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Considerations for determining warm-water coral reef tipping points.
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Abstract. Warm-water coral reefs are facing unprecedented human driven threats to their continued existence as biodiverse,
functional ecosystems upon which hundreds of millions of people rely. These impacts may drive coral systems past critical
thresholds, beyond which the system reorganises, often abruptly and/or irreversibly, this is what the IPCC (2022) define as a
tipping point. Determining tipping point thresholds for coral reef ecosystems requires robust assessment of multiple stressors
and their interactive effects. In this perspective piece we draw upon the recent Global Tipping Points Revision initiative and a
literature search to consider warm-water coral reef ecosystem tipping point threshold sensitivities. Considering observed and
projected stressor impacts we recognise a global mean surface temperature (relative to pre-industrial) tipping point threshold
of 1.2°C (range 1-1.5°C) and an atmospheric CO; warming threshold of 350ppm, whilst acknowledging that interacting
stressors, ocean warming response dynamics, overshoot and cascading impacts have yet to be sufficiently assessed. These
stressor interactions are likely to further lower tipping point thresholds in most cases. Uncertainties around tipping point
sensitivities for such crucially important ecosystems underlines the imperative of robust assessment and, in the case of

knowledge gaps, employing a precautionary principle favouring lower range tipping point values.

1. Introduction

Warm-water coral reefs (comprising tropical and sub-tropical reefs) are estimated to support a quarter to one third of marine
biodiversity (Plaisance et al., 2011), including over 25% of marine fish species, and annually provides between US$2.7 - 9.8

trillion per year of ecosystem services (Laffoley and Baxter 2016; Souter et al., 2021), upon which at least 500 million people
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are reliant (IPBS 2019). They are also among the most sensitive ecosystems to anthropogenic driven stressors with an estimated
50% of global live coral cover having been lost over the last 50 years (Souter et al., 2021, WWF 2022), primarily due to ocean
warming (and related climate change threats of ocean acidification and deoxygentation), but in some locations also due to
fishing, pollution, and disease (IPCC 2022). IPBES (2019) states that over 80% of the world’s coral reefs are severely over-
fished or have degraded habitats (McClanahan et al., 2015). Eddy et al., (2021) estimate the capacity of tropical and sub-
tropical reefs to provide ecosystem services has declined by half since the 1950s. Although local stressors continue to have
profound impacts on coral reef health, climate change driven stressors have become the dominant threat to the functional
viability of these ecosystems and the essential services they provide to hundreds of millions of people (IPBES 2019, IPCC
2022).

It is well established that coral reef ecosystems are vulnerable to multiple interacting tipping points (Norstrém et al., 2016;
Heinze et al., 2021, Armstrong-McKay et al., 2022; IPCC 2022). IPCC (2022) defines a tipping point as a critical threshold
beyond which a system reorganises, often abruptly and/or irreversibly. Coral reefs are prone to tipping points that can
produce coral die offs (e.g. bleaching) and subsequent replacement by other ecological communities such as macroalgae,
soft corals, urchin barrens or corallimorpharians (Norstrém et al., 2016), with low resilience, reductions in biodiversity and
degradation of ecosystem services (IPBES 2019). Warm water coral reefs cross a threshold of ecosystem collapse (Bland et
al., 2018) when they cease to have sufficient live coral cover (typically ~ 10%) necessary for supporting the wide diversity of
taxa, ecological interactions and positive carbonate production state typical of a coral reef (Darling et al., 2019; Perry et al.,
2013; Sheppard et al., 2020; Vercelloni et al., 2020; Armstrong-McKay et al., 2022). Mortality of corals may play out over
weeks to a few months for acute events (e.g. thermal stress-induced bleaching), or years for chronic threats (e.g. diseases and
land-based impacts), but prolonged failure to recover over a decade or more is necessary to qualify a coral reef as ‘collapsed’.
Coral reef collapse is an ecological phenomenon at local scales; here we explore where localised coral reef collapse aggregates,

potentially irreversibly, to regional and global scales.

Approximately half the live coral cover on coral reefs has been lost since the 1870s, with accelerating losses in recent
decades due to climate change exacerbating other drivers (IPBS 2019), with estimated loss of 16% in 1998 (Wilkinson et
al., 1999), measured loss of 14% from 2009 - 2018 (Souter et al., 2021), and high variance among regions. Localised responses
of corals to increasing scales and intensities of stressors are aggregating at scales now exceeding 1000 km and manifesting as
regional die-offs (e.g. Western and Central Indian Ocean, Great Barrier Reef, Mesoamerican Reefs) (Le Nohaic et al., 2017;
Amir 2022; Mufiiz-Castillo et al., 2019; Obura et al., 2022; Sheppard et al., 2020), with most reef regions having experienced
multiple die-off events (Darling et al., 2019; Cramer et al., 2020; IPCC 2022). Coral reef bleaching tipping points have already

been reached in seven ocean systems (IPCC 2022).
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2. Determinants for assessing coral reef tipping points.

Direct and indirect local human activities are increasingly degrading coral reef ecosystems through a combination of coastal
development, water quality reduction by pollutant runoff and sedimentation, over-harvesting (especially fisheries), invasive
species and disease spread. At the local level, these stressors have already proven sufficient to tip some areas from coral
dominated to macroalgae dominated ecosystems (Bruno et al., 2009; IPBES 2019; Souter et al., 2021). Local stressor impacts
are increasingly being eclipsed by anthropogenic climate change and can act synergistically with climate change, for example,

high abundance of macroalgae or urchins magnifying coral loss after bleaching (Donovan et al., 2021).

It’s important to consider the combined impact of multiple stressors. Doing so can significantly alter assessments of coral reef
futures (Setter et al., 2022, Lenton et al., 2023). Interactions between different stressors can be antagonistic (the combined
effect is less than the additive), additive (the combined effect is equal to the sum of their individual effects) or synergistic (the
combined effects exceed their individual effects) (Good and Bahr 2020). Some studies find an antagonistic interaction between
multiple stressors (Darling et al., 2010; Johnson et al., 2022). However, a wide variety of interacting and synergistic stressors
have been found to co-occur (ICRS 2021; IPCC 2022; Setter et al., 2022; Lenton et al., 2023), generally lowering the thermal
threshold for bleaching and/or mortality, bringing forward timing of collapse, or even surpassing thermal stress in local
importance (e.g. overfishing, disease, pollution, invertebrate predators,ocean acidification) (Lenton et al., 2023; Anthony 20186,
Ban et al., 2013; Cramer et al., 2020; Darling et al., 2019; Edmunds et al., 2014; IPBS 2019; Rocha et al., 2015; Setter et al.,
2022; Veron et al., 2009). Stressor onset rate can have a major effect on stressor significance as has been reported for coral
reef fish mortality (Genin et al., 2020). Depending on their onset rate and magnitude, the same interacting stressors may

initially have antagonistic effects but may transition to having additive or even synergistic effects (e.g., Fisher et al., 2019).

Increasing atmospheric greenhouse gas (GHG) concentrations, especially carbon dioxide (COy), are disrupting Earth Energy
Balance. The resultant Earth Energy Imbalance (EEI) is increasing atmospheric and ocean temperatures (IPCC 2021; Loeb et
al., 2021; Von Schuckmann et al., 2023). CO, concentrations are the dominant driver of rate and magnitude of ocean warming

and acidification (Meinshausen et al., 2020) with cascading effects on other coral reef stressors.

Ocean warming and ice-sheet melt response to any given level of greenhouse gas emissions driven temperature results in
additional committed heating, sea level rise and resultant stressor impacts (Abraham et al., 2022; Abrams et al., 2023). Ocean
warming response time is approximately 20-30 years for the majority of committed warming to be realised (R. Betts personal
communication 12 August 2023) and sea level rise commitment is over centennial time IPCC 2021). Due to these interia

considerations, tipping point thresholds can be exceeded decades before the full physical impacts are observed.
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Overshoot describes warming pathways that temporarily increase global mean temperature over a specific temperature target
(IPCC 2022). Overshoot of multidecadal time spans imply severe risks and irreversible impacts in many ecosystems Meyer et

al2022), including coral reefs from heat-related mortality and associated ecosystem transitions (high confidence) (IPCC 2022).

Tipping point cascades describe a tipping point in one system triggering, or stabilising, subsequent tipping points in other
systems (IPCC 2022; Armstrong-McKay et al., 2022; Rocha et al., 2018; Wunderling et al., 2023). Here we summarise the

most important tipping point factors in coral reef decline and interactions between them.

3. Ocean warming and heatwaves

Increasingly warmer ocean temperatures, driven by Anthropogenic climate change, compounded by El Nifio heating events,
is the primary stressor of regional scale mortality of scleractinian corals,. Heat stress results from small increases (1-2 °C) in
seawater temperature above the summer maxima to which corals are acclimatised, destabilising the symbiosis between host
corals and their symbiotic algae, commonly referred to as coral bleaching (Hughes et al., 2017; Houk et al., 2020, UNEP 2020;
IPCC 2022).

The first global bleaching event occurred in 1998. Mass bleaching results in significant coral mortality and occurs when sea
temperatures persist at more than 1 degree above established summer maxima for 8-12 weeks (known as 8-12 Degree Heating
Weeks or DHW - Liu et al., 2003).

Previous assessments have highlighted consequences of different levels of warming:

0.7°C - “In the late 1990s when global warming was around 0.7°C large-scale coral reef bleaching also became apparent ...
supporting the lower boundary for this transition in respect of coral reefs” (Veron et al., 2009; IPCC, 2022)

1.0°C - “temperatures of just 1°C above the long-term summer maximum ... over 4—6 weeks are enough to cause mass coral
bleaching ... and mortality (very high confidence)” (Hoegh-Guldberg et al., 2018; Skirving et al., 2019).

1.2°C - “Warm water (tropical) coral reefs are projected to reach a very high risk of impact at 1.2°C ..., with most available
evidence suggesting that coral-dominated ecosystems will be non-existent at this temperature or higher (high confidence). At
this point, coral abundance will be near zero at many locations and storms will contribute to ‘flattening’ the three-dimensional
structure of reefs without recovery, as already observed for some coral reefs (Alvarez-Filip et al., 2009).” (Hoegh-Guldberg et
al., 2018). Coral reef bleaching tipping points have already been passed in seven ocean systems (IPCC 2022; Lenton et al.,
2023).

1.5°C - “...coral reefs... will undergo irreversible phase shifts due to marine heatwaves with global warming levels >1.5°C
and are at high risk this century even in <1.5°C scenarios that include periods of temperature overshoot beyond 1.5°C (high
confidence).” (IPCC 2022). Projections predict 70-90% coral loss at 1.5°C (Hoegh-Guldberg et al., 2018; IPBS 2019; Souter


https://doi.org/10.1038/nature21707
https://doi.org/10.1038/s41598-020-64411-8

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

et al., 2021; Armstrong McKay et al., 2022), whereas finer scale modelling projects a 95-98% loss (Kalmus et al., (2022) and
suggest 99% loss (Dixon et al., 2022).

2.0°C - “literature since AR5 has provided a closer focus on the comparative levels of risk to coral reefs at 1.5°C versus 2°C
of global warming ... reaching 2°C will increase the frequency of mass coral bleaching and mortality to a point at which it
will result in the total loss of coral reefs from the world’s tropical and subtropical regions.” (IPCC 2018). Predictions show
99% coral loss at 2.0C (Frieler et al., 2013; Hoegh-Guldberg et al., 2018; IPBS 2019; Knowlton et al., 2021; Souter et al.,
2021; Armstrong McKay et al., 2022, Wang et al., 2023). Finer scale modelling projects 100% loss at 2.0°C. (Dixon et al.,
2022; Kalmus et al., 2022).

Since the first bleaching event of 1998, up to 71% of the world’s reefs have experienced recent bleaching (Virgen-Urcelay &

Donner 2023), with a fourth global coral bleaching event being experienced in 2023/2024 (https://www.noaa.gov/news-

release/noaa-confirms-4th-global-coral-bleaching-event). With repeated events, loss of sensitive corals and acclimation and
adaptation, the DHW thresholds may change (Lenton et al., 2023).

These heating risk assessments typically don’t consider co-occurring or interacting stressors or the additional warming
resulting from ocean warming response to atmospheric greenhouse gas concentrations. Ocean warming response times may
mask the impact severity of stated greenhouse gas and temperature levels. When emissions-driven temperature overshoot is
considered, lower target temperatures can have similar impacts to higher, with little difference in coral survival between an
overshoot scenario that peaks at 2°C and subsequently reduces temperatures to 1.5°C versus a 2°C scenario without a

subsequent reduction in temperatures (Tachiiri et al., 2019).

Tanaka and Van Houtan (2022) confirm the normalisation of extreme heating events. The frequency and duration of bleaching
events are likely to increase, occurring earlier in the year and potentially overlapping with critical spawning periods (Mellin et
al., 2024). The compounding heat stress of EI Nifio events (Claar et al., 2018; Hughes et al., 2018b; Lough et al., 2018) may
increase with projected Arctic and Antarctic sea ice loss (England et al., 2020; Liu et al., 2022). Real world observations from
the NOAA coral reef watch program demonstrate that coral reef damage is accelerating and underscores the threat

anthropogenic climate change poses for the irreversible transformation of these essential ecosystems (Eakin et al., 2022).

Interactions of ocean warming and heatwaves with other stressors

Warming effects are so far reaching in their impacts that they can adversely impact many other coral stressors, these stressors,
in turn, can increase vulnerability to thermal stress. For example, heating-induced bleaching increases disease risk and lowers
calcification which increases the impact of ocean acidification (Miller et al., 2009; Bak et al., 2009, Burke et al., 2023, Eakin
et al., 2008, Marshall & Clode 2004, Rosenberg & Ben-Haim 2002, Ward et al., 2007; Veron et al., 2009; Davis et al., 2021;

Chan et al., 2019). Corals that survive bleaching can have compromised growth rates and reproduction (Rodrigues & Padilla-

5


https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event
https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event

168
169

170

171
172
173
174
175
176
177
178
179
180
181

182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

Gamino 2022; Speare et al., 2022; Briggs et al., 2024). Furthermore, warming oceans and heat waves increase storm intensity

and raise sea-level through thermal expansion and cryosphere melting.

4. Stratification

Ocean stratification is the layering of water masses, based on density. Stratified water layers are a barrier to mixing, which
impacts the exchange of heat, oxygen, nutrients and carbon between shallow and deep water. This impacts marine organisms
in a number of significant ways, including impacting primary productivity and potentially the entire marine food chain.

Stratification has increased globally by 5.3% in recent decades (L. et al., 2020).

Interactions

Stratification is strongly linked with warming oceans. Stratification magnifies the warming effect at the upper layers, thus
increasing thermal stress to warm water reefs, this is a vicious circle as warming oceans further increase stratification.
Additionally, stratification reduces CO, uptake, further exacerbating anthropogenic warming. Stratification impedes ocean
mixing impacting nutrient flows. Stratification is strongly linked with deoxygenation. Stratification is also linked with melting

of Antarctic ice shelves and sea-level rise (Auger et al., 2021; Goreau and Hayes 2024; Li at al., 2020; Reed & Harrison 2016).

5. Ocean acidification

Ocean acidification (OA) is the process of the increasing absorption of atmospheric CO- by the surface seawaters of the oceans,
which in turn reduces the calcification rates of most scleractinian tropical and subtropical corals (Comeau et al., 2014, Kornder

et al., 2018), and can alter the photo-physiology and calcification physiology of some corals (Comeau et al., 2018).

OA causes declines in coral calcification rates in laboratory simulations (Comeau et al., 2018). Early work predicted large-
scale loss of coral calcification at catastrophic levels, whereby OA was projected to result in coral bleaching and in some cases
net dissolution of corals (see data within Leung et al., 2022). Contemporary research demonstrates that some corals are resistant
to OA (Comeau et al., 2018, Kornder et al., 2018). The most comprehensive modelling estimates are that by year 2100 coral
calcification would decline by 1% under RCP2.6, 4% under RCP4.5 and 15% at RCP8.5 (Cornwall et al., 2021). When
combined solely with the metabolic effects of temperature increases, this decline would be 1% (RCP2.6), 8% (RCP4.5), and
33% (RCP8.5). However, the calcification rates of susceptible coral taxa (e.g., Acropora spp.) would decline by much more,

and resistant species (e.g., Pocillopora spp. or Porites spp. generally) could be unaffected.

The direct metabolic impacts of OA do not manifest a tipping point, but tipping points at ecological levels are likely. The
adverse impacts on coral and coralline algal calcification are direct negative effects, when combined with the direct positive

effects on other taxa (such as opportunistic turfing algae). Susceptible species would start to give way to tolerant species over

6
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time (as generally occurs at natural analogues in the field Fabricius et al., 2011, Comeau et al., 2022), and other non-coral taxa
would start to dominate space on what once were traditional coral reefs. OA acts to alter the internal chemistry of corals and
coralline algae, slowing calcification rates. Species that are capable of maintaining stable internal carbonate chemistry or
compensate for these changes tend to be more tolerant to OA. However, of greater immediate importance to the majority of
corals will be successive marine heatwaves that will reduce the coral cover of less heat tolerant species, populations and
genotypes over the majority of the oceans in the near future (van Hooidonk et al., 2014, Cornwall et al., 2021, Logan et al.,
2021, Cornwall et al., 2023). Survivors of this human-driven evolutionary force will not necessarily be those that are tolerant
to OA also, and thus numerous tipping points in time could occur. Recent evidence indicates that ecological tipping points
within coral reefs caused solely by ocean acidification would occur around 550 ppm, roughly the same concentration of
atmospheric CO, that would cause detectable declines in both coral and coralline algal calcification (Cornwall et al., 2024).
However, ecosystem trajectories are uncertain, and much more future research is required to determine the generality of these
findings.

Interactions

Reduced calcification increases disease risk and weakened skeletons are vulnerable to storms (Setter et al., 2022, Anthony et
al., 2011, Suwa et al., 2010, Steffen et al., 2015). There is also some evidence that elevated CO, will exacerbate heat stress
induced declines in coral calcification and physiological performance, though the strength and direction of these interactions

varies widely by coral reef taxa, and even within different coral genera (Kornder et al., 2018).

6. Deoxygenation

Deoxygenation on coral reefs is the least studied of the climate change ‘triple threat’ that also includes warming and
acidification (Hughes et al., 2020). However, there is sufficient evidence to say that dissolved oxygen is a critical resource on
coral reefs, and that oxygen limitation (i.e. hypoxia) results in non-linearities and feedbacks that contribute to ecological tipping
points (TPs) (Nelson and Altieri 2019). The consequences of crossing these TPs are perhaps most dramatically evident in
sudden mass mortality events, which has led to calls to accelerate the research agenda on deoxygenation on coral reefs (Altieri
et al., 2017). The oxygen concentration threshold at which corals lose their ability to maintain homeostasis is 2 mg/L with
lethal doses between 0.5-2 mg/L (Johnson et al., 2021a, Hughes et al., 2022).

The problem of deoxygenation on coral reefs is becoming more prevalent and severe in the Anthropocene from a combination
of global climate change (Altieri and Gedan 2015, Pezner et al., 2023), as well as local pollution in the form of excess nutrient
and organic matter (Diaz and Rosenberg 2008), that are magnified by local oceanographic patterns (Adelson et al., 2022). Two
different methods independently estimated that 13% of coral reefs globally are at risk of deoxygenation, and the percentage of
reefs that cross the threshold into this risk category is likely to increase with continued climate change (Altieri et al., 2017,
Pezner et al., 2023).
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We suggest that evidence to date for feedbacks and non-linear thresholds indicates that a TP framework should be used to
guide future research on deoxygenation in coral reefs, and that hypoxia should be considered in studies of thermal stress and

acidification.

Interactions

Climate-related variables of temperature and acidification are also likely to exacerbate deoxygenation by affecting the
physiological responses of corals and other reef organisms. It is widely recognized that increased temperatures lead to increased
metabolic demand and decreased tolerance thresholds in marine organisms including corals (Vaquer-Sunyer and Duarte 2011,
Alderdice et al., 2022, Weber et al., 2012). Given the prevalence, co-occurrence, and synergistic effects of these co-stressors
with deoxygenation, a multi-stressor perspective is essential, and many of the assumed thresholds for TPs on coral reefs based
on single or even double stressor treatments under laboratory experiments are likely overly conservative estimates. Coral reefs
are vulnerable to a number of feedbacks that exacerbate deoxygenate events when TPs are exceeded. These include bleaching
(Altieri et al., 2017, Johnson et al., 2021a,b, Alderdice 2021), excessive dead material from mass mortality events (Simpson
et al., 1993), coral disease and algal growth (Dinsdale and Rohwer 2011), and shifts in the coral microbiome (Howard et al.,
2023).

7. Storm intensity

The direct force of wind and waves, along with changes in storm direction, increase risks of physical damage and exposure to
reduced water quality and sediment runoff (IPCC 2018). Storms contribute to unstable rubble substrate, compromising coral
settlement (Sheppard et al., 2020). Furthermore, frequent intense storms can hinder reef recovery (Puotinen et al., 2020). Setter

et al., (2022) ascribe a threshold value of storm strength category <4 with a return time of >5 years.

Interactions

Ocean warming may increase the severity of cyclones (IPCC 2021; Setter et al., 2022) and coral bleaching has likely reduced
the ability of reefs to recover from cyclone damage (Laffoley and Baxter 2016). The likelihood of more intense cyclones within
time frames of coral recovery by mid-century poses a global threat to coral reefs and dependent societies (Cheal et al., (2017).
Storms can have an antagonistic interaction with heat stress reducing bleaching severity, but also generate sediment
resuspension (Gardner et al., 2005, Manzello et al., 2007, Carrigan & Puotinen, 2014, Puotinen et al., 2020, Setter et al., 2022).
Reduced calcification increases storm impacts (Setter et al., 2022, Anthony et al., 2011, Suwa et al., 2010, Steffen et al., 2015).
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8. Sea level rise

Sea-level rise (SLR) can cause ‘reef drowning’ from exceeding Darwin Point thresholds (Grigg 2008). Saunders et al., (2016)
make the important point that while individual corals may keep pace with SLR, likely maximum reef framework accretion rate
on reef flats is only 3mm yr-1. Saintilan et al., (2023) estimate likely vulnerability to RSLR at 7mm yr-! for coral reef islands.
GMSL between 2006 and 2018 increased to 3.7 (3.2 to 4.2) mm yr-1 (IPCC 2021). Under SSP1-2.6, due to the risk of loss of
reef structural integrity and transitioning to net erosion by mid-century the rate of sea level rise is very likely to exceed that of
reef growth by 2050, absent adaptation (IPCC 2022). Depending on reef type and location suggested SLR threshold rates range

from 4-9mm yr-1,

Closely connected seagrass and mangrove ecosystems (Guannel et al., 2016) are very vulnerable to projected SLR rate and
magnitude (Saintilan et al., 2023; Tornqgvist et al., 2021; Saunders et al., 2014) which will further compromise coral reef
resilience and functionality. In summary, SLR rate and magnitude looks increasingly likely to overwhelm the accretion ability
of coral reefs which will be further challenged by increased wave energy, sedimentation, turbidity and resultant compromised
light conditions for symbiont photosynthesis (Saintilan et al., 2023; Térnqvist et al., 2021; Saunders et al., 2014; Woodroffe
& Webster 2014).

Interactions

Moderate rates of sea level rise may potentially aid some reefs contend with thermal stress and thus have an antagonistic effect
(Brown et al., 2019; Cinner et al., 2015; Baldock et al., 2014; Zuo et al., 2021). However, SLR rate and magnitude predictions
(eg. Ciraci et al., 2023, Vernimmen and Hooijer 2023) imply increasingly synergistic impacts, especially in the tropics (Hooiler
and Vernimmen 2021; Cazenave et al., 2022; Spada et al., 2013). High SLR rate and magnitude can change the interactions
from antagonistic to synergistic, for example: reducing light availability, increasing sedimentation and turbidity (Laffoley and
Baxter 2016; Perry et al., 2018; IPCC 2022).

9. Pollution

Here we use pollution as an all-encompassing term covering sediment, eutrophication, turbidity and chemicals. Sedimentation
reduces water clarity and hence energy supply, at the same time sediments settling on corals require greater energy to remove.
It is caused mainly by land-based activities such as coastal urbanisation, with plumes travelling many km from disturbance
sites (Brodie et al., 2012). Organic pollution from sewage and agricultural run-off (e.g. fertiliser) are the main causes of
eutrophication (increase in nutrient content in water), which reduce light, actively poison invertebrates, introduce pathogens
and reduce resistance to disease with direct impact on corals being decreased colony sizes, growth anomalies, and reduced
growth and survival (Setter at al 2022). Metals and organic chemicals can rupture cell membranes, disrupt enzyme pathways

reducing corals’ ability to resist other stressors. Plastics have also been identified as another major cause of coral reef stress
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due to light interference, toxin release, physical damage, anoxia and increasing the likelihood of pathogen disease 20-fold
(Lamb et al.2018).

Interactions

Under certain circumstances poorer water quality can mediate bleaching resilience through a shading effect. Pollution
exacerbates stress and increases disease risk, both of which are exacerbated by thermal stress. Eutrophication increases
deoxygenation and exacerbates crown-of-thorn-seastar (COTS) outbreaks (Laffoley & Baxter 2019, Redding et al., 2013,
De’ath and Fabricius 2010, MacNeil et al., 2019).

10. Disruption

Here we are using disruption as a term covering local land use change, human population density and overfishing. Land use
can be used as a proxy for quantifying land-based pollution and other human stressors on coral reefs (Packet et al., 2008,
Cinner et al., 2012, Setter et al., 2022). Setter et al., (2022) use human population density as the closest indicator available to
quantify local human stressors, involving coral growth anomalies and disease, low biodiversity and fish biomass and reduced
growth and survival. To calculate reef change threshold exceedance, Setter et al., (2022) use an ideal value of summed
proportion agricultural/urban land use <0.5 in a 50km radius around a reef. Perhaps the most direct physical human impact is
overfishing with IPBS (2019) stating that more than 80% of the world’s coral reefs are severely over-fished or have degraded

habitats (McClanahan et al., 2015), which disrupts ecosystem balance.

Interactions
Overfishing can lead to algae overgrowth inducing disease & lowering calcification (Packett et al., 2009, Maina et al., 2013,
Prouty et al., 2017, Kroon et al., 2014, Fabricius 2005). Sites with historic disturbance may recover more slowly from heat

stress, waves and storms (Walker et al., 2024).

11. Disease

Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef
functionality, and ecosystem services (Alvarez-Filip et al., 2022). Disease outbreaks are posing severe consequences for coral
reef ecosystems, resulting in extensive coral mortality and endangering their long-term survival. Noteworthy events include
the rapid proliferation of diseases like Stony Coral Tissue Loss Disease (SCTLD), Black Band Disease (BBD), and various
forms of White Syndrome (Alvarez-Filip et al., 2022),. Regions such as the Great Barrier Reef, the Caribbean, the Pacific

Islands, and the Indian Ocean have been particularly impacted by these outbreaks, in some places surpassing the devastating
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impact of bleaching events by causing even greater coral mortality. Coral diseases stand out as being driven largely by a

changing environment and are contributing to whole ecosystem regime shifts (Thurber et al., (2020).

Interactions

Some coral diseases (but not all) have been linked to both marine heat waves and the longer-term warming trend (Bruno et al.,
2007, Randall and van Woesik 2015). For example, viral infections of coral symbiotic dinoflagellate partners
(Symbiodiniaceae) will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis
underpinning coral reef ecosystems (Howe-Kerr et al., 2023). Furthermore, predation scars from predators (e.g. problem and

invasive species) leave corals susceptible to disease (Nicolet et al., 2018).

12. Invasive and other problem species

Increased native and invasive coral predator and competitor populations can have severe impacts on reef ecosystems. A prime
example is the severe impacts of COTS on the Great Barrier Reef (Uthicke et al., 2015). The coral-killing sponge, Terpios
hoshinota is a global invasive species which has led to a significant decline in living coral cover at various geographical
locations (Thinesh et al., 2017).

Interactions

Warming is a driving factor in the increased impact of invasive and problem species. Studies on Mexican Pacific coast coral
reefs confirmed that post bleached corals are increasingly vulnerable to boring sponge impacts (Carballoe et al., 2012). COTS
outbreaks appear to be significantly influenced by a combination of heat stress resiliency (Byren et al., 2024) and increased
larval survivorship due to higher food availability, linked with anthropogenic runoff and warmer sea temperature facilitating

faster settlement of larvae (Uthicke et al., 2015). Predation scars can leave corals susceptible to disease (Nicolet et al., 2018).

13. Reef impact example
Chagos Archipelago demonstrates positive feedback (tipping points).

Observations from the Chagos Archipelago, central Indian Ocean, reveal several related lessons. Coral cover collapsed after
the heatwaves of 2015-2016 by 90%. There were very few surviving adults capable of spawning, with survivors likely
weakened and observations showed about three years was needed before they recovered sufficiently to recommence growth
(Sheppard and Sheppard 2019).

Settlement of larvae, when it occurred, was compromised due to disintegrating substrates. In many shallow areas, where wave

energy had already swept the substrate clear of rubble, large areas are becoming covered by the encrusting and bioeroding
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sponge Cliona spp (Sheppard et al., 2020 skeletons formed a very abrasive layer on the substrate and, like liquid sandpaper,
almost no larvae were seen in these areas. These sponges are clearly increasing; with one reef showing over 80% Cliona cover

preventing coral larvae settlement.

On at least one lagoon floor, the former foliaceous coral dominance was also killed with skeletons disintegrating resulting in
fine sediment covering all surfaces. Both sedimented surfaces and turbid water are hostile to larval settlement, and none were

seen in such areas over many hectares.

The scenario of fewer corals producing fewer larvae, more turbid water in some areas and less substrate available for settlement
is a classical positive feedback or tipping point situation. These factors all act synergistically in a direction that inevitably leads

to an ever more impoverished reef system. Recovery from this will require a prolonged period without heat stress and a gradual

removal of the vast volumes of sediment and rubble left from previous bleaching events.

Figure 1: Reef slope on Salomon atoll, Chagos Archipelago, before and after the mass mortality caused by warming in
2015

14. Cascade effects contributing to coral reef tipping point threshold sensitivity

The cascading effects of well-researched tipping points in other globally important ecosystems such as Amazon rainforest,
Greenland Ice-Sheet, AMOC, have not been assessed for their potential impact on coral reef systems. Accelerating West
Antarctic Ice Sheet melt (Naughten et al., 2023), increasing methane emissions (Zhang et al., 2023) and Arctic sea ice decline
have the potential to increase rate and magnitude of coral reef stressor impacts. For example, Liu et al., (2022) predict that 37—

48% of the increase of strong El Nifio near the end of the 21st century is associated specifically with Arctic sea-ice loss.
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15. Resilience and adaptation

Lenton et al., (2023) state ‘The potential for coral adaptation to warming is a critical but poorly known factor, and subject to
high levels of variation locally. The potential effectiveness of restoration for coral reefs at scale, and with enhanced capacity
to resist future threats, are both currently poor. The effect of climate migration on coral recovery is not known, with potentially
positive effects at higher latitude (with in-migration), but negative at lower latitudes (with out-migration, but no replacement;
Herbert-Read et al., 2023).” IPCC (2022). AR6 Impacts and vulnerability report states that ‘impacts of climate change may
overwhelm attempts at restoration/conservation, particularly when the ecosystem is already near its tipping point, as is the case
with tropical coral reefs (Bates et al., 2019; Bruno et al., 2019).” Mass coral mortality repeated more than twice per decade and
over local, regional and ocean scale, and by aggregation to global scales, is increasingly recognized as giving insufficient time
for recovery of impacted populations and ecological function (Hughes et al., 2018a, 2018b, Obura et al., 2022, Lenton et al.,
2023). Ecological and biogeographical (spatial) feedback loops prevent recovery through failure of reproduction, dispersal,
recruitment and growth of corals (Sheppard et al., 2020) (see Reef impact example). Other stressors reduce the ability of corals
to resist thermal stress thus lowering tipping thresholds. Increasing frequency and intensity of regional scale coral mortality
events (1+ °C warming) are suggestive of the majority of coral reefs already having reached a bleaching tipping point (IPCC
2022). The potential for thermal refuges for corals under likely future scenarios is doubtful (Beyer et al., 2018; Dixon et al.,
2022; Setter et al., 2022; Lenton et al., 2023) as very few or no reef areas are predicted to remain below tipping thresholds of
all key stressors. The existence of putative refuges at greater depths (Bongaerts and Smith 2019) or higher latitudes (Setter et
al., 2022) are not strongly supported by recent work (Hoegh-Guldberg et al., 2017; Hoegh-Guldberg et al., 2018; Rocha et al.,
2018; Montgomery et al., 2021; IPCC 2022).

Evidence of a persistence of heat adapted genotypes at the cost of the reduction of coral diversity, i.e. the reef may survive but
the biodiversity diminishes (Fox et al., (2021) Although potential for adaptation exists, stronger warming rates may outpace
adaptive processes and limit coral persistence (Logan et al., 2021). Historical/paleo evidence for expansion and contraction of
reefs linked to warming and cooling suggesting fringe distributions are likely to be compromised by increasing frequency and
intensity of both warm and cold extreme-weather events (Toth et al., 2021). Donovan et al., (2021) show that local stressors
act synergistically with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins magnified
coral loss in the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral
loss, suggesting that effective local management, alongside global efforts to mitigate climate change, can help coral reefs
survive the Anthropocene. Agostini et al., (2021) suggest that resistance to ocean acidification in corals may not be acquired
within a single generation or through the selection of physiologically resistant individuals, suggesting that ocean acidification

will reshape coral communities around the world, selecting species that have an inherent resistance to elevated pCO2.
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Kleypas et al., (2021) provide a blueprint for coral reef survival and state that even with strong climate mitigation, existing
conservation measures such as marine protected areas and fisheries management are no longer sufficient to sustain the reef
ecosystem and many additional and innovative actions to increase reef resilience must also be taken. Anthony et al., (2020)
discuss the challenges and opportunities of embracing new interventions, and provide a conceptual model to help frame
decision problems and objectives, and guide effective strategy choices in the face of complexity and uncertainty. They also
state that warm-adapted traits may not spread fast enough in most coral species to keep up with the rate of global warming,
even under strong carbon mitigation. Hughes et al., (2023) provide recommendations and a conceptual framework to guide
restoration projects and emerging approaches and highlight that coral restoration is likely to continue to fail even at small

scales unless climate change and other anthropogenic impacts are urgently reduced.
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16. Conclusions

Robust inclusion of multiple, interacting stressors into vulnerability assessments will lead to a greater understanding of coral
reef futures and address the concerns that assessments have been too reliant on temperature thresholds (McClanahan 2022;
Klein et al., 2024). Stressor onset rate, magnitude and overshoot factors are important considerations for determining potential

transitional stressor impact states from antagonistic through to synergistic.

Veron et al., (2009) concluded that to ensure the long-term viability of coral reefs, atmospheric CO> levels must be reduced
significantly below 350ppm. Considering observed and predicted stressor impacts, this threshold could be considered
optimistic but, pending fresh analysis (including other greenhouse gases) it remains an important threshold value Lenton et al.,
(2023). The recent Global Tipping Points Revision initiative (Lenton et al., 2023) agreed a global mean surface temperature
(relative to pre-industrial) tipping point threshold of 1.2°C (range 1-1.5°C) and an atmospheric CO; threshold of 350ppm,
whilst acknowledging that the “combined effects of long-term warming, sea level rise, ocean acidification, deoxygenation, and

other stressors, bears more investigation.”

We recognise the tipping point thresholds of Lenton et al., (2023) whilst acknowledging that interacting stressors, ocean
response dynamics, GHG emissions overshoot and cascade considerations have yet to be robustly assessed. These and other
uncertainties around tipping point sensitivities for such a crucially important ecosystem underlines the imperative of robust
threat assessment (Heinze et al., 2021; Aronson and Precht 2016; Dixon, Forster and Beger 2021; Laffoley et al 2022; Lenton
etal., 2023) and, in the case of knowledge gaps and uncertainties, employing a precautionary principle; Rockstrom et al., 2021;
OECD 2022; Deutloff et al., 2023; Ripple et al., 2023; Lenton et al., 2023b, Fletcher et al., 2024) to tipping points and favour
lower range threshold values. Recognising threat severity is essential if the necessary response actions are to be realised.
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436 Figure 2: Visualisation of stressor interactions. Red links denote synergistic associations (expanding negative impacts)
437  and blue links denote both synergistic and antagonistic associations depending on magnitude and other factors.
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