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Abstract. Warm-water coral reefs are facing unprecedented human driven threats to their continued existence as biodiverse, 24 

functional ecosystems upon which hundreds of millions of people rely. These impacts may drive coral systemsecosystems past 25 

critical thresholds, beyond which the system reorganises, often abruptly and/or potentially irreversibly, this is what the IPCC 26 

(2022) define as a tipping point. Determining tipping point thresholds for coral reef ecosystems requires robust 27 

assessmentassessments of multiple stressors and their interactive effects. In this perspective piece we draw upon the recent 28 

Global Tipping Points Revision initiative (Lenton et al., 2023) and a literature search to consideridentify and summarise the 29 

diverse range of interacting stressors that need to be considered for determining tipping point thresholds for warm-water coral 30 

reef ecosystem tipping point threshold sensitivities.ecosystems. Considering observed and projected stressor impacts we 31 

recogniseendorse the Global Tipping Points Revision conclusion of a global mean surface temperature (relative to pre-32 

industrial) tipping point threshold of 1.2°C (range 1-1.5°C) and an the long-term impacts of atmospheric CO2 warming 33 

threshold of 350ppmconcentrations above 350 ppm, whilst acknowledging that interactingcomprehensive assessment of 34 

stressors, including ocean warming response dynamics, overshoot and cascading impacts, have yet to be sufficiently 35 

assessedrealised. These stressor interactionsconsiderations are likely to further lower tipping point thresholds in most cases. 36 

Uncertainties around tipping point sensitivitiesthresholds for such crucially important ecosystems underlines the imperative of 37 

robust assessment and, in the case of knowledge gaps, employing a precautionary principle favouring  lower range tipping 38 

point values.   39 
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1. Introduction   40 

Warm-water coral reefs (comprising tropical and sub-tropical reefs) are estimated tosubtropical) support aone quarter to one 41 

third of marine biodiversity (Plaisance et al., 2011), including over 25% of marine fish species, and annually provides 42 

betweenprovide US$2.7 - 9.8 trillion per year of ecosystem services (Laffoley and Baxter, 2016; Souter et al., 2021), upon 43 

which at least 500 million people are reliant (IPBS 2019). They are also among the most sensitive ecosystems to anthropogenic 44 

driven stressors with an estimatedapproximately 50% of global live coral cover having been lost over the last 50 years (Souter 45 

et al., 2021, WWF 2022), primarily due to ocean warming (and related climate change threats of ocean acidification and 46 

deoxygentation),, but in some locations also due toother factors have contributed locally such as fishing, pollution, and disease, 47 

nutrient enrichment and predation by crown of thorns starfish (IPCC 2022). IPBES (2019) states that over 80% of the world’s 48 

coral reefs are severely over-fished or have degraded habitats (McClanahan et al., 2015). Eddy et al., (2021) estimate the 49 

capacity of tropical and sub-tropical reefs to provide coral reef ecosystem services has declined by halfhave halved since the 50 

1950s. Although local stressors continue to have profound impacts onimpact coral reef health, climate change driven stressors 51 

have become the dominant threat to the functional viability of these ecosystems and the essential services they provide to 52 

hundreds of millions of people (IPBES 2019,; IPCC 2022). 53 

 54 

It is well established that coral reef ecosystems are vulnerable to multiple interacting tipping points (TPs) (Norström et al., 55 

2016; Heinze et al., 2021,; Armstrong-McKay et al., 2022; IPCC 2022). IPCC (2022) defines a tipping pointTP as “a critical 56 

threshold beyond which a system reorganises, often abruptly and/or irreversibly.”. Coral reefs are prone to tipping pointsTPs 57 

that can produce coral die offs (e.g. bleaching) and subsequentand replacement by other ecological communities such as 58 

macroalgae, soft corals, or urchin barrens or corallimorpharians (Norström et al., 2016), with low resilience, reductions in 59 

biodiversity and degradation of ecosystem services (IPBES 2019). Warm water coral reefs cross a threshold of ecosystem 60 

collapse (Bland et al., 2018) when they cease to have sufficient live coral cover (typically ~ 10%) necessary for supporting the 61 

wide diversity of taxa, ecological interactions and positive carbonate production state typical of a coral reef (Darling et al., 62 

2019; Perry et al., 2013Perry et al., 2013; Darling et al., 2019; Sheppard et al., 2020; Vercelloni et al., 2020; Armstrong-McKay 63 

et al., 2022).  Mortality of coralsCoral mortality may play out overtake weeks toor a few months for acute events (e.g. thermal 64 

stress-induced bleaching), or years for chronic threats (e.g. diseases and land-based impacts), but prolonged failure to recover 65 

over a decade or more is necessary to qualify a coral reef as ‘collapsed’. Coral reef collapse is an ecological phenomenon at 66 

local scales; here we explore where localised coral reef collapse aggregates, potentially irreversibly, to regional and global 67 

scales. 68 

 69 

Approximately half the live coral cover on coral reefs has been lost since the 1870s, with acceleratingCoral reef losses 70 

have accelerated in recent decades due to climate change exacerbatingand other driversstressors (IPBS 2019), with 71 

estimated loss of 16% in 1998 (Wilkinson et al., 1999), measured loss of 14% from 2009 - 2018 (Souter et al., 202; Souter et 72 

https://doi.org/10.1002/fee.1747
https://www.nature.com/articles/ncomms2409
https://www.nature.com/articles/s41559-019-0953-8
https://pubmed.ncbi.nlm.nih.gov/32319906/
https://link.springer.com/chapter/10.1007/978-3-030-42553-1_16
https://www.science.org/doi/10.1126/science.abn7950
https://www.science.org/doi/10.1126/science.abn7950
https://www.unep.org/resources/status-coral-reefs-world-2020
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al., 2021), andwith high variancevariability among regions., but some localised recovery and resilience observed (e.g. Richards 73 

et al., 2021). Localised responses of corals to increasing scales and intensities of stressors are aggregating at scales now 74 

exceeding 1000 km and manifesting as regional die-offs (e.g. Western and Central Indian Ocean, Great Barrier Reef, 75 

Mesoamerican Reefs) (Le Nohaïc et al., 2017; Amir 2022; Muñiz-Castillo et al., 2019;Muñiz-Castillo et al., 2019; Sheppard 76 

et al., 2020; Obura et al., 2022; Sheppard et al., 2020),Amir 2022), with most reef regions having experiencedexperiencing 77 

multiple die-off events (Darling et al., 2019; Cramer et al., 2020; IPCC 2022). Coral reef bleaching tipping pointsTPs have 78 

already been reached in seven ocean systems (IPCC 2022). 79 

 80 

2. DeterminantsConsiderations for assessing coral reef tipping pointsTPs.  81 

Direct and indirect local human activities are increasingly degrading coral reef ecosystems through a combination of coastal 82 

development, water quality reduction by pollutant runoff and sedimentation, over-harvesting (especially fisheries),, invasive 83 

species and disease spread. At the local level, these stressors have already proven sufficient to tiptipped some areas  from  coral 84 

dominated  to  macroalgae dominated ecosystems (Bruno et al., 2009; IPBES 2019; Souter et al., 2021). Local stressor impacts 85 

are increasingly being eclipsedexacerbated by anthropogenic climate change and can act synergistically with climate change, 86 

for example, high abundance of macroalgae or urchins magnifyingexacerbating coral loss after bleaching (Donovan et al., 87 

2021).  88 

 89 

It’s important to consider the combined impact of multiple stressors. Doing so can significantly alter assessments of coral reef 90 

futures (Setter et al., 2022;, Lenton et al., 2023). Interactions between different stressors can be antagonistic (the combined 91 

effect is less than the additive), additive (the combined effect is equal to the sum of their individual effects) or synergistic (the 92 

combined effects exceed their individual effects) (Good and Bahr 2020). Some studies find an antagonistic 93 

interactioninteractions between multiple stressors (Darling et al., 2010; Johnson et al., 2022). However, a wide variety of 94 

interacting and synergistic stressors have been found to co-also occur (ICRS 2021; IPCC 2022; Setter et al., 2022; Lenton et 95 

al., 2023), generally lowering the thermal threshold for bleaching and/or mortality, bringing forward timing ofaccelerating 96 

collapse, or even surpassing thermal stress in local importance (e.g. overfishing, disease, pollution, invertebrate 97 

predators,ocean acidification) (Lenton et al., 2023; Anthony 2016, (Ban et al., 2013; Cramer et al., 2020; Darling et al., 2019; 98 

Edmunds et al., 2014; IPBS 2019; Rocha et al., 2015; Anthony 2016; Darling et al., 2019; IPBS 2019; Cramer et al., 2020; 99 

Setter et al., 2022; Veron et al., 2009).Lenton et al., 2023). Stressor onset rate can have a major effect on stressor significance  100 

as has been reported, for coralexample for reef fish mortality (Genin et al., 2020). Depending on their onset rate and magnitude, 101 

the same interacting stressors may initially have antagonistic effects but may transition to having additive or even synergistic 102 

effects (e.g., Fisher et al., 2019).  103 

 104 

https://www.unep.org/resources/status-coral-reefs-world-2020
https://doi.org/10.1038/s41598-017-14794-y
https://doi.org/10.1038/s41598-019-47307-0
https://doi.org/10.1038/s41893-021-00817-0
http://mrc.gov.mv/dv/publications/show/status-and-trends-of-hard-coral-cover-derived-from-long-term-monitoring-sites-in-the-maldives-1998-2
https://doi.org/10.1038/s41559-019-0953-8
http://doi.org/10.1126/sciadv.aax939
https://doi.org/10.1371/journal.pbio.3001821
http://doi.org/10.1111/gcb.12453
https://doi.org/10.1007/s10750-014-1876-7
https://royalsocietypublishing.org/doi/full/10.1098/rstb.2013.0273
https://doi.org/10.1038/s41559-019-0953-8
http://doi.org/10.1126/sciadv.aax939
https://doi.org/10.1371/journal.pbio.3001821
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Increasing atmospheric greenhouse gas (GHG) concentrations, especially carbon dioxide (CO2), are disrupting Earth Energy 105 

Balance. The resultant Earth Energy Imbalance (EEI) is increasing atmospheric and ocean temperatures (IPCC 2021; Loeb et 106 

al., 2021; Von Schuckmann et al., 2023). CO2 concentrations are the dominant driver of rate and magnitude of ocean warming 107 

and acidification (Meinshausen et al., 2020) with cascading effects on other coral reef stressors.                  108 

 109 

Ocean warming and ice-sheet melt response to any given level). Because of greenhouse gas emissions driven its large thermal 110 

inertia the ocean takes hundreds of years to fully respond to the atmospheric temperature results in additional committed 111 

heating, sea level rise and resultant stressor impacts (increases that human driven GHG concentrations are causing (IPCC;. 112 

2021; Abraham et al., 2022; Abrams et al., 2023). Ocean warming response time isCheng et al.; 2022). The resultant committed 113 

heating and sea level rise (SLR) needs to be calculated for any given GHG/temperature level. Although both ocean heat uptake 114 

and SLR take centuries to fully respond, it takes  approximately 20-3025-50 years for the majority of committed ocean warming 115 

to be realised (R. Betts personal communication 12 August 2023) and seaHansen et al; 2005; Abrams et al., 2023), with the 116 

upper ocean level rise commitment is over centennial time IPCC 2021).having the shortest response time. Due to these 117 

interiainertia considerations, tipping pointTP thresholds can be exceeded decades before the full physical impacts are observed. 118 

 119 

Overshoot describes warming pathways that temporarily increase global mean temperature over a specific temperature target 120 

(IPCC 2022). Overshoot of multidecadal time spans implymultiple decades implies severe risks and irreversible impacts in 121 

many ecosystems (Meyer et al2022al., 2022; Wunderling et al., 2022; Schleussener et al., 2024), including coral reefs from 122 

heat-related mortality and associated ecosystem transitions (high confidence) (IPCC 2022).  123 

Tipping pointTP cascades describe a tipping pointTP in one system triggering, or stabilising, subsequent tipping pointsTPs in 124 

other systems (IPCC 2022; Rocha et al., 2018; Armstrong-McKay et al., 2022; Rocha et al., 2018IPCC 2022; Wunderling et 125 

al., 20232022). Here we summarise the most important tipping point factors instressors relevant to TP sensitivity for coral reef 126 

declinereefs and explore interactions between them. 127 

3. Ocean warming and heatwaves  128 

Increasingly warmerWarmer ocean temperatures, driven by Anthropogenic climate change, compounded by El Niño heating 129 

events, is the primary stressor of regional- and ocean-basin- scale mortality of scleractinian corals,.. Heat stress results from 130 

small increases (1–2 °C) in seawater temperature above the summer maxima to which corals are acclimatised, destabilising 131 

the symbiosis between host corals and their symbiotic algae, commonly referred to as coral bleaching (Hughes et al., 2017; 132 

Houk et al., 2020;, UNEP 2020; IPCC 2022).  133 

 134 

The first global bleaching event occurred in 1998. Mass bleaching results in significant coral mortality andMass bleaching 135 

occurs when sea temperatures persist at more than 1 degree above established summer maxima for 8-12 weeks (known as 8-136 

https://doi.org/10.1038/nature21707
https://doi.org/10.1038/s41598-020-64411-8
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12 Degree Heating Weeks or DHW - Liu et al., 2003).). Although mass bleaching has resulted in significant coral morality, 137 

we note that with the loss of sensitive corals, acclimation and adaptation, the definition of DHW may require adjustment 138 

(Lenton et al., 2023).  139 

 140 

Previous assessments have highlighted consequences of different levels of warming:  141 

0.7°C - “In the late 1990s when global warming was around 0.7°C large-scale coral reef bleaching also became apparent … 142 

supporting the lower boundary for this transition in respect of coral reefs” (Veron et al., 2009; IPCC, 2022)  143 

1.0°C - “temperatures of just 1°C above the long-term summer maximum … over 4–6 weeks are enough to cause mass coral 144 

bleaching … and mortality (very high confidence)” (Hoegh-Guldberg et al., 2018; Skirving et al., 2019). 145 

1.2°C - “Warm water (tropical) coral reefs are projected to reach a very high risk of impact at 1.2°C …, with most available 146 

evidence suggesting that coral-dominated ecosystems will be non-existent at this temperature or higher (high confidence). At 147 

this point, coral abundance will be near zero at many locations and storms will contribute to ‘flattening’ the three-dimensional 148 

structure of reefs without recovery, as already observed for some coral reefs (Alvarez-Filip et al., 2009).” (Hoegh-Guldberg et 149 

al., 2018). Coral reef bleaching tipping pointsTPs have already been passed in seven ocean systems (IPCC 2022; Lenton et al., 150 

2023). 151 

1.5°C - “...coral reefs… will undergo irreversible phase shifts due to marine heatwaves with global warming levels >1.5°C 152 

and are at high risk this century even in <1.5°C scenarios that include periods of temperature overshoot beyond 1.5°C (high 153 

confidence).” (IPCC 2022). Projections predict 70-90% coral loss at 1.5°C (Hoegh-Guldberg et al., 2018; IPBS 2019; Souter 154 

et al., 2021; Armstrong McKay et al., 2022), whereas finer scale modelling projects a 95-98% loss (Kalmus et al., (2022) and 155 

suggest 99% loss (Dixon et al., 2022).   156 

2.0°C - “literature since AR5 has provided a closer focus on the comparative levels of risk to coral reefs at 1.5°C versus 2°C 157 

of global warming … reaching 2°C will increase the frequency of mass coral bleaching and mortality to a point at which it 158 

will result in the total loss of coral reefs from the world’s tropical and subtropical regions.” (IPCC 2018) . Predictions show 159 

99% coral loss at 2.0C (Frieler et al., 2013; Hoegh-Guldberg et al., 2018; IPBS 2019; Knowlton et al., 2021; Souter et al., 160 

2021; Armstrong McKay et al., 2022,; Wang et al., 2023). Finer scale modelling projects 100% loss at 2.0°C. (Dixon et al., 161 

2022; Kalmus et al., 2022).  162 

 163 

Since the first global bleaching event of 1998, up to 71% of the world’s reefs have experienced recentthree further global mass 164 

bleaching (Virgen-Urcelay & Donner 2023),events, with a fourth global coral bleaching event being experienced in 2023/2024 165 

(https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event). With repeated events, loss of sensitive 166 

corals and acclimation and adaptation, the DHW thresholds may change (Lenton et al., 2023).  167 

 168 

These Assessments of risk to corals from heating risk assessments typically don’t consider co-occurring or interacting stressors 169 

or the additional warming resulting from ocean warmingdelayed heating response to atmospheric greenhouse gas 170 

https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event
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concentrations. Ocean warming response timesinertia may mask the impact severity of stated greenhouse gas and temperature 171 

levels. When emissions-driven temperature overshoot is considered, lower target temperatures can have similar impacts to 172 

higher, with little difference in coral survival between an overshoot scenario that peaks at 2°C and subsequently reduces 173 

temperatures to 1.5°C versus a 2°C scenario without a subsequent reduction in temperatures (Tachiiri et al., 2019).  174 

 175 

Tanaka and Van Houtan (2022) confirm the normalisation of extreme heating events. The frequency and duration of bleaching 176 

events are likely to increase, occurring earlier in the year and potentially overlapping with critical spawning periods (Mellin et 177 

al., 2024). The compounding heat stress of El Niño events (Claar et al., 2018; Hughes et al., 2018b; Lough et al., 2018) may 178 

increase with projected Arctic and Antarctic sea ice loss (England et al., 2020; Liu et al., 2022). Real world observations from 179 

the NOAA coral reef watch program demonstrate that coral reef damage is accelerating and underscores the threat 180 

anthropogenic climate change poses for the irreversible transformation of these essential ecosystems (Eakin et al., 2022). 181 

 182 

Interactions of ocean warming and heatwaves with other stressors 183 

Warming effects are so far reaching in their impacts that they can adversely impact many other coral stressors, these stressors, 184 

in turn, can increase vulnerability to thermal stress.  For example, heating-induced bleaching increases disease risk and lowers 185 

calcification which increases the impact of ocean acidification (Miller et al., 2009; Bak et al., 2009, Burke et al., 2023, Eakin 186 

et al., 2008, Marshall & Clode 2004, Rosenberg &and Ben-Haim, 2002,; Marshall and Clode, 2004; Ward et al., 2007; Eakin 187 

et al., 2008; Bak et al., 2009; Miller et al., 2009; Veron et al., 2009; Chan et al., 2019; Davis et al., 2021; ChanBurke et al., 188 

20192023). Corals that survive bleaching can have compromised growth rates and reproduction (Rodrigues &and Padilla-189 

Gamino, 2022; Speare et al., 2022; Briggs et al., 2024).  Furthermore, warming oceans and heat wavesheatwaves increase 190 

storm intensity and raise sea-level through thermal expansion and cryosphere melting.  191 

4. Stratification 192 

Ocean stratification is the layering of water masses, based on density. Stratified water layers are a barrier to mixing, which 193 

impacts the exchange of heat, oxygen, nutrients and carbon between shallow and deep water. This impacts marine organisms 194 

in a number of significant ways, including impacting primary productivity and potentially the entire marine food chain.  195 

Stratification has increased globally by 5.3% in recent decades (Li et al., 2020).  196 

 197 

Interactions 198 

Stratification is strongly linked with warming oceans. Stratification magnifies the warming effect at the upper layers, thus 199 

increasing thermal stress to warm water reefs, this is a vicious circle as warming oceans further increase stratification. 200 

Additionally, stratification reduces CO2 uptake, further exacerbating anthropogenic warming. Stratification impedes ocean 201 

mixing impacting nutrient flows. Stratification is strongly linked with deoxygenation. Stratification is also linked with melting 202 

of Antarctic ice shelves and sea-level rise (Reed and Harrison 2016; Li at al., 2020; Auger et al., 2021;  ). Stratification is 203 
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increasing which has dramatic consequences for sea temperature and CO2 concentrations (Goreau and Hayes, 2024; Li at al., 204 

2020; Reed & Harrison 2016). ) 205 

5. Ocean acidification 206 

Ocean acidification (OA) is the process of the increasing absorption of atmospheric CO2 by the surface seawaters of the oceans, 207 

(Raven 2005), which in turn reduces the calcification rates of most scleractinian tropical and subtropical corals (Comeau et al., 208 

2014,; Kornder et al., 2018), and can alter the photo-physiology and calcification physiology of some corals (Comeau et al., 209 

2018). 2018). OA causes a change in the speciation of dissolved inorganic carbon and an increase in protons (Caldeira and 210 

Wickett 2003; Feely et al., 2004; Sabine et al., 2004; Raven et al., 2005). This results in increased dissolution of exposed 211 

calcareous material due to decreases saturation state of CaCO3, and also inhibition of calcification through increasing proton 212 

concentration with the calcifying space in corals and calcareous algae (Comeau et al., 2018; Comeau et al., 2019). 213 

 214 

OA causes declines in coral calcification rates in laboratory simulations (Comeau et al., 2018). Early work predicted large-215 

scale loss of coral calcification at catastrophic levels, whereby OA was projected to result in coral bleaching and in some cases 216 

net dissolution of corals (see data within Leung et al., 2022). Contemporary research demonstrates that some corals are resistant 217 

to OA (Comeau et al., 2018,; Kornder et al., 2018). The most comprehensive modelling estimates are that by year 2100 coral 218 

calcification would decline by 1% under RCP2.6, 4% under RCP4.5 and 15% at RCP8.5 (Cornwall et al., 2021). When 219 

combined solely with the metabolic effects of temperature increases, this decline would be 1% (RCP2.6), 8% (RCP4.5), and 220 

33% (RCP8.5). However, the calcification rates of susceptible coral taxa (e.g., Acropora spp.) would decline by much more, 221 

and resistant species (e.g., Pocillopora spp. or Porites spp. generally) could be unaffected.  222 

 223 

The direct metabolic impacts of OA do not manifest a tipping point, but tipping points at ecological levels are likely. 224 

TP, but TPs at ecological levels are likely. Recent evidence indicates that ecological TPs within coral reefs 225 

caused solely by ocean acidification would occur around 550 ppm, roughly the same concentration of 226 

atmospheric CO2 that would cause detectable declines in both coral and coralline algal calcification (Cornwall et 227 

al., 2024). However, ecosystem trajectories are uncertain, and much more future research is required to determine 228 

the generality of these findings. 229 

The adverse impacts on coral and coralline algal calcification are direct negative effects, when combined with the 230 

direct positive effects on other taxa (such as opportunistic turfing algae). Susceptible species would start to give 231 

way to tolerant species over time (as generally occurs at natural analogues in the field (Fabricius et al., 2011,; 232 

Comeau et al., 2022), and other non-coral taxa would start to dominate space on what once were traditional coral 233 

reefs. OA acts to alter the internal chemistry of corals and coralline algae, slowing calcification rates. Species that are 234 
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capable of maintaining stable internal carbonate chemistry or compensate for these changes tend to be more tolerant 235 

to OA.  236 

 237 

Interactions  238 

Reduced calcification increases disease risk and weakened skeletons are vulnerable to storms (Suwa et al., 2010; Anthony et 239 

al., 2011; Steffen et al., 2015; Setter et al., 2022). There is also some evidence that elevated CO2 will exacerbate heat stress 240 

induced declines in coral calcification and physiological performance, though the strength and direction of these interactions 241 

varies widely by coral reef taxa, and even within different coral genera (Kornder et al., 2018). However, of greater immediate 242 

importance to the majority of corals will be successive marine heatwaves that will reduce the coral cover of less heat tolerant 243 

species, populations and genotypes over the majority of the oceans in the near future (van Hooidonk et al., 2014,; Cornwall et 244 

al., 2021,; Logan et al., 2021,; Cornwall et al., 2023). Survivors of this human-driven evolutionary force will not necessarily 245 

be those that are tolerant to OA also, and thus numerous tipping points in time could occur. Recent  evidence indicates that 246 

ecological tipping points within coral reefs caused solely by ocean acidification would occur around 550 ppm, roughly the 247 

same concentration of atmospheric CO2 that would cause detectable declines in both coral and coralline algal calcification 248 

(Cornwall et al., 2024). However, ecosystem trajectories are uncertain, and much more future research is required to determine 249 

the generality of these findingsTPs in time could occur.  250 

 251 

Interactions  252 

Reduced calcification increases disease risk and weakened skeletons are vulnerable to storms (Setter et al., 2022, Anthony et 253 

al., 2011, Suwa et al., 2010, Steffen et al., 2015). There is also some evidence that elevated CO2 will exacerbate heat stress 254 

induced declines in coral calcification and physiological performance, though the strength and direction of these interactions 255 

varies widely by coral reef taxa, and even within different coral genera (Kornder et al., 2018). 256 

6. Deoxygenation 257 

Deoxygenation on coral reefs is perhaps the least studied of the major threats directly linked to climate change ‘triple threat’ 258 

that also includessuch as warming and acidification (Hughes et al., 2020). However, there is sufficient evidence to say that 259 

dissolved oxygen is a critical resource on coral reefs, and that oxygen limitation (i.e. hypoxia) results in non-linearities and 260 

feedbacks that contribute to ecological tipping points (TPs) (Nelson and Altieri 2019). The consequences of crossing these 261 

TPs are perhaps most dramatically evident in sudden mass mortality events, which has led to calls to accelerate the research 262 

agenda on deoxygenation on coral reefs (Altieri et al., 2017). The oxygen concentration threshold at which corals lose their 263 

ability to maintain homeostasis is 2 mg/L with lethal doses between 0.5-2 mg/L (Hughes et al., 2020; Johnson et al., 2021a, 264 

Hughes et al., 2022).  265 

  266 



 

9 

 

The problem of deoxygenation on coral reefs is becoming more prevalent and severe in the Anthropocene from a combination 267 

of global climate change (Altieri and Gedan 2015,; Pezner et al., 2023), as well as local pollution in the form of excess nutrient 268 

and organic matter (Diaz and Rosenberg 2008), that are magnified by local oceanographic patterns (Adelson et al., 2022). Two 269 

different methods independently estimated thatAround 13% of coral reefs globally are at risk of deoxygenation, and the 270 

percentage of reefs that cross the threshold into this risk categorythis is likely to increase with continued climate change (Altieri 271 

et al., 2017,; Pezner et al., 2023).  272 

  273 

We suggest that evidence to date for feedbacks and non-linear thresholds indicates that a TP framework should be used to 274 

guide future research on deoxygenation in coral reefs, and that hypoxia should be considered in studies of thermal stress and 275 

acidification. 276 

 277 

Interactions 278 

Climate-related variables of temperature and acidification are also likely to exacerbate deoxygenation by affecting the 279 

physiological responses of corals and other reef organisms. It is widely recognized that increased temperatures lead to increased 280 

metabolic demand and decreased tolerance thresholds in marine organisms including corals (Vaquer-Sunyer and Duarte, 2011,; 281 

Alderdice et al., 2022,; Weber et al., 2012). Given the prevalence, co-occurrence, and synergistic effects of these co-stressors 282 

with deoxygenation, a multi-stressor perspective is essential, and many of the assumed thresholds for TPs on coral reefs based 283 

on single or even double stressor treatments under laboratory experiments are likely overly conservative estimates.  Coral reefs 284 

are vulnerable to a number of feedbacks that exacerbate deoxygenatedeoxygenation events when TPs are exceeded. These, 285 

these include: bleaching (Altieri et al., 2017,; Alderdice 2021; Johnson et al., 2021a,b, Alderdice 2021),;), excessive dead 286 

material from mass mortality events (Simpson et al., 1993), coral disease and algal growth (Dinsdale and Rohwer, 2011),  and 287 

shifts in the coral microbiome (Howard et al., 2023).  288 

7. Storm intensity  289 

The direct force of wind and waves, along with changes in storm direction, increase risks of physical damage and exposure to 290 

reduced water quality and sediment runoff (IPCC 2018). Storms contribute to unstable rubble substrate, compromising coral 291 

settlement (Sheppard et al., 2020). Furthermore, frequent intense storms can hinder reef recovery (Puotinen et al., 2020). Setter 292 

et al., (2022) ascribe a threshold value of storm strength category <4 with a return time of >5 years.  293 

 294 

Interactions 295 

Ocean warming may increase the severity of cyclones (IPCC 2021; Setter et al., 2022) and coral bleaching has likely reduced 296 

the ability of reefs to recover from cyclone damage (Laffoley and Baxter 2016). The likelihood of more intense cyclones within 297 

time frames of coral recovery by mid-century poses a global threat to coral reefs and dependent societies (Cheal et al., (2017).  298 
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Storms can have an antagonistic interaction with heat stress, reducing bleaching severity, but also generate sediment 299 

resuspension (Gardner et al., 2005,; Manzello et al., 2007,; Carrigan &and Puotinen, 2014,; Puotinen et al., 2020,; Setter et al., 300 

2022). Reduced calcification increases susceptibility to storm impacts (SetterSuwa et al., 2022,2010; Anthony et al., 2011, 301 

Suwa et al., 2010,; Steffen et al., 2015; Setter et al., 2022). 302 

8. Sea level rise  303 

Sea-level rise (SLR) can cause ‘reef drowning’ from exceeding Darwin Point thresholds (Grigg 2008). Saunders et al., (2016) 304 

make the important pointnote that while individual corals may keep pace with SLR, likely maximum reef framework accretion 305 

rate on reef flats is only 3mm3 mm yr_1. Saintilan et al., (2023) estimate likely vulnerability to RSLRrelative SLR at 7mm7 306 

mm yr-1 for coral reef islands. GMSLGlobal mean sea level between 2006 and 2018 increased to 3.7 (3.2 to 4.2) mm yr-1 307 

(IPCC 2021). Under SSP1-2.6, due to the risk of loss of reef structural integrity and transitioning to net erosion by mid-century 308 

the rate of sea level rise is very likely to exceed that of reef growth by 2050, absent adaptation (IPCC 2022). Depending on 309 

reef type and location suggested SLR threshold rates range from 4-9mm9 mm yr-1. 310 

 311 

Closely connected seagrass and mangrove ecosystems (Guannel et al., 2016) are very vulnerable to projected SLR rate and 312 

magnitude (Saintilan(Saunders et al., 20232014; Törnqvist et al., 2021; SaundersSaintilan et al., 20142023) which will further 313 

compromise coral reef resilience and functionality. In summary, SLR rate and magnitude looks increasingly likely to 314 

overwhelm the accretion ability of coral reefs which will be further challenged by increased wave energy, sedimentation, 315 

turbidity and resultant compromised light conditions for symbiont photosynthesis (Saintilan et al., 2023; Törnqvist et al., 2021; 316 

Saunders et al., 2014; Woodroffe &and Webster 2014; Törnqvist et al., 2021; Saintilan et al., 2023).  317 

 318 

Interactions 319 

Moderate rates of sea level rise may potentially aidprovide cooling for some reefs contendcontending with thermal stress and 320 

thus have an antagonistic effect (Brown et al., 2019; Cinner et al., 2015; Baldock et al., 2014; Cinner et al., 2015; Brown et 321 

al., 2019; Zuo et al., 2021). However, SLR rate and magnitude predictions (eg. Ciraci et al., 2023,; Vernimmen and Hooijer 322 

2023) imply increasingly synergistic impacts, especially in the tropics (Spada et al., 2013; Hooiler and Vernimmen 2021; 323 

Cazenave et al., 2022; Spada et al., 2013). High SLR rate and magnitude can change the interactions from antagonistic to 324 

synergistic, for example: reducing light availability, increasing sedimentation and turbidity (Laffoley and Baxter, 2016; Perry 325 

et al., 2018; IPCC 2022).  326 

 327 
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9. Pollution & disruption 328 

Here we use pollution as an all-encompassing term covering sediment, eutrophication, turbidity and chemicals., while 329 

disruption as a term covering local land use change, human population density and overfishing. Sedimentation reduces water 330 

clarity and hence solar energy supply, at the same timefurthermore sediments settling on corals require greater energy to 331 

remove. It is caused mainly by land-based activities such as coastal urbanisation, with plumes in large tropical river systems 332 

travelling many km from disturbance sites (Brodie et al., 2012).  Organic pollution from sewage and agricultural run-off (e.g. 333 

fertiliser) are the main causes of eutrophication (increase in nutrient content in water), which reduce light, actively poison 334 

invertebrates, introduce pathogens and reduce resistance to disease with direct impact on corals being decreased colony sizes, 335 

growth anomalies, and reduced growth and survival (Setter at al 2022). Metals and organic chemicals can rupture cell 336 

membranes, disrupt enzyme pathways reducing corals’ ability to resist other stressors. Plastics have also been identified as 337 

anothera major cause of coral reef stress due to light interference, toxin release, physical damage, anoxia and increasing the 338 

likelihood of pathogen disease 20-fold (Lamb et al.., 2018).  339 

 340 

Interactions 341 

Under certain circumstances poorer water quality can mediate bleaching resilience through a shading effect. Pollution 342 

exacerbates stress and increases disease risk, both of which are exacerbated by thermal stress.  Eutrophication increases 343 

deoxygenation and exacerbates crown-of-thorn-seastar (COTS) outbreaks (Laffoley & Baxter 2019, Redding et al., 2013, 344 

De’ath and Fabricius 2010, MacNeil et al., 2019). 345 

10. Disruption 346 

Here we are using disruption as a term covering local land use change, human population density and overfishing. Land use 347 

can be used as a proxy for quantifying land-based pollution and other human stressors on coral reefs (Packet et al., 2008,; 348 

Cinner et al., 2012,; Setter et al., 2022). Setter et al., (2022) use human population density as the closest indicator available to 349 

quantify local human stressors, involving coral growth anomalies and disease, low biodiversity and fish biomass and reduced 350 

growth and survival. To calculate reef change threshold exceedance, Setter et al., (2022) use an ideal value of summed 351 

proportion agricultural/urban land use <0.5 in a 50km50 km radius around a reef. Perhaps the most direct physical 352 

humandisruptive impact is overfishing with IPBS (2019) stating that more than 80% of the world’s coral reefs are severely 353 

over-fished or have degraded habitats (McClanahan et al., 2015), which disrupts ecosystem balance.2015). 354 

 355 

Interactions  356 

Under certain circumstances poorer water quality can mediate bleaching resilience through a shading effect. Pollution 357 

exacerbates stress and increases disease risk, both of which are exacerbated by thermal stress. Eutrophication increases 358 

deoxygenation and exacerbates crown-of-thorn-seastar (COTS) outbreaks (De’ath and Fabricius 2010; Redding et al., 2013; 359 
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Laffoley and Baxter 2019; MacNeil et al., 2019). Sites with historic disturbance may recover more slowly from heat stress 360 

and storms (Walker et al., 2024). Overfishing can lead to algae overgrowth inducing disease &and lowering calcification 361 

(Fabricius 2005; Packett et al., 2009,; Maina et al., 2013,; Kroon et al., 2014; Prouty et al., 2017, Kroon et al., 2014, 362 

Fabricius 2005). Sites with historic disturbance may recover more slowly from heat stress, waves and storms (Walker et al., 363 

2024).).  364 

1110. Disease  365 

Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef 366 

functionality, and ecosystem services (Alvarez-Filip et al., 2022). Disease outbreaks are posinghave severe consequences for 367 

coral reef ecosystems, resulting in extensive coral mortality and endangering their long-term survival. Noteworthy events 368 

include the rapid proliferation of diseases like Stony Coral Tissue Loss Disease (SCTLD), Black Band Disease (BBD),, and 369 

various forms of White Syndrome (Alvarez-Filip et al., 2022),. Regions such as the Great Barrier Reef, the Caribbean, the 370 

Pacific Islands, and the Indian Ocean have been particularly impacted by these outbreaks, in some places surpassing the 371 

devastating impact of bleaching events by causing even greater coral mortality.). Coral diseases stand out as beingare driven 372 

largely by a changing environment and are contributing to whole ecosystem regime shifts (Thurber et al., (2020). 2020). 373 

Although diseases are becoming increasingly prevalent with temperature rise and pollution, these, by themselves, have had 374 

relatively little overall impact outside of the Caribbean Sea, to date. In the Caribbean SCTLD is a major present source of coral 375 

mortality, impacting more than a third of all reef-building coral species present, and potentially driving the extinction of Pillar 376 

coral Dendrogyra cylindrus (among others). The relative impact of diseases elsewhere is likely to change in the future, 377 

becoming more prevalent and interacting with heatwaves and other stressors (Estrada-Saldívar et al., 2021; Cavada-Blanco et 378 

al., 2022). 379 

 380 

Interactions 381 

Some coral diseases (but not all) have been linked to both marine heat wavesheatwaves and the longer-term warming trend 382 

(Bruno et al., 2007,; Randall and van Woesik, 2015). For example, viral infections of coral symbiotic dinoflagellate partners 383 

(Symbiodiniaceae) will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis 384 

underpinning coral reef ecosystems (Howe-Kerr et al., 2023). Furthermore, predation scars from predators (e.g. problem and 385 

invasive species) leave corals susceptible to disease (Nicolet et al., 2018). Invasive species can directly cause or increase the 386 

risk of disease spread. 387 
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1211. Invasive and other problem species 388 

Increased native and invasive coral predatorpredators and competitor populationscompetitors can have severe impacts on reef 389 

ecosystems. A primereefs. One example is the severe impactsimpact of COTS on the Great Barrier Reef (Uthicke et al., 2015). 390 

The coral-killing sponge, Terpios hoshinota, is a global invasive species which has led to a significant decline in living coral 391 

cover at various geographical locations (Thinesh et al., 2017).  392 

 393 

Interactions 394 

Warming is a driving factor in the increased impact of invasive and problem species. Studies on Mexican Pacific coast coral 395 

reefs confirmed that post bleached corals are increasingly vulnerable to boring sponge impacts (Carballoe et al., 2012). COTS  396 

outbreaks appear to be significantly influenced by a combination of heat stress resiliency (Byren et al., 2024) and increased 397 

larval survivorship due to higher food availability, linked with anthropogenic runoff and warmer sea temperature facilitating 398 

faster settlement of larvae (Uthicke et al., 2015). Predation scars can leave corals susceptible to disease (Nicolet et al., 2018). 399 

1312. Reef impact example 400 

Chagos Archipelago demonstrates positive feedback (tipping pointsTPs). 401 

Observations from the Chagos Archipelago, central Indian Ocean, reveal several related lessons. Coral cover collapsed 90% 402 

after the heatwaves ofin 2015-2016 by 90%. There were very. Very few surviving adults capable of spawning survived, with 403 

survivors likely weakened and observations showed about three years was needed before they recovered sufficiently to 404 

recommencenew growth not observed for 3 years (Sheppard and Sheppard, 2019). 405 

Settlement of larvae, when it occurred, was compromised due toby disintegrating substrates. In many shallow areas, where 406 

wave energy had already swept the substrate clear of rubble, large areas are becoming covered by the encrusting and bioeroding 407 

sponge Cliona spp (Sheppard et al., 2020 skeletons formed a very abrasive layer on the substrate) and, like liquid sandpaper, 408 

almost no larvae were seen in these areas. These sponges are clearly increasing; with one reef showing over 80% Cliona cover 409 

preventing coral larvae settlement. 410 

On at least one lagoon floor, the former foliaceous coral dominance was also killed with skeletons disintegrating resulting in 411 

fine sediment covering all surfaces. Both sedimented surfaces and turbid water are hostile to larval settlement, and none were 412 

seen in such areas over many hectares. 413 

The scenario of fewer corals producing fewer larvae, more turbid water in some areas and less substrate available for settlement 414 

is a classical positive feedback or tipping pointTP situation. These factors all act synergistically in a direction that inevitably 415 

leads to an ever more impoverished reef system. Recovery from this will require a prolonged period without heat stress and a 416 
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gradual removal of the vast volumes of sediment and rubble left from previous bleaching events. (Sheppard and Sheppard, 417 

2019). 418 

 419 

 420 

Figure 1: Reef slope on Salomon atoll, Chagos Archipelago, before and after the mass mortality caused by warming in 421 

2015 422 

1413. Cascade effects contributing to coral reef tipping pointTP threshold sensitivity 423 

The cascading effects of well-researched tipping pointsTPs in other globally important ecosystems such as Amazon rainforest, 424 

Greenland Ice-Sheet, AMOC,systems have not been sufficiently assessed for their potential impact on coral reef systems. 425 

Accelerating West Antarctic Ice Sheet melt (Naughten et al., 2023), increasing methane emissions (Zhang et al., 2023) and 426 

Arctic sea ice decline have the potential to increase rate and magnitude of coral reef stressor impacts., including temperature 427 

and SLR. For example, Liu et al., (2022) predict that 37–48% of the increase of strong El Niño near the end of the 21st century 428 

is associated specifically with Arctic sea-ice loss. Many climate impact predictions make assumptions of the stability of the 429 
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wider earth system, but this may not hold true and lead to dramatic cascading impacts, for example, Ke et al., (2024) show 430 

dramatic decline in land carbon sinks in 2023 which will have wider implications on CO2 levels and associated stressors. 431 

1514. Resilience and adaptation  432 

Lenton et al., (2023) state ‘The potential for coral adaptation to warming is a critical but poorly known factor, and subject to 433 

high levels of variation locally. The potential effectiveness of restoration for coral reefs at scale, and with enhanced capacity 434 

to resist future threats, are both currently poor. The effect of climate migration on coral recovery is notpoorly known, with 435 

potentially positive effects at higher latitude (with in-migration), but negative at lower latitudes (with out-migration, but no 436 

replacement; Herbert-Read et al., 2023).’ IPCC (2022).IPCCs AR6 “Impacts and vulnerability” report states that ‘impacts of 437 

climate change may overwhelm attempts at restoration/conservation, particularly when the ecosystem is already near its tipping 438 

pointTP, as is the case with tropical coral reefs (Bates et al., 2019; Bruno et al., 2019).’  439 

 440 

Mass coral mortality repeated more than twice per decade and over local, regional and ocean scale, and by aggregation to 441 

global scales, is increasingly recognized as giving insufficient time for recovery of impacted populations and ecological 442 

function (Hughes et al., 2018a, 2018b,b; Obura et al., 2022,; Lenton et al., 2023; Venegas et al., 2023). Ecological and 443 

biogeographical (spatial) feedback loops prevent recovery through failure of reproduction, dispersal, recruitment and growth 444 

of corals (Sheppard et al., 2020) (see Reef impact example). Other stressors reduce the ability of corals to resist thermal stress 445 

thus lowering tipping thresholds. Increasing frequency and intensity of regional scale coral mortality events (1+ °C warming) 446 

are suggestive of the majority of coral reefs already having reached atheir bleaching tipping pointTP (IPCC 2022). The 447 

potential for thermal refuges for corals under likely future scenarios is doubtful (Beyer et al., 2018; Dixon et al., 2022; Setter 448 

et al., 2022; Lenton et al., 2023) as very few or no reef areas are predicted to remain below tipping thresholds of all key 449 

stressors. The existence of putative refuges at greater depths (Bongaerts and Smith, 2019) or higher latitudes (Setter et al., 450 

2022) are not strongly supported by recent work (Hoegh-Guldberg et al., 2017; Hoegh-Guldberg et al., 2018; Rocha et al., 451 

2018; Montgomery et al., 2021;  IPCC 2022).  452 

 453 

EvidenceThere is evidence of athe persistence of heat adapted genotypes atbut the costloss of the reductionpoorly adapted 454 

corals leads to a loss of coral diversity, i.e. the reef may survive but the biodiversity diminishes (Fox et al., (2021) Although 455 

potential for adaptation exists, stronger warming rates may outpace adaptive processes and limit coral persistence (Logan et 456 

al., 2021).; Venegas et al., 2023). Historical/ and paleo evidence for expansion and contraction of reefs linked to warming and 457 

cooling suggestingsuggests fringe distributions are likely to be compromised by increasing frequency and intensity of both 458 

warm and cold extreme-weather events (Toth et al., 2021). Donovan et al., (2021) show that local stressors act synergistically 459 

with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins have magnified coral loss in 460 

the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss, 461 
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suggesting that effective local management, alongside global efforts to mitigate climate change, can helpcould aid coral reefs 462 

survive the Anthropocene.survival. Agostini et al., (2021) suggest that resistance to ocean acidification in corals may not be 463 

acquired within a single generation or through the selection of physiologically resistant individuals, suggesting that ocean 464 

acidification will reshape coral communities around the world, selecting species that have an inherent resistance to 465 

elevated pCO2. 466 

 467 

Kleypas et al., (2021) provide a blueprint for coral reef survival and state that even with strong climate mitigation, existing 468 

conservation measures such as marine protected areas and fisheries management are no longer sufficient to sustain the reef 469 

ecosystemecosystems and many additional and innovative actions to increase reef resilience must also be taken.. Anthony et 470 

al., (2020) discuss the challenges and opportunities of embracing new interventions, and provide a conceptual model to help 471 

frame decision problems and objectives, and guide effective strategy choices in the face of complexity and uncertainty.. They 472 

also state that warm-adapted coral traits may not spread fast enough in most coral species to keep up with the rate of global 473 

warming, even under strong carbon mitigation. Hughes et al., (2023) provide recommendations and a conceptual framework 474 

to guide restoration projects and emerging approaches and highlightstate that coral restoration is likely to continue to fail even 475 

at small scales unless climate change and other anthropogenic impacts are urgently reduced.  476 
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16 478 

15. Conclusions 479 

Robust inclusion of multiple, interacting stressors into vulnerability assessments will lead to a greater understanding of coral 480 

reef futures and address the concerns that assessments have been too reliant on temperature thresholds (McClanahan 2022; 481 

Klein et al., 2024). Stressor onset rate, magnitude and overshoot factors are important considerations for determining potential 482 

transitional stressor impact states from antagonistic through to synergisticstressor interactions and their significance.  483 

 484 

Veron et al., (2009) concludedargue that to ensure the long‐term viability of coral reefs, atmospheric CO2 levels must be 485 

reduced significantly below 350ppm. Considering observed and predicted stressor impacts, this threshold could be considered 486 

optimistic but, pending fresh analysis (including other greenhouse gases) it remains an important threshold value350 ppm. 487 

Lenton et al., (2023). The recent Global Tipping Points Revision initiative (Lenton et al., 2023) agreed) recognise the long 488 

term consequences of >350 ppm as a critical TP threshold, along with a global mean surface temperature (relative to pre-489 

industrial) tipping point threshold of 1.2°C (range 1-1.5°C) and an atmospheric CO2 threshold of 350ppm,), whilst 490 

acknowledging that the “combined effects of long-term warming, sea level rise, ocean acidification, deoxygenation, and other 491 

stressors, bears more investigation.” The significance of both these TP thresholds is highlighted by the fact that global warming 492 

has already reached 1.2°C and CO2 levels have exceeded 420 ppm. Considering the calculations of von Schuckmann et al., 493 

(2020) that CO2 levels would need to be reduced to 353 ppm to realise the Paris temperature target, 350 ppm is likely to be 494 

insufficient for realising a 1.2°C TP threshold, especially as other significant greenhouse gases are still increasing. 495 

 496 

We recognise the tipping point thresholds of Lenton et al., (2023) whilst acknowledgingWe note that interacting stressors, 497 

ocean response dynamics, GHG emissions overshoot and cascade considerations have yet to be robustly assessed.sufficiently 498 

evaluated. These and other uncertainties around tipping pointTP sensitivities for such a crucially important ecosystem 499 

underlines the imperative of robust threat assessment (Heinze et al., 2021; Aronson and Precht, 2016; Dixon, Forster and Beger 500 

, 2021; Heinze et al., 2021; Laffoley et al., 2022; Lenton et al., 2023) and, in the case of knowledge gaps and uncertainties, 501 

employing a precautionary principle;  (Rockström et al., 2021; OECD 2022; Deutloff et al., 2023; Lenton et al., 2023b; Ripple 502 

et al., 2023; Lenton et al., 2023b, Fletcher et al., 2024) to tipping points and favourfavouring lower range threshold values. 503 

Recognising threat severity is essential if the necessary response actions are to be realised.   504 
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  508 

Figure 2: Visualisation of stressor interactions. Red links denote synergistic associations (expanding negative impacts) 509 

and blue links denote both synergistic and antagonistic associations depending on magnitude and other factors.  510 
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