have
an antagonistic effect (Baldock et al., 2014; Cinner et al., 2015; Brown et al., 2019; Zuo et al., 2021). However, SLR rate and
magnitude predictions (eg. Ciraci et al., 2023; Vernimmen and Hooijer 2023) imply increasingly synergistic impacts,
especially in the tropics (Spada et al., 2013; Hooiler and Vernimmen 2021; Cazenave et al., 2022). High SLR rate and
magnitude can change the interactions from antagonistic to synergistic, for example: reducing light availability, increasing
sedimentation and turbidity (Laffoley and Baxter, 2016; Perry et al., 2018; IPCC 2022).

9. Pollution & disruption

Here we use pollution as an all-encompassing term covering sediment, eutrophication, turbidity and chemicals, while
disruption as a term covering local land use change, human population density and overfishing. Sedimentation reduces water
clarity and hence solar energy supply, furthermore sediments settling on corals require greater energy to remove. Sedimentation

is caused mainly by land-based activities such as coastal urbanisation, with plumes in large tropical river systems travelling
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many km (Brodie et al., 2012). Organic pollution from sewage and agricultural run-off (e.g. fertiliser) are the main causes of
eutrophication (increased nutrient content in water), which reduce light, actively poison invertebrates, introduce pathogens and
reduce resistance to disease with direct impact on corals being decreased colony sizes, growth anomalies, and reduced growth
and survival (Setter at al 2022). Metals and organic chemicals can rupture cell membranes, disrupt enzyme pathways reducing
corals’ ability to resist other stressors. Plastics have also been identified as a major cause of coral reef stress due to light
interference, toxin release, physical damage, anoxia and increasing the likelihood of pathogen disease 20-fold (Lamb et al.,
2018). Land use can be used as a proxy for quantifying land-based pollution and other human stressors on coral reefs (Packet
et al., 2008; Cinner et al., 2012; Setter et al., 2022). Setter et al., (2022) use human population density as the closest indicator
available to quantify local human stressors, involving coral growth anomalies and disease, low biodiversity and fish biomass
and reduced growth and survival. To calculate reef change threshold exceedance, Setter et al., (2022) use an ideal value of
summed proportion agricultural/urban land use <0.5 in a 50 km radius around a reef. Perhaps the most direct disruptive impact
is overfishing with IPBES (2019) stating that more than 80% of the world’s coral reefs are severely over-fished or have
degraded habitats (McClanahan et al., 2015).

Interactions

Under certain circumstances poorer water quality can mediate bleaching resilience through a shading effect. Pollution
exacerbates stress and increases disease risk, both of which are exacerbated by thermal stress. Eutrophication increases
deoxygenation and exacerbates crown-of-thorn-seastar (COTS) outbreaks (De’ath and Fabricius 2010; Redding et al., 2013;
Laffoley and Baxter 2019; MacNeil et al., 2019), while overfishing is also linked to COTS outbreaks (Babcock et al., 2016).
Sites with historic disturbance may recover more slowly from heat stress and storms (Walker et al., 2024). Overfishing can
lead to algae overgrowth inducing disease and lowering calcification (Fabricius 2005; Packett et al., 2009; Maina et al.,
2013; Kroon et al., 2014; Prouty et al., 2017).

10. Disease

Diseases can be major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef
functionality, and ecosystem services (Alvarez-Filip et al., 2022). Disease outbreaks have severe consequences for coral reef
ecosystems, resulting in extensive coral mortality and endangering long-term survival. Noteworthy events include the rapid
proliferation of diseases like Stony Coral Tissue Loss Disease (SCTLD), Black Band Disease, and various forms of White
Syndrome (Alvarez-Filip et al., 2022). Coral diseases are driven largely by a changing environment and are contributing to
whole ecosystem regime shifts (Thurber et al., 2020). Although diseases are becoming increasingly prevalent with temperature
rise and pollution, these, by themselves, have had relatively little overall impact outside of the Caribbean Sea, to date. In the
Caribbean SCTLD is a major present source of coral mortality, impacting more than a third of all reef-building coral species

present, and potentially increasing the extinction risk of Pillar coral Dendrogyra cylindrus (among others). The relative impact
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of diseases elsewhere is likely to change in the future, becoming more prevalent and interacting with heatwaves and other

stressors (Estrada-Saldivar et al., 2021; Cavada-Blanco et al., 2022).

Interactions

Some coral diseases (but not all) have been linked to both marine heatwaves and the longer-term warming trend (Bruno et al.,
2007; Randall and van Woesik, 2015). For example, viral infections of coral symbiotic dinoflagellate partners
(Symbiodiniaceae) will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis
underpinning coral reef ecosystems (Howe-Kerr et al., 2023). Furthermore, predation scars leave corals susceptible to disease

(Nicolet et al., 2018). Invasive species can directly cause or increase the risk of disease spread.

11. Invasive and other problem species

Increased native and invasive coral predators and competitors can have severe impacts on reefs. One example is the impact of
COTS on the Great Barrier Reef (Uthicke et al., 2015). The coral-killing sponge, Terpios hoshinota, is a global invasive species

which has led to a significant decline in living coral cover at various geographical locations (Thinesh et al., 2017).

Interactions

Warming is a driving factor in the increased impact of invasive and problem species. Studies on Mexican Pacific coast coral
reefs confirmed that post-bleached corals are increasingly vulnerable to boring sponge impacts (Carballoe et al., 2012). COTS
outbreaks appear to be significantly influenced by a combination of heat stress resiliency (Byren et al., 2024) and increased
larval survivorship due to higher food availability, linked with anthropogenic runoff and warmer sea temperature facilitating

faster settlement of larvae (Uthicke et al., 2015). Predation scars can leave corals susceptible to disease (Nicolet et al., 2018).

12. Reef impact example
Chagos Archipelago demonstrates positive feedback (TPs).

Observations from the Chagos Archipelago, central Indian Ocean, reveal several related lessons. Coral cover collapsed 90%
after heatwaves in 2015-2016. Very few adults capable of spawning survived, with new growth not observed for 3 years
(Sheppard and Sheppard, 2019).

Settlement of larvae, when it occurred, was compromised by disintegrating substrates. In many shallow areas, where wave
energy had already swept the substrate clear of rubble, large areas are becoming covered by the encrusting and bioeroding
sponge Cliona spp (Sheppard et al., 2020) and almost no coral settlers were seen in these areas. These sponges are clearly

increasing; with one reef showing over 80% Cliona cover preventing coral larvae settlement.
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On at least one lagoon floor, the former foliaceous coral dominance was also killed with skeletons disintegrating resulting in
fine sediment covering all surfaces. Both sedimented surfaces and turbid water are not preferred conditions for larval

settlement, with no juvenile corals recorded in such areas over many hectares.

The scenario of fewer corals producing fewer larvae, more turbid water in some areas and less substrate available for settlement
is a classical positive feedback or TP situation. These factors all act synergistically in a direction that inevitably leads to an
ever more impoverished reef system. Recovery from this will require a prolonged period without heat stress and a gradual

removal of the vast volumes of sediment and rubble left from previous bleaching events (Sheppard and Sheppard, 2019).

Y
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Figure 1: Reef slope on Salomon atoll, Chagos Archipelago, before and after the mass mortality caused by warming in
2015

13. Cascade effects contributing to coral reef TP threshold sensitivity

The cascading effects of well-researched impacts in other globally important systems have not been sufficiently assessed for
their potential impact on coral reef systems. Accelerating West Antarctic Ice Sheet melt (Naughten et al., 2023), increasing
methane emissions (Zhang et al., 2023) and Arctic sea ice decline have the potential to increase rate and magnitude of coral
reef stressor impacts, including temperature and SLR. For example, Liu et al., (2022) predict that 37-48% of the increase of
strong EI Nifio near the end of the 21st century is associated specifically with Arctic sea-ice loss. Many climate impact
predictions make assumptions of the stability of the wider earth system, but this may not hold true and lead to significant
cascading impacts. For example, Ke et al., (2024) show dramatic decline in land carbon sinks in 2023 which, if continued, will

have wider implications on CO; levels and associated stressors.
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14. Resilience, adaptation and refugia

Lenton et al., (2023) state ‘The potential for coral adaptation to warming is a critical but poorly known factor, and subject to
high levels of variation locally. The potential effectiveness of restoration for coral reefs at scale, and with enhanced capacity
to resist future threats, are both currently poor. The effect of climate migration on coral recovery is poorly known, with
potentially positive effects at higher latitude (with in-migration), but negative at lower latitudes (with out-migration, but no
replacement; Herbert-Read et al., 2023).” IPCCs AR6 “Impacts and vulnerability” report states that ‘impacts of climate change
may overwhelm attempts at restoration/conservation, particularly when the ecosystem is already near its TP, as is the case with

tropical coral reefs (Bates et al., 2019; Bruno et al., 2019).”

Mass coral mortality events repeated more than twice per decade and over local, regional and ocean scale, and by aggregation
to global scales, is increasingly recognized as giving insufficient time for recovery of impacted populations and ecological
function (Hughes et al., 2018a,b; Obura et al., 2022; Lenton et al., 2023; Venegas et al., 2023). Ecological and biogeographical
(spatial) feedback loops prevent recovery through failure of reproduction, dispersal, recruitment and growth of corals
(Sheppard et al., 2020). Other stressors reduce the ability of corals to resist thermal stress thus lowering tipping thresholds.
Increasing frequency and intensity of regional scale coral mortality events (1+ °C warming) are suggestive of the majority of
coral reefs already having reached their bleaching TP (IPCC 2022). The potential for thermal refuges for corals under likely
future scenarios is doubtful (Beyer et al., 2018; Dixon et al., 2022; Setter et al., 2022; Lenton et al., 2023) as very few or no
reef areas are predicted to remain below tipping thresholds of all key stressors. The existence of putative refuges at greater
depths (Bongaerts and Smith, 2019) or higher latitudes (Setter et al., 2022) are not strongly supported by recent research
(Hoegh-Guldberg et al., 2017; Hoegh-Guldberg et al., 2018; Rocha et al., 2018; Montgomery et al., 2021; IPCC 2022).

There is evidence of persistence of heat adapted genotypes in some species but the loss of poorly adapted corals leads to a loss
of diversity (Fox et al., 2021). Although potential for adaptation exists, stronger warming rates may outpace adaptive processes
and limit coral persistence (Logan et al., 2021; Venegas et al., 2023). Historical and paleo-evidence suggests fringe
distributions are likely to be compromised by increasing frequency and intensity of extreme-weather (Toth et al., 2021).
Donovan et al., (2021) show that local stressors act synergistically with climate change to kill corals. Local factors such as
high abundance of macroalgae or urchins have magnified coral loss in the year after bleaching. Notably, the combined effects
of increasing heat stress and macroalgae intensified coral loss, suggesting that effective local management, alongside global
efforts to mitigate climate change, could aid coral survival. Agostini et al., (2021) suggest that ocean acidification will reshape

coral communities around the world, selecting species that have an inherent resistance to elevated pCOs.

Kleypas et al., (2021) provide a blueprint for coral reef survival and state that existing conservation measures such as marine

protected areas and fisheries management are no longer sufficient to sustain reef ecosystems, indicating a need for many
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additional and innovative actions to increase reef resilience. Anthony et al., (2020) discuss new interventions and provide a
conceptual model to guide effective strategy choices. They also state that warm-adapted coral traits may not spread fast enough
in most coral species to keep up with the rate of warming, even under strong carbon mitigation. Hughes et al., (2023) provide
recommendations and a conceptual framework to guide restoration projects and state that coral restoration is likely to continue
to fail unless climate change and other anthropogenic impacts are urgently reduced.
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15. Conclusions

Robust inclusion of multiple, interacting stressors into vulnerability assessments will lead to a greater understanding of coral
reef futures and address concerns that assessments have been too reliant on temperature thresholds (McClanahan 2022; Klein
et al., 2024). Stressor onset rate, magnitude and overshoot factors are important considerations for determining stressor

interactions and their significance.

Veron et al., (2009) argue that to ensure long-term viability of coral reefs, atmospheric CO> levels must be reduced significantly
below 350 ppm. Lenton et al., (2023) recognise the long term consequences of >350 ppm as a critical TP threshold, along with
a global mean surface temperature (relative to pre-industrial) threshold of 1.2°C (range 1-1.5°C), whilst acknowledging that
the “combined effects of long-term warming, sea level rise, ocean acidification, deoxygenation, and other stressors, bears more
investigation.” The significance of both these TP thresholds is highlighted by the fact that global warming has already reached
1.2°C and CO; levels have exceeded 420 ppm. Considering the calculations of von Schuckmann et al., (2020) that CO; levels
would need to be reduced to 353 ppm to realise the Paris temperature target, 350 ppm is likely to be insufficient for realising

a 1.2°C TP threshold, especially as other significant greenhouse gases are still increasing.

We note that interacting stressors, ocean response dynamics, GHG emissions overshoot and cascade considerations have yet
to be sufficiently evaluated. These and other uncertainties around TP sensitivities for such a crucially important ecosystem
underlines the imperative of robust assessment (Aronson and Precht, 2016; Dixon, Forster and Beger, 2021; Heinze et al.,
2021; Laffoley et al., 2022; Lenton et al., 2023) and, in the case of knowledge gaps and uncertainties, employing a
precautionary principle (Rockstrém et al., 2021; OECD 2022; Deutloff et al., 2023; Lenton et al., 2023b; Ripple et al., 2023;
Fletcher et al., 2024) favouring lower range threshold values. Recognising threat severity is essential if the necessary

response actions are to be realised.
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439

440 Figure 2: Visualisation of stressor interactions. Red links denote synergistic associations and blue links denote both
441  synergistic and antagonistic associations depending on magnitude and other factors.
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