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Abstract. Warm-water coral reefs are facing unprecedented human driven threats to their continued existence as biodiverse, 26 

functional ecosystems upon which hundreds of millions of people rely. These impacts may drive coral ecosystems past critical 27 

thresholds, beyond which the system reorganises, often abruptly and potentially irreversibly, this is what the IPCC (2022) 28 

define as a tipping point. Determining tipping point thresholds for coral reef ecosystems requires robust assessment of multiple 29 

stressors and their interactive effects. In this perspective piece we draw upon the recent Global Tipping Points Report initiative 30 

(Lenton et al., 2023) and a literature search to identify and summarise the diverse range of interacting stressors that need to be 31 

considered for determining tipping point thresholds for warm-water coral reef ecosystems. Considering observed and projected 32 

stressor impacts we endorse the Global Tipping Points Report conclusion of a global mean surface temperature (relative to 33 

pre-industrial) tipping point threshold of 1.2°C (range 1-1.5°C) and the long-term impacts of atmospheric CO2 concentrations 34 

above 350 ppm, whilst acknowledging that comprehensive assessment of stressors, including ocean warming response 35 

dynamics, overshoot and cascading impacts, have yet to be sufficiently realised. These tipping point thresholds have already 36 

been exceeded and therefore these systems are in an overshoot state and are reliant on policy actions bringing stressor levels 37 

back within tipping point limits. Fuller assessment of interacting stressors is likely to further lower tipping point thresholds in 38 

most cases. Uncertainties around tipping points for such crucially important ecosystems underlines the imperative of robust 39 

assessment and, in the case of knowledge gaps, employing a precautionary principle favouring lower range tipping point 40 

values.   41 

  42 
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1. Introduction   43 

Warm-water coral reefs (tropical and subtropical) support one quarter to one third of marine biodiversity (Plaisance et al., 44 

2011), including over 25% of marine fish species (Laffoley and Baxter, 2016). The estimated annual economic value of coral 45 

reef ecosystem services ranges from US$29.8 billion (Cesar, Burke & Pet-Soede, 2003) up to US$2.7 trillion (Souter et al., 46 

2021), upon which at least 500 million people are reliant (IPBES 2019). They are also among the most sensitive ecosystems 47 

to anthropogenic driven stressors with approximately 50% of global live coral cover lost with accelerated declines seen over 48 

the last 30 years (IPBES 2019), primarily due to ocean warming, but other factors have contributed locally such as fishing, 49 

pollution, disease, nutrient enrichment and predation by crown of thorns starfish (IPCC 2022). IPBES (2019) states that over 50 

80% of the world’s coral reefs are severely over-fished or have degraded habitats (McClanahan et al., 2015). Eddy et al., (2021) 51 

estimate coral reef ecosystem services have halved since the 1950s. Although local stressors continue to impact coral reef 52 

health, climate driven stressors have become the dominant threat to the functional viability of these ecosystems (IPBES 2019; 53 

IPCC 2022). 54 

 55 

It is well established that coral reef ecosystems are vulnerable to multiple interacting tipping points (TPs) (Norström et al., 56 

2016; Heinze et al., 2021; Armstrong-McKay et al., 2022; IPCC 2022). IPCC (2022) defines a TP as “a critical threshold 57 

beyond which a system reorganises, often abruptly and/or irreversibly”. Coral reefs are prone to TPs that can produce coral 58 

die offs and replacement by other ecological communities such as macroalgae, soft corals, or urchin barrens (Norström 59 

et al., 2016), with reductions in biodiversity and degradation of ecosystem services (IPBES 2019). Warm water coral reefs 60 

cross a threshold of ecosystem collapse (Bland et al., 2018) when they cease to have sufficient live coral cover (typically ~ 61 

10%) necessary for supporting the wide diversity of taxa, ecological interactions and positive carbonate production state typical 62 

of a coral reef (Perry et al., 2013; Darling et al., 2019; Sheppard et al., 2020; Vercelloni et al., 2020; Armstrong-McKay et al., 63 

2022). Coral mortality may take weeks or a few months for acute events (e.g. bleaching), or years for chronic threats (e.g. 64 

diseases), but prolonged failure to recover over a decade is necessary to qualify a coral reef as ‘collapsed’.  65 

 66 

Coral reef losses have accelerated in recent decades due to climate change and other stressors (IPBES 2019; Souter et al., 67 

2021), with high variability among regions, but some localised recovery and resilience observed (e.g. Richards et al., 2021). 68 

Localised responses of corals to increasing scales and intensities of stressors are aggregating at scales now exceeding 1000 km 69 

and manifesting as regional die-offs (e.g. Western and Central Indian Ocean, Great Barrier Reef, Mesoamerican Reefs) (Le 70 

Nohaïc et al., 2017; Muñiz-Castillo et al., 2019; Sheppard et al., 2020; Obura et al., 2022; Amir 2022), with most regions 71 

experiencing multiple die-off events (Darling et al., 2019; Cramer et al., 2020; IPCC 2022). Coral reef bleaching TPs have 72 

already been reached in seven ocean systems (IPCC 2022). 73 

 74 

https://doi.org/10.1002/fee.1747
https://www.nature.com/articles/ncomms2409
https://www.nature.com/articles/s41559-019-0953-8
https://pubmed.ncbi.nlm.nih.gov/32319906/
https://link.springer.com/chapter/10.1007/978-3-030-42553-1_16
https://www.science.org/doi/10.1126/science.abn7950
https://www.science.org/doi/10.1126/science.abn7950
https://www.unep.org/resources/status-coral-reefs-world-2020
https://www.unep.org/resources/status-coral-reefs-world-2020
https://doi.org/10.1038/s41598-017-14794-y
https://doi.org/10.1038/s41598-017-14794-y
https://doi.org/10.1038/s41598-019-47307-0
https://doi.org/10.1038/s41893-021-00817-0
http://mrc.gov.mv/dv/publications/show/status-and-trends-of-hard-coral-cover-derived-from-long-term-monitoring-sites-in-the-maldives-1998-2
https://doi.org/10.1038/s41559-019-0953-8
http://doi.org/10.1126/sciadv.aax939
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2. Considerations for assessing coral reef TPs.  75 

Direct and indirect local human activities are increasingly degrading coral reef ecosystems through a combination of coastal 76 

development, water quality reduction, over-harvesting, invasive species and disease spread. At the local level, these stressors 77 

have already tipped some areas from coral to macroalgae dominated ecosystems (Bruno et al., 2009; IPBES 2019; Souter et 78 

al., 2021). Local stressor impacts are increasingly exacerbated by anthropogenic climate change, for example, high abundance 79 

of macroalgae or urchins exacerbating coral loss after bleaching (Donovan et al., 2021).  80 

 81 

It’s important to consider the combined impact of multiple stressors. Doing so can significantly alter assessments of coral reef 82 

futures (Setter et al., 2022; Lenton et al., 2023). Interactions between different stressors can be antagonistic (the combined 83 

effect is less than the additive), additive (the combined effect is equal to the sum of their individual effects) or synergistic (the 84 

combined effects exceed their individual effects) (Good and Bahr 2020). Some studies find antagonistic interactions between 85 

multiple stressors (Darling et al., 2010; Johnson et al., 2022). However, a wide variety of synergistic interactions also occur 86 

(ICRS 2021; IPCC 2022; Setter et al., 2022; Lenton et al., 2023), generally lowering the thermal threshold for bleaching and/or 87 

mortality, accelerating collapse, or even surpassing thermal stress in local importance (Ban et al., 2013; Edmunds et al., 2014; 88 

Rocha et al., 2015; Anthony 2016; Darling et al., 2019; IPBES 2019; Cramer et al., 2020; Setter et al., 2022; Lenton et al., 89 

2023). Stressor onset rate can have a major effect on significance, for example for reef fish mortality (Genin et al., 2020). 90 

Depending on onset rate and magnitude, the same interacting stressors may initially have antagonistic effects but may transition 91 

to additive or synergistic (e.g., Fisher et al., 2019).  92 

 93 

Increasing atmospheric greenhouse gas (GHG) concentrations, especially carbon dioxide (CO2), are disrupting Earth Energy 94 

Balance. The resultant Earth Energy Imbalance (EEI) is increasing atmospheric and ocean temperatures (IPCC 2021; Loeb et 95 

al., 2021; Von Schuckmann et al., 2023). CO2 concentrations are the dominant driver of rate and magnitude of ocean warming 96 

and acidification (Meinshausen et al., 2020). Because of its large thermal inertia the ocean takes hundreds of years to fully 97 

respond to the atmospheric temperature increases that human driven GHG concentrations are causing (IPCC;. 2021; Abraham 98 

et al., 2022; Cheng et al.; 2022). The resultant committed heating and sea level rise (SLR) needs to be calculated for any given 99 

GHG/temperature level. Although both ocean heat uptake and SLR take centuries to fully respond, it takes  approximately 25-100 

50 years for the majority of committed ocean warming to be realised (Hansen et al; 2005; Abrams et al., 2023), with the upper 101 

ocean level having the shortest response time. Due to these inertia considerations, TP thresholds can be exceeded decades 102 

before the full physical impacts are observed. 103 

 104 

Overshoot describes warming pathways that temporarily increase global mean temperature over a specific temperature target 105 

(IPCC 2022). Overshoot of multiple decades implies severe risks and irreversible impacts in many ecosystems (Meyer et al., 106 

2022; Wunderling et al., 2022; Schleussener et al., 2024), including coral reefs from heat-related mortality and associated 107 

ecosystem transitions (high confidence) (IPCC 2022).  Overshoot is an urgent consideration for coral reefs because CO2 levels 108 

https://doi.org/10.1371/journal.pbio.3001821
http://doi.org/10.1111/gcb.12453
https://doi.org/10.1007/s10750-014-1876-7
https://royalsocietypublishing.org/doi/full/10.1098/rstb.2013.0273
https://doi.org/10.1038/s41559-019-0953-8
http://doi.org/10.1126/sciadv.aax939
https://doi.org/10.1371/journal.pbio.3001821
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and global mean surface temperature have already exceeded critical thresholds and so as such we are already in overshoot, and 109 

this problem is compounded by stressor rate and magnitude (Lenton et al., 2023). 110 

TP cascades describe a TP in one system triggering, or stabilising, subsequent TPs in other systems (Rocha et al., 2018; 111 

Armstrong-McKay et al., 2022; IPCC 2022; Wunderling et al., 2022). Here we summarise the most important stressors relevant 112 

to TP sensitivity for coral reefs and explore interactions between them. 113 

3. Ocean warming and heatwaves  114 

Warmer ocean temperatures, driven by Anthropogenic climate change, compounded by El Niño heating events, is the primary 115 

stressor of regional-scale and ocean-basin-scale mortality of scleractinian corals. Heat stress, in combination with irradiance, 116 

results from small increases in seawater temperature above the summer maxima to which corals are acclimatised, destabilising 117 

the symbiosis between host corals and their symbiotic algae, commonly referred to as coral bleaching (Hughes et al., 2017; 118 

Houk et al., 2020; UNEP 2020; IPCC 2022).  119 

 120 

Mass bleaching occurs when sea temperatures persist at more than 1 degree above established summer maxima for 8-12 weeks 121 

(known as 8-12 Degree Heating Weeks or DHW). Although mass bleaching has resulted in significant coral morality, we note 122 

that with the loss of sensitive corals, acclimation and adaptation, the definition of DHW may require adjustment (Lenton et al., 123 

2023).  124 

 125 

Previous assessments have highlighted consequences of different levels of warming:  126 

0.7°C - “In the late 1990s when global warming was around 0.7°C large-scale coral reef bleaching also became apparent … 127 

supporting the lower boundary for this transition in respect of coral reefs” (Veron et al., 2009; IPCC, 2022)  128 

1.0°C - “temperatures of just 1°C above the long-term summer maximum … over 4–6 weeks are enough to cause mass coral 129 

bleaching … and mortality (very high confidence)” (Hoegh-Guldberg et al., 2018; Skirving et al., 2019). 130 

1.2°C - “Warm water (tropical) coral reefs are projected to reach a very high risk of impact at 1.2°C …, with most available 131 

evidence suggesting that coral-dominated ecosystems will be non-existent at this temperature or higher (high confidence). At 132 

this point, coral abundance will be near zero at many locations and storms will contribute to ‘flattening’ the three-dimensional 133 

structure of reefs without recovery, as already observed for some coral reefs (Alvarez-Filip et al., 2009).” (Hoegh-Guldberg et 134 

al., 2018). Coral reef bleaching TPs have already been passed in seven ocean systems (IPCC 2022; Lenton et al., 2023). 135 

1.5°C - “...coral reefs… will undergo irreversible phase shifts due to marine heatwaves with global warming levels >1.5°C 136 

and are at high risk this century even in <1.5°C scenarios that include periods of temperature overshoot beyond 1.5°C (high 137 

confidence).” (IPCC 2022). Projections predict 70-90% coral loss at 1.5°C (Hoegh-Guldberg et al., 2018; IPBES 2019; Souter 138 

https://doi.org/10.1038/nature21707
https://doi.org/10.1038/s41598-020-64411-8
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et al., 2021; Armstrong McKay et al., 2022), whereas finer scale modelling projects a 95-98% loss (Kalmus et al., (2022) and 139 

suggest 99% loss (Dixon et al., 2022).  140 

2.0°C - “literature since AR5 has provided a closer focus on the comparative levels of risk to coral reefs at 1.5°C versus 2°C 141 

of global warming … reaching 2°C will increase the frequency of mass coral bleaching and mortality to a point at which it 142 

will result in the total loss of coral reefs from the world’s tropical and subtropical regions.” (IPCC 2018) . Predictions show 143 

99% coral loss at 2.0°C (Frieler et al., 2013; Hoegh-Guldberg et al., 2018; IPBES 2019; Knowlton et al., 2021; Souter et al., 144 

2021; Armstrong McKay et al., 2022; Wang et al., 2023). Finer scale modelling projects 100% loss at 2.0°C. (Dixon et al., 145 

2022; Kalmus et al., 2022).  146 

 147 

Since the first global bleaching event of 1998, up to 71% of the world’s reefs have experienced three further global mass 148 

bleaching events, with a fourth event being experienced in 2023/2024 (https://www.noaa.gov/news-release/noaa-confirms-149 

4th-global-coral-bleaching-event).  150 

 151 

Assessments of risk to corals from heating typically don’t consider co-occurring or interacting stressors or the delayed heating 152 

response to atmospheric greenhouse gas concentrations. Ocean warming inertia may mask the impact severity of stated 153 

greenhouse gas and temperature levels. When emissions-driven temperature overshoot is considered, lower target temperatures 154 

can have similar impacts to higher, with little difference in coral survival between an overshoot scenario that peaks at 2°C and 155 

subsequently reduces temperatures to 1.5°C versus a 2°C scenario without a subsequent reduction in temperatures (Tachiiri et 156 

al., 2019).  157 

 158 

Tanaka and Van Houtan (2022) confirm the normalisation of extreme heating events. The frequency and duration of bleaching 159 

events are likely to increase, occurring earlier in the year and potentially overlapping with critical spawning periods (Mellin et 160 

al., 2024). The compounding heat stress of El Niño events (Claar et al., 2018; Hughes et al., 2018b; Lough et al., 2018) may 161 

increase with projected Arctic and Antarctic sea ice loss (England et al., 2020; Liu et al., 2022). Real world observations from 162 

the NOAA coral reef watch program demonstrate that coral reef damage is accelerating and underscores the threat 163 

anthropogenic climate change poses for the irreversible transformation of these essential ecosystems (Eakin et al., 2022). 164 

 165 

Interactions of ocean warming and heatwaves with other stressors 166 

Warming effects are so far reaching in their impacts that they can adversely impact many other coral stressors, these stressors, 167 

in turn, can increase vulnerability to thermal stress. For example, heating-induced bleaching increases disease risk and lowers 168 

calcification which increases the impact of ocean acidification (Davis et al., 2021; Burke et al., 2023). Corals that survive 169 

bleaching can have compromised growth rates and reproduction (Rodrigues and Padilla-Gamino, 2022; Speare et al., 2022; 170 

Briggs et al., 2024). Furthermore, warming oceans and heatwaves increase storm intensity and raise sea-level through thermal 171 

expansion and cryosphere melting.  172 

https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event
https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event
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4. Stratification 173 

Ocean stratification is the layering of water masses, based on density. Stratified water layers are a barrier to mixing, which 174 

impacts the exchange of heat, oxygen, nutrients and carbon between shallow and deep water. This impacts marine organisms 175 

in a number of significant ways, including impacting primary productivity and potentially the entire marine food chain. 176 

Stratification has increased globally by 5.3% in recent decades (Li et al., 2020).  177 

 178 

Interactions 179 

Stratification is strongly linked with warming oceans. Stratification magnifies the warming effect at the upper layers, thus 180 

increasing thermal stress to warm water reefs, this is a vicious circle as warming oceans further increase stratification. 181 

Additionally, stratification reduces CO2 uptake, further exacerbating anthropogenic warming. Stratification impedes ocean 182 

mixing impacting nutrient flows. Stratification is strongly linked with deoxygenation. Stratification is also linked with melting 183 

of Antarctic ice shelves and sea-level rise (Reed and Harrison 2016; Li at al., 2020; Auger et al., 2021). Stratification is 184 

increasing which has dramatic consequences for sea temperatures and CO2 concentrations (Goreau and Hayes, 2024) 185 

5. Ocean acidification 186 

Ocean acidification (OA) is the process of the increasing absorption of atmospheric CO2 by the surface seawaters of the oceans 187 

(Raven 2005), which in turn reduces the calcification rates of most scleractinian tropical and subtropical corals (Comeau et al., 188 

2014; Kornder et al., 2018), and can alter the photo-physiology and calcification physiology of some corals (Comeau et al., 189 

2018). OA causes a change in the speciation of dissolved inorganic carbon and an increase in protons (Caldeira and Wickett 190 

2003; Feely et al., 2004; Sabine et al., 2004; Raven et al., 2005). This results in increased dissolution of exposed calcareous 191 

material due to decreased saturation state of CaCO3, and also inhibition of calcification through increasing proton concentration 192 

with the calcifying space in corals and calcareous algae (Comeau et al., 2018; Comeau et al., 2019). 193 

 194 

OA causes declines in coral calcification rates (Comeau et al., 2018). Early work predicted large-scale loss of coral calcification 195 

at catastrophic levels, whereby OA was projected to result in coral bleaching and in some cases net dissolution of corals (see 196 

data within Leung et al., 2022). Contemporary research demonstrates that some corals are resistant to OA (Comeau et al., 197 

2018; Kornder et al., 2018). The most comprehensive modelling estimates are that by year 2100 coral calcification would 198 

decline by 1% under RCP2.6, 4% under RCP4.5 and 15% at RCP8.5 (Cornwall et al., 2021). When combined solely with the 199 

metabolic effects of temperature increases, this decline would be 1% (RCP2.6), 8% (RCP4.5), and 33% (RCP8.5). However, 200 

the calcification rates of susceptible coral taxa (e.g., Acropora spp.) would decline by much more, and resistant species (e.g., 201 

Pocillopora spp. or Porites spp. generally) could be unaffected.  202 

 203 
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The direct metabolic impacts of OA do not manifest a TP, but TPs at ecological levels are likely. Recent evidence 204 

indicates that ecological TPs within coral reefs caused solely by ocean acidification would occur around 550 205 

ppm, roughly the same concentration of atmospheric CO2 that would cause detectable declines in both coral and 206 

coralline algal calcification (Cornwall et al., 2024). However, ecosystem trajectories are uncertain, and much 207 

more future research is required to determine the generality of these findings. 208 

The adverse impacts on coral and coralline algal calcification are direct negative effects, when combined with the 209 

direct positive effects on other taxa (such as opportunistic turfing algae). Susceptible species would start to give 210 

way to tolerant species over time (as generally occurs at natural analogues in the field (Fabricius et al., 2011; 211 

Comeau et al., 2022), and other non-coral taxa would start to dominate space on what once were traditional coral 212 

reefs. Species that are capable of maintaining stable internal carbonate chemistry or compensate for these changes 213 

tend to be more tolerant to OA.  214 

 215 

Interactions  216 

Reduced calcification increases disease risk and weakened skeletons are vulnerable to storms (Suwa et al., 2010; Anthony et 217 

al., 2011; Steffen et al., 2015; Setter et al., 2022). There is also some evidence that elevated CO2 will exacerbate heat stress 218 

induced declines in coral calcification and physiological performance, though the strength and direction of these interactions 219 

varies widely by coral reef taxa, and even within different coral genera (Kornder et al., 2018). However, of greater immediate 220 

importance to the majority of corals will be successive marine heatwaves that will reduce the coral cover of less heat tolerant 221 

species, populations and genotypes over the majority of the oceans in the near future (van Hooidonk et al., 2014; Cornwall et 222 

al., 2021; Logan et al., 2021; Cornwall et al., 2023). Survivors of this human-driven evolutionary force will not necessarily be 223 

those that are tolerant to OA also, and thus numerous TPs in time could occur.  224 

6. Deoxygenation 225 

Deoxygenation on coral reefs is perhaps the least studied of the major threats directly linked to climate change such as warming 226 

and acidification (Hughes et al., 2020). However, there is sufficient evidence to say that dissolved oxygen is a critical resource 227 

on coral reefs, and that oxygen limitation (i.e. hypoxia) results in non-linearities and feedbacks that contribute to ecological 228 

tipping points (Nelson and Altieri 2019). The consequences of crossing these TPs are perhaps most dramatically evident in 229 

sudden mass mortality events, which has led to calls to accelerate the research agenda on deoxygenation on coral reefs (Altieri 230 

et al., 2017). The oxygen concentration threshold at which corals lose their ability to maintain homeostasis is 2 mg/L with 231 

lethal doses between 0.5-2 mg/L (Hughes et al., 2020; Johnson et al., 2021a). Previous mass extinctions have been linked to 232 

deoxygenation, indicating the potential severity of this threat (Liu et al., 2019). 233 

  234 



9 

 

The problem of deoxygenation on coral reefs is becoming more prevalent and severe in the Anthropocene from a combination 235 

of global climate change (Altieri and Gedan 2015; Pezner et al., 2023), as well as local pollution in the form of excess nutrient 236 

and organic matter (Diaz and Rosenberg 2008), which are magnified by local oceanographic patterns (Adelson et al., 2022). 237 

Around 13% of coral reefs are at risk of deoxygenation, and this is likely to increase with continued climate change (Altieri et 238 

al., 2017; Pezner et al., 2023).  239 

  240 

We suggest that evidence to date for feedbacks and non-linear thresholds indicates that a TP framework should be used to 241 

guide future research on deoxygenation in coral reefs, and that hypoxia should be considered in studies of thermal stress and 242 

acidification. 243 

 244 

Interactions 245 

Climate-related variables of temperature and acidification are also likely to exacerbate deoxygenation by affecting the 246 

physiological responses of corals and other reef organisms. It is widely recognized that increased temperatures lead to increased 247 

metabolic demand and decreased tolerance thresholds in marine organisms including corals (Vaquer-Sunyer and Duarte, 2011; 248 

Alderdice et al., 2022; Weber et al., 2012). Considering the co-occurrence and synergistic effects of these co-stressors with 249 

deoxygenation, a multi-stressor perspective is essential, and many of the assumed thresholds for TPs on coral reefs based on 250 

single or even double stressor treatments under laboratory experiments are likely overly conservative estimates. Coral reefs 251 

are vulnerable to a number of feedbacks that exacerbate deoxygenation events, these include: bleaching (Altieri et al., 2017; 252 

Alderdice 2021; Johnson et al., 2021a,b;), excessive dead material from mass mortality events (Simpson et al., 1993), coral 253 

disease and algal growth (Dinsdale and Rohwer, 2011), and shifts in the coral microbiome (Howard et al., 2023).  254 

7. Storm intensity  255 

The direct force of wind and waves, along with changes in storm direction, increases risks of physical damage and exposure 256 

to reduced water quality and sediment runoff (IPCC 2018). Storms contribute to unstable rubble substrate, compromising coral 257 

settlement (Sheppard et al., 2020). Furthermore, frequent intense storms can hinder reef recovery (Puotinen et al., 2020). Setter 258 

et al., (2022) ascribe a threshold value of storm strength category <4 with a return time of >5 years.  259 

 260 

Interactions 261 

Ocean warming may increase the severity of cyclones (IPCC 2021; Setter et al., 2022) and coral bleaching has likely reduced 262 

the ability of reefs to recover from cyclone damage (Laffoley and Baxter 2016). The likelihood of more intense cyclones within 263 

time frames of coral recovery by mid-century poses a global threat to coral reefs and dependent societies (Cheal et al., 2017).  264 

Storms can have an antagonistic interaction with heat stress, reducing bleaching severity, but also generate sediment 265 

resuspension (Gardner et al., 2005; Manzello et al., 2007; Carrigan and Puotinen, 2014; Puotinen et al., 2020; Setter et al., 266 
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2022). Reduced calcification increases susceptibility to storm impacts (Suwa et al., 2010; Anthony et al., 2011; Steffen et al., 267 

2015; Setter et al., 2022). 268 

8. Sea level rise  269 

Sea-level rise (SLR) can cause ‘reef drowning’ from exceeding Darwin Point thresholds (Grigg 2008). Saunders et al., (2016) 270 

note that while individual corals may keep pace with SLR, likely maximum reef framework accretion rate on reef flats is only 271 

3 mm yr_1. Saintilan et al., (2023) estimate likely vulnerability to relative SLR at 7 mm yr-1 for coral reef islands. Global mean 272 

sea level between 2006 and 2018 increased to 3.7 mm yr-1 (IPCC 2021). Under SSP1-2.6, due to the risk of loss of reef 273 

structural integrity and transitioning to net erosion by mid-century the rate of sea level rise is very likely to exceed that of reef 274 

growth by 2050, absent adaptation (IPCC 2022). Depending on reef type and location suggested SLR threshold rates range 275 

from 4-9 mm yr-1. 276 

 277 

Closely connected seagrass and mangrove ecosystems (Guannel et al., 2016) are very vulnerable to projected SLR (Saunders 278 

et al., 2014; Törnqvist et al., 2021; Saintilan et al., 2023) which will further compromise coral reef resilience and functionality. 279 

In summary, SLR rate and magnitude looks increasingly likely to overwhelm the accretion ability of coral reefs which will be 280 

further challenged by increased wave energy, sedimentation, turbidity and resultant compromised light conditions for symbiont 281 

photosynthesis (Saunders et al., 2014; Woodroffe and Webster 2014; Törnqvist et al., 2021; Saintilan et al., 2023).  282 

 283 

Interactions 284 

Moderate rates of sea level rise may potentially provide cooling for some reefs contending with thermal stress and thus have 285 

an antagonistic effect (Baldock et al., 2014; Cinner et al., 2015; Brown et al., 2019; Zuo et al., 2021). However, SLR rate and 286 

magnitude predictions (eg. Ciraci et al., 2023; Vernimmen and Hooijer 2023) imply increasingly synergistic impacts, 287 

especially in the tropics (Spada et al., 2013; Hooiler and Vernimmen 2021; Cazenave et al., 2022). High SLR rate and 288 

magnitude can change the interactions from antagonistic to synergistic, for example: reducing light availability, increasing 289 

sedimentation and turbidity (Laffoley and Baxter, 2016; Perry et al., 2018; IPCC 2022).  290 

 291 

9. Pollution & disruption 292 

Here we use pollution as an all-encompassing term covering sediment, eutrophication, turbidity and chemicals, while 293 

disruption as a term covering local land use change, human population density and overfishing. Sedimentation reduces water 294 

clarity and hence solar energy supply, furthermore sediments settling on corals require greater energy to remove. Sedimentation 295 

is caused mainly by land-based activities such as coastal urbanisation, with plumes in large tropical river systems travelling 296 
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many km (Brodie et al., 2012). Organic pollution from sewage and agricultural run-off (e.g. fertiliser) are the main causes of 297 

eutrophication (increased nutrient content in water), which reduce light, actively poison invertebrates, introduce pathogens and 298 

reduce resistance to disease with direct impact on corals being decreased colony sizes, growth anomalies, and reduced growth 299 

and survival (Setter at al 2022). Metals and organic chemicals can rupture cell membranes, disrupt enzyme pathways reducing 300 

corals’ ability to resist other stressors. Plastics have also been identified as a major cause of coral reef stress due to light 301 

interference, toxin release, physical damage, anoxia and increasing the likelihood of pathogen disease 20-fold (Lamb et al., 302 

2018). Land use can be used as a proxy for quantifying land-based pollution and other human stressors on coral reefs (Packet 303 

et al., 2008; Cinner et al., 2012; Setter et al., 2022). Setter et al., (2022) use human population density as the closest indicator 304 

available to quantify local human stressors, involving coral growth anomalies and disease, low biodiversity and fish biomass 305 

and reduced growth and survival. To calculate reef change threshold exceedance, Setter et al., (2022) use an ideal value of 306 

summed proportion agricultural/urban land use <0.5 in a 50 km radius around a reef. Perhaps the most direct disruptive impact 307 

is overfishing with IPBES (2019) stating that more than 80% of the world’s coral reefs are severely over-fished or have 308 

degraded habitats (McClanahan et al., 2015). 309 

 310 

Interactions 311 

Under certain circumstances poorer water quality can mediate bleaching resilience through a shading effect. Pollution 312 

exacerbates stress and increases disease risk, both of which are exacerbated by thermal stress. Eutrophication increases 313 

deoxygenation and exacerbates crown-of-thorn-seastar (COTS) outbreaks (De’ath and Fabricius 2010; Redding et al., 2013; 314 

Laffoley and Baxter 2019; MacNeil et al., 2019), while overfishing is also linked to COTS outbreaks (Babcock et al., 2016). 315 

Sites with historic disturbance may recover more slowly from heat stress and storms (Walker et al., 2024). Overfishing can 316 

lead to algae overgrowth inducing disease and lowering calcification (Fabricius 2005; Packett et al., 2009; Maina et al., 317 

2013; Kroon et al., 2014; Prouty et al., 2017).  318 

10. Disease  319 

Diseases can be major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef 320 

functionality, and ecosystem services (Alvarez-Filip et al., 2022). Disease outbreaks have severe consequences for coral reef 321 

ecosystems, resulting in extensive coral mortality and endangering long-term survival. Noteworthy events include the rapid 322 

proliferation of diseases like Stony Coral Tissue Loss Disease (SCTLD), Black Band Disease, and various forms of White 323 

Syndrome (Alvarez-Filip et al., 2022). Coral diseases are driven largely by a changing environment and are contributing to 324 

whole ecosystem regime shifts (Thurber et al., 2020). Although diseases are becoming increasingly prevalent with temperature 325 

rise and pollution, these, by themselves, have had relatively little overall impact outside of the Caribbean Sea, to date. In the 326 

Caribbean SCTLD is a major present source of coral mortality, impacting more than a third of all reef-building coral species 327 

present, and potentially increasing the extinction risk of Pillar coral Dendrogyra cylindrus (among others). The relative impact 328 
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of diseases elsewhere is likely to change in the future, becoming more prevalent and interacting with heatwaves and other 329 

stressors (Estrada-Saldívar et al., 2021; Cavada-Blanco et al., 2022). 330 

 331 

Interactions 332 

Some coral diseases (but not all) have been linked to both marine heatwaves and the longer-term warming trend (Bruno et al., 333 

2007; Randall and van Woesik, 2015). For example, viral infections of coral symbiotic dinoflagellate partners 334 

(Symbiodiniaceae) will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis 335 

underpinning coral reef ecosystems (Howe-Kerr et al., 2023). Furthermore, predation scars leave corals susceptible to disease 336 

(Nicolet et al., 2018). Invasive species can directly cause or increase the risk of disease spread. 337 

11. Invasive and other problem species 338 

Increased native and invasive coral predators and competitors can have severe impacts on reefs. One example is the impact of 339 

COTS on the Great Barrier Reef (Uthicke et al., 2015). The coral-killing sponge, Terpios hoshinota, is a global invasive species 340 

which has led to a significant decline in living coral cover at various geographical locations (Thinesh et al., 2017).  341 

 342 

Interactions 343 

Warming is a driving factor in the increased impact of invasive and problem species. Studies on Mexican Pacific coast coral 344 

reefs confirmed that post-bleached corals are increasingly vulnerable to boring sponge impacts (Carballoe et al., 2012). COTS 345 

outbreaks appear to be significantly influenced by a combination of heat stress resiliency (Byren et al., 2024) and increased 346 

larval survivorship due to higher food availability, linked with anthropogenic runoff and warmer sea temperature facilitating 347 

faster settlement of larvae (Uthicke et al., 2015). Predation scars can leave corals susceptible to disease (Nicolet et al., 2018). 348 

12. Reef impact example 349 

Chagos Archipelago demonstrates positive feedback (TPs). 350 

Observations from the Chagos Archipelago, central Indian Ocean, reveal several related lessons. Coral cover collapsed 90% 351 

after heatwaves in 2015-2016. Very few adults capable of spawning survived, with new growth not observed for 3 years 352 

(Sheppard and Sheppard, 2019). 353 

Settlement of larvae, when it occurred, was compromised by disintegrating substrates. In many shallow areas, where wave 354 

energy had already swept the substrate clear of rubble, large areas are becoming covered by the encrusting and bioeroding 355 

sponge Cliona spp (Sheppard et al., 2020) and almost no coral settlers were seen in these areas. These sponges are clearly 356 

increasing; with one reef showing over 80% Cliona cover preventing coral larvae settlement. 357 
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On at least one lagoon floor, the former foliaceous coral dominance was also killed with skeletons disintegrating resulting in 358 

fine sediment covering all surfaces. Both sedimented surfaces and turbid water are not preferred conditions for larval 359 

settlement, with no juvenile corals recorded in such areas over many hectares. 360 

The scenario of fewer corals producing fewer larvae, more turbid water in some areas and less substrate available for settlement 361 

is a classical positive feedback or TP situation. These factors all act synergistically in a direction that inevitably leads to an 362 

ever more impoverished reef system. Recovery from this will require a prolonged period without heat stress and a gradual 363 

removal of the vast volumes of sediment and rubble left from previous bleaching events (Sheppard and Sheppard, 2019). 364 

 365 

Figure 1: Reef slope on Salomon atoll, Chagos Archipelago, before and after the mass mortality caused by warming in 366 

2015 367 

13. Cascade effects contributing to coral reef TP threshold sensitivity 368 

The cascading effects of well-researched impacts in other globally important systems have not been sufficiently assessed for 369 

their potential impact on coral reef systems. Accelerating West Antarctic Ice Sheet melt (Naughten et al., 2023), increasing 370 

methane emissions (Zhang et al., 2023) and Arctic sea ice decline have the potential to increase rate and magnitude of coral 371 

reef stressor impacts, including temperature and SLR. For example, Liu et al., (2022) predict that 37–48% of the increase of 372 

strong El Niño near the end of the 21st century is associated specifically with Arctic sea-ice loss. Many climate impact 373 

predictions make assumptions of the stability of the wider earth system, but this may not hold true and lead to significant 374 

cascading impacts. For example, Ke et al., (2024) show dramatic decline in land carbon sinks in 2023 which, if continued, will 375 

have wider implications on CO2 levels and associated stressors. 376 
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14. Resilience, adaptation and refugia 377 

Lenton et al., (2023) state ‘The potential for coral adaptation to warming is a critical but poorly known factor, and subject to 378 

high levels of variation locally. The potential effectiveness of restoration for coral reefs at scale, and with enhanced capacity 379 

to resist future threats, are both currently poor. The effect of climate migration on coral recovery is poorly known, with 380 

potentially positive effects at higher latitude (with in-migration), but negative at lower latitudes (with out-migration, but no 381 

replacement; Herbert-Read et al., 2023).’ IPCCs AR6 “Impacts and vulnerability” report states that ‘impacts of climate change 382 

may overwhelm attempts at restoration/conservation, particularly when the ecosystem is already near its TP, as is the case with 383 

tropical coral reefs (Bates et al., 2019; Bruno et al., 2019).’  384 

 385 

Mass coral mortality events repeated more than twice per decade and over local, regional and ocean scale, and by aggregation 386 

to global scales, is increasingly recognized as giving insufficient time for recovery of impacted populations and ecological 387 

function (Hughes et al., 2018a,b; Obura et al., 2022; Lenton et al., 2023; Venegas et al., 2023). Ecological and biogeographical 388 

(spatial) feedback loops prevent recovery through failure of reproduction, dispersal, recruitment and growth of corals 389 

(Sheppard et al., 2020). Other stressors reduce the ability of corals to resist thermal stress thus lowering tipping thresholds. 390 

Increasing frequency and intensity of regional scale coral mortality events (1+ °C warming) are suggestive of the majority of 391 

coral reefs already having reached their bleaching TP (IPCC 2022). The potential for thermal refuges for corals under likely 392 

future scenarios is doubtful (Beyer et al., 2018; Dixon et al., 2022; Setter et al., 2022; Lenton et al., 2023) as very few or no 393 

reef areas are predicted to remain below tipping thresholds of all key stressors. The existence of putative refuges at greater 394 

depths (Bongaerts and Smith, 2019) or higher latitudes (Setter et al., 2022) are not strongly supported by recent research 395 

(Hoegh-Guldberg et al., 2017; Hoegh-Guldberg et al., 2018; Rocha et al., 2018; Montgomery et al., 2021; IPCC 2022).  396 

 397 

There is evidence of persistence of heat adapted genotypes in some species but the loss of poorly adapted corals leads to a loss 398 

of diversity (Fox et al., 2021). Although potential for adaptation exists, stronger warming rates may outpace adaptive processes 399 

and limit coral persistence (Logan et al., 2021; Venegas et al., 2023). Historical and paleo-evidence suggests fringe 400 

distributions are likely to be compromised by increasing frequency and intensity of extreme-weather (Toth et al., 2021). 401 

Donovan et al., (2021) show that local stressors act synergistically with climate change to kill corals. Local factors such as 402 

high abundance of macroalgae or urchins have magnified coral loss in the year after bleaching. Notably, the combined effects 403 

of increasing heat stress and macroalgae intensified coral loss, suggesting that effective local management, alongside global 404 

efforts to mitigate climate change, could aid coral survival. Agostini et al., (2021) suggest that ocean acidification will reshape 405 

coral communities around the world, selecting species that have an inherent resistance to elevated pCO2. 406 

 407 

Kleypas et al., (2021) provide a blueprint for coral reef survival and state that existing conservation measures such as marine 408 

protected areas and fisheries management are no longer sufficient to sustain reef ecosystems, indicating a need for many 409 
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additional and innovative actions to increase reef resilience. Anthony et al., (2020) discuss new interventions and provide a 410 

conceptual model to guide effective strategy choices. They also state that warm-adapted coral traits may not spread fast enough 411 

in most coral species to keep up with the rate of warming, even under strong carbon mitigation. Hughes et al., (2023) provide 412 

recommendations and a conceptual framework to guide restoration projects and state that coral restoration is likely to continue 413 

to fail unless climate change and other anthropogenic impacts are urgently reduced.  414 
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 415 

15. Conclusions 416 

Robust inclusion of multiple, interacting stressors into vulnerability assessments will lead to a greater understanding of coral 417 

reef futures and address concerns that assessments have been too reliant on temperature thresholds (McClanahan 2022; Klein 418 

et al., 2024). Stressor onset rate, magnitude and overshoot factors are important considerations for determining stressor 419 

interactions and their significance.  420 

 421 

Veron et al., (2009) argue that to ensure long‐term viability of coral reefs, atmospheric CO2 levels must be reduced significantly 422 

below 350 ppm. Lenton et al., (2023) recognise the long term consequences of >350 ppm as a critical TP threshold, along with 423 

a global mean surface temperature (relative to pre-industrial) threshold of 1.2°C (range 1-1.5°C), whilst acknowledging that 424 

the “combined effects of long-term warming, sea level rise, ocean acidification, deoxygenation, and other stressors, bears more 425 

investigation.” The significance of both these TP thresholds is highlighted by the fact that global warming has already reached 426 

1.2°C and CO2 levels have exceeded 420 ppm. Considering the calculations of von Schuckmann et al., (2020) that CO2 levels 427 

would need to be reduced to 353 ppm to realise the Paris temperature target, 350 ppm is likely to be insufficient for realising 428 

a 1.2°C TP threshold, especially as other significant greenhouse gases are still increasing. 429 

 430 

We note that interacting stressors, ocean response dynamics, GHG emissions overshoot and cascade considerations have yet 431 

to be sufficiently evaluated. These and other uncertainties around TP sensitivities for such a crucially important ecosystem 432 

underlines the imperative of robust assessment (Aronson and Precht, 2016; Dixon, Forster and Beger, 2021; Heinze et al., 433 

2021; Laffoley et al., 2022; Lenton et al., 2023) and, in the case of knowledge gaps and uncertainties, employing a 434 

precautionary principle (Rockström et al., 2021; OECD 2022; Deutloff et al., 2023; Lenton et al., 2023b; Ripple et al., 2023; 435 

Fletcher et al., 2024) favouring lower range threshold values. Recognising threat severity is essential if the necessary 436 

response actions are to be realised.  437 

 438 
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  439 

Figure 2: Visualisation of stressor interactions. Red links denote synergistic associations and blue links denote both 440 

synergistic and antagonistic associations depending on magnitude and other factors.  441 
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