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Abstract. Warm-water coral reefs are facing unprecedented human driven threats to their continued existence as biodiverse,
functional ecosystems upon which hundreds of millions of people rely. These impacts may drive coral systemsecosystems past
critical thresholds, beyond which the system reorganises, often abruptly and/er potentially irreversibly, this is what the IPCC
(2022) define as a tipping point. Determining tipping point thresholds for coral reef ecosystems requires robust
assessmentassessments of multiple stressors and their interactive effects. In this perspective piece we draw upon the recent

Global Tipping Points Revision initiative (Lenton et al., 2023) and a literature search to eensideridentify and summarise the

diverse range of interacting stressors that need to be considered for determining tipping point thresholds for warm-water coral

reef ecosystem-tipping—point-threshold-sensitivities.ecosystems. Considering observed and projected stressor impacts we

recogniseendorse the Global Tipping Points Revision conclusion of a global mean surface temperature (relative to pre-

industrial) tipping point threshold of 1.2°C (range 1-1.5°C) and an-the long-term impacts of atmospheric CO, warming
threshold—of-350ppmconcentrations above 350 ppm, whilst acknowledging that interactingcomprehensive assessment of

stressors, including ocean warming response dynamics, overshoot and cascading impacts, have yet to be sufficiently
assessedrealised. These stressor interactionsconsiderations are likely to further lower tipping point thresholds in most cases.
Uncertainties around tipping point sensitivitiesthresholds for such crucially important ecosystems underlines the imperative of
robust assessment and, in the case of knowledge gaps, employing a precautionary principle favouring -lower range tipping

point values.
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1. Introduction

Warm-water coral reefs (comprising-tropical and sub-tropical-reefs)-are-estimated-tesubtropical) support aone quarter to one
third of marine biodiversity (Plaisance et al., 2011), including over 25% of marine fish species, and annualhyprevides

betweenprovide US$2.7 - 9.8 trillion per year of ecosystem services (Laffoley and Baxter, 2016; Souter et al., 2021), upon
which at least 500 million people are reliant (IPBS 2019). They are also among the most sensitive ecosystems to anthropogenic
driven stressors with an-estimatedapproximately 50% of global live coral cover having-been-lost over the last 50 years (Souter
et al., 2021, \AAAF-2022), primarily due to ocean warming-{and-related-climate-change-threats-of-ocean-acidification-and
deoxygentation);, but in-some-locations-also-due-toother factors have contributed locally such as fishing, pollution, and-disease,
nutrient enrichment and predation by crown of thorns starfish (IPCC 2022). IPBES (2019) states that over 80% of the world’s

coral reefs are severely over-fished or have degraded habitats (McClanahan et al., 2015). Eddy et al., (2021) estimate the
capaeity-of-tropical-and-sub-tropical reefs-to-previde-coral reef ecosystem services has-dechined-by-halfhave halved since the
1950s. Although local stressors continue to have-profound-impacts-enimpact coral reef health, climate ehange-driven stressors
have become the dominant threat to the functional viability of these ecosystems and-the-essential-services-they-provide-to
hundreds-eof-millions-efpeople-(IPBES 2019;; IPCC 2022).

It is well established that coral reef ecosystems are vulnerable to multiple interacting tipping points (TPs) (Norstrém et al.,
2016; Heinze et al., 2021;; Armstrong-McKay et al., 2022; IPCC 2022). IPCC (2022) defines a tippingpointTP as “a critical
threshold beyond which a system reorganises, often abruptly and/or irreversibly- . Coral reefs are prone to tippingpointsTPs
that can produce coral die offs {e-g-bleaching)-and-subseguentand replacement by other ecological communities such as
macroalgae, soft corals, or urchin barrens erceratimerpharians-(Norstrom et al., 2016), with-lew-resilience; reductions in
biodiversity and degradation of ecosystem services (IPBES 2019). Warm water coral reefs cross a threshold of ecosystem
collapse (Bland et al., 2018) when they cease to have sufficient live coral cover (typically ~ 10%) necessary for supporting the
wide diversity of taxa, ecological interactions and positive carbonate production state typical of a coral reef (Darling-etak;
2019 Perryetal2013Perry etal., 2013; Darling et al., 2019; Sheppard et al., 2020; Vercelloni et al., 2020; Armstrong-McKay

etal., 2022). -Mertality-efcoralsCoral mortality may play-eutovertake weeks toor a few months for acute events (e.g. thermal
stress-induced-bleaching), or years for chronic threats (e.g. diseases-and-tand-based-impacts), but prolonged failure to recover

over a decade ermore-is necessary to qualify a coral reef as ‘collapsed’. Coral-reef-collapse-is-an-ecological-phenemenon-at
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al., 2021), andwith high varianeevariability among regions-, but some localised recovery and resilience observed (e.g. Richards

et al., 2021). Localised responses of corals to increasing scales and intensities of stressors are aggregating at scales now
exceeding 1000 km and manifesting as regional die-offs (e.g. Western and Central Indian Ocean, Great Barrier Reef,
Mesoamerican Reefs) (Le Nohaic et al., 2017; Amir2022:-Mufiz-Castillo-et-al2019:Mufiiz-Castillo et al., 2019; Sheppard
et al., 2020; Obura et al., 2022; Sheppard-et-alk—2020);Amir 2022), with most reef-regions having-experiencedexperiencing
multiple die-off events (Darling et al., 2019; Cramer et al., 2020; IPCC 2022). Coral reef bleaching tipping-peintsTPs have

already been reached in seven ocean systems (IPCC 2022).

2. BeterminantsConsiderations for assessing coral reef tipping-pointsTPs.

Direct and indirect local human activities are increasingly degrading coral reef ecosystems through a combination of coastal
development, water quality reduction-by-peHutant-runotf-and-sedimentation, over-harvesting-(especially-fisheries);, invasive
species and disease spread. At the local level, these stressors have already proven-sufficientto-tiptipped some areas -from -coral
deminated-to- macroalgae dominated ecosystems (Bruno et al., 2009; IPBES 2019; Souter et al., 2021). Local stressor impacts
are increasingly being-echipsedexacerbated by anthropogenic climate change-and-can-act-synergisticaly-with-climate-change,
for example, high abundance of macroalgae or urchins magnifiringexacerbating coral loss after bleaching (Donovan et al.,
2021).

It’s important to consider the combined impact of multiple stressors. Doing so can significantly alter assessments of coral reef
futures (Setter et al., 2022;; Lenton et al., 2023). Interactions between different stressors can be antagonistic (the combined
effect is less than the additive), additive (the combined effect is equal to the sum of their individual effects) or synergistic (the
combined effects exceed their individual effects) (Good and Bahr 2020). Some studies find an—antagonistic
nteractioninteractions between multiple stressors (Darling et al., 2010; Johnson et al., 2022). However, a wide variety of
interacting and synergistic stressors have-beenfound-te-ce-also occur (ICRS 2021; IPCC 2022; Setter et al., 2022; Lenton et
al., 2023), generally lowering the thermal threshold for bleaching and/or mortality, bringing—ferward-timing-ofaccelerating
collapse, or even surpassing thermal stress in local importance {e.g—overfishing,—disease,—pellution,—invertebrate

predators;ocean-acidification){Lenton-et-al—2023Anthony2016—(Ban et al., 2013;-Crameret-al-2020; Darling-et-al-2019;
Edmunds et al., 2014;-1PBS-2019: Rocha et al., 2015; Anthony 2016; Darling et al., 2019; IPBS 2019; Cramer et al., 2020;

Setter et al., 2022; \feron-etal—2009)-Lenton et al., 2023). Stressor onset rate can have a major effect on stresser-significance
as-has-beenreported, for eoralexample for reef fish mortality (Genin et al., 2020). Depending on-their onset rate and magnitude,
the same interacting stressors may initially have antagonistic effects but may transition to having-additive or even-synergistic
effeets(e.g., Fisher et al., 2019).
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Increasing atmospheric greenhouse gas (GHG) concentrations, especially carbon dioxide (CO»), are disrupting Earth Energy
Balance. The resultant Earth Energy Imbalance (EEI) is increasing atmospheric and ocean temperatures (IPCC 2021; Loeb et

al., 2021; Von Schuckmann et al., 2023). CO, concentrations are the dominant driver of rate and magnitude of ocean warming

and acidification (Meinshausen et al., 2020)-with-cascading-effects-on-othercoral reef stressers:

Ocean-warming-and-ice-sheet-melt response-to-any-givenlevel). Because of greenhouse gas-emissions-driven-its large thermal
inertia the ocean takes hundreds of years to fully respond to the atmospheric temperature results-in-additional-committed
heating;-sea-level-rise-and-resultant stressor-impacts—{increases that human driven GHG concentrations are causing (IPCC:.

2021; Abraham et al., 2022; Abrams-etal2023)-Ocean-warmingresponse-timeisCheng et al.; 2022). The resultant committed

heating and sea level rise (SLR) needs to be calculated for any given GHG/temperature level. Although both ocean heat uptake

and SLR take centuries to fully respond, it takes approximately 26-3025-50 years for the majority of committed ocean warming

to be realised (R—Betts-personal-communication-12-August-2023)-and-seaHansen et al; 2005; Abrams et al., 2023), with the

upper ocean level rise—commitment-is—over—centennial-timeHRCC2021)-having the shortest response time. Due to these
ateriainertia considerations, tipping-petntTP thresholds can be exceeded decades before the full physical impacts are observed.

Overshoot describes warming pathways that temporarily increase global mean temperature over a specific temperature target
(IPCC 2022). Overshoot of multidecadal-time-spans-tmplymultiple decades implies severe risks and irreversible impacts in
many ecosystems (Meyer et al2022al., 2022; Wunderling et al., 2022; Schleussener et al., 2024), including coral reefs from

heat-related mortality and associated ecosystem transitions (high confidence) (IPCC 2022).

FippiagpeintTP cascades describe a tippingpoitTP in one system triggering, or stabilising, subsequent tippingpoirtsTPs in
other systems (HRCC-2022:-Rocha et al., 2018; Armstrong-McKay et al., 2022; Rocha-etalk—2048IPCC 2022; Wunderling et

al., 20232022). Here we summarise the most important tipping-peintfactersinstressors relevant to TP sensitivity for coral reef
declinereefs and explore interactions between them.

3. Ocean warming and heatwaves

Inereasinghy-warmer\Warmer ocean temperatures, driven by Anthropogenic climate change, compounded by El Nifio heating
events, is the primary stressor of regional- and ocean-basin- scale mortality of scleractinian corals;.. Heat stress results from

small increases-{1—2-°C) in seawater temperature above the summer maxima to which corals are acclimatised, destabilising

the symbiosis between host corals and their symbiotic algae, commonly referred to as coral bleaching (Hughes et al., 2017;
Houk et al., 2020;; UNEP 2020; IPCC 2022).

dMass bleaching
occurs when sea temperatures persist at more than 1 degree above established summer maxima for 8-12 weeks (known as 8-
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12 Degree Heating Weeks or DHW--Liu-et-al—2003):). Although mass bleaching has resulted in significant coral morality,
we note that with the loss of sensitive corals, acclimation and adaptation, the definition of DHW may require adjustment
(Lenton et al., 2023).

Previous assessments have highlighted consequences of different levels of warming:

0.7°C - “In the late 1990s when global warming was around 0.7°C large-scale coral reef bleaching also became apparent ...
supporting the lower boundary for this transition in respect of coral reefs” (Veron et al., 2009; IPCC, 2022)

1.0°C - “temperatures of just 1°C above the long-term summer maximum ... over 4—6 weeks are enough to cause mass coral
bleaching ... and mortality (very high confidence)” (Hoegh-Guldberg et al., 2018; Skirving et al., 2019).

1.2°C - “Warm water (tropical) coral reefs are projected to reach a very high risk of impact at 1.2°C ..., with most available
evidence suggesting that coral-dominated ecosystems will be non-existent at this temperature or higher (high confidence). At
this point, coral abundance will be near zero at many locations and storms will contribute to ‘flattening’ the three-dimensional
structure of reefs without recovery, as already observed for some coral reefs (Alvarez-Filip et al., 2009).” (Hoegh-Guldberg et
al., 2018). Coral reef bleaching tipping-peintsTPs have already been passed in seven ocean systems (IPCC 2022; Lenton et al.,
2023).

1.5°C - “...coral reefs... will undergo irreversible phase shifts due to marine heatwaves with global warming levels >1.5°C
and are at high risk this century even in <1.5°C scenarios that include periods of temperature overshoot beyond 1.5°C (high
confidence).” (IPCC 2022). Projections predict 70-90% coral loss at 1.5°C (Hoegh-Guldberg et al., 2018; IPBS 2019; Souter
et al., 2021; Armstrong McKay et al., 2022), whereas finer scale modelling projects a 95-98% loss (Kalmus et al., (2022) and
suggest 99% loss (Dixon et al., 2022).

2.0°C - “literature since AR5 has provided a closer focus on the comparative levels of risk to coral reefs at 1.5°C versus 2°C
of global warming ... reaching 2°C will increase the frequency of mass coral bleaching and mortality to a point at which it
will result in the total loss of coral reefs from the world’s tropical and subtropical regions.” (IPCC 2018). Predictions show
99% coral loss at 2.0C (Frieler et al., 2013; Hoegh-Guldberg et al., 2018; IPBS 2019; Knowlton et al., 2021; Souter et al.,
2021; Armstrong McKay et al., 2022;; Wang et al., 2023). Finer scale modelling projects 100% loss at 2.0°C. (Dixon et al.,
2022; Kalmus et al., 2022).

Since the first global bleaching event of 1998, up to 71% of the world’s reefs have experienced recentthree further global mass

bleaching {\Virgen-YUreelay-& Deonner2023);events, with a fourth-glebalceral-bleaching event being experienced in 2023/2024
(https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event). With-repeated-events,-toss-of sensitive

orals and mation and adantation_thae DHW thrasholds mav chanae (L anton et 3 0

TFhese-Assessments of risk to corals from heating risk-assessments-typically don’t consider co-occurring or interacting stressors

or the additional-warming—resulting—from—ocean—warmingdelayed heating response to atmospheric greenhouse gas
5
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concentrations. Ocean warming respense-timesinertia may mask the impact severity of stated greenhouse gas and temperature
levels. When emissions-driven temperature overshoot is considered, lower target temperatures can have similar impacts to
higher, with little difference in coral survival between an overshoot scenario that peaks at 2°C and subsequently reduces

temperatures to 1.5°C versus a 2°C scenario without a subsequent reduction in temperatures (Tachiiri et al., 2019).

Tanaka and Van Houtan (2022) confirm the normalisation of extreme heating events. The frequency and duration of bleaching
events are likely to increase, occurring earlier in the year and potentially overlapping with critical spawning periods (Mellin et
al., 2024). The compounding heat stress of El Nifio events (Claar et al., 2018; Hughes et al., 2018b; Lough et al., 2018) may
increase with projected Arctic and Antarctic sea ice loss (England et al., 2020; Liu et al., 2022). Real world observations from
the NOAA coral reef watch program demonstrate that coral reef damage is accelerating and underscores the threat

anthropogenic climate change poses for the irreversible transformation of these essential ecosystems (Eakin et al., 2022).

Interactions of ocean warming and heatwaves with other stressors

Warming effects are so far reaching in their impacts that they can adversely impact many other coral stressors, these stressors,
in turn, can increase vulnerability to thermal stress. -For example, heating-induced bleaching increases disease risk and lowers
calcification which increases the impact of ocean acidification (Milleretal;-2009;Baketal 2009, Burke-et-al;-2023Eakin
etal-2008,-Marshall- & Clode-2004,-Rosenberg &and Ben-Haim, 2002;; Marshall and Clode, 2004; Ward et al., 2007; Eakin
et al., 2008; Bak et al., 2009; Miller et al., 2009; Veron et al., 2009; Chan et al., 2019; Davis et al., 2021; ChanBurke et al.,

20192023). Corals that survive bleaching can have compromised growth rates and reproduction (Rodrigues &and Padilla-

Gamino, 2022; Speare et al., 2022; Briggs et al., 2024). -Furthermore, warming oceans and heat-wavesheatwaves increase

storm intensity and raise sea-level through thermal expansion and cryosphere melting.

4. Stratification

Ocean stratification is the layering of water masses, based on density. Stratified water layers are a barrier to mixing, which
impacts the exchange of heat, oxygen, nutrients and carbon between shallow and deep water. This impacts marine organisms
in a number of significant ways, including impacting primary productivity and potentially the entire marine food chain.

Stratification has increased globally by 5.3% in recent decades (Li et al., 2020).

Interactions

Stratification is strongly linked with warming oceans. Stratification magnifies the warming effect at the upper layers, thus
increasing thermal stress to warm water reefs, this is a vicious circle as warming oceans further increase stratification.
Additionally, stratification reduces CO; uptake, further exacerbating anthropogenic warming. Stratification impedes ocean
mixing impacting nutrient flows. Stratification is strongly linked with deoxygenation. Stratification is also linked with melting
of Antarctic ice shelves and sea-level rise (Reed and Harrison 2016; Li at al., 2020; Auger et al., 2021;—). Stratification is

6
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increasing which has dramatic consequences for sea temperature and CO» concentrations (Goreau and Hayes, 2024;-Li-at-ak;

2020; Reed & Harrison 2016).)

5. Ocean acidification

Ocean acidification (OA) is the process of the increasing absorption of atmospheric CO- by the surface seawaters of the oceans;
(Raven 2005), which in turn reduces the calcification rates of most scleractinian tropical and subtropical corals (Comeau et al.,
2014;; Kornder et al., 2018), and can alter the photo-physiology and calcification physiology of some corals (Comeau et al.,
2018)--2018). OA causes a change in the speciation of dissolved inorganic carbon and an increase in protons (Caldeira and
Wickett 2003; Feely et al., 2004; Sabine et al., 2004; Raven et al., 2005). This results in increased dissolution of exposed

calcareous material due to decreases saturation state of CaCOs3, and also inhibition of calcification through increasing proton

concentration with the calcifying space in corals and calcareous algae (Comeau et al., 2018; Comeau et al., 2019).

OA causes declines in coral calcification rates in-laberatory-simulations-(Comeau et al., 2018). Early work predicted large-
scale loss of coral calcification at catastrophic levels, whereby OA was projected to result in coral bleaching and in some cases
net dissolution of corals (see data within Leung et al., 2022). Contemporary research demonstrates that some corals are resistant
to OA (Comeau et al., 2018;; Kornder et al., 2018). The most comprehensive modelling estimates are that by year 2100 coral
calcification would decline by 1% under RCP2.6, 4% under RCP4.5 and 15% at RCP8.5 (Cornwall et al., 2021). When
combined solely with the metabolic effects of temperature increases, this decline would be 1% (RCP2.6), 8% (RCP4.5), and
33% (RCP8.5). However, the calcification rates of susceptible coral taxa (e.g., Acropora spp.) would decline by much more,

and resistant species (e.g., Pocillopora spp. or Porites spp. generally) could be unaffected.

The direct metabolic impacts of OA do not manifest a tipping-point-but-tippingpoints-atecological-levels-are likely-
TP, but TPs at ecological levels are likely. Recent evidence indicates that ecological TPs within coral reefs

caused solely by ocean acidification would occur around 550 ppm, roughly the same concentration of

atmospheric CO, that would cause detectable declines in both coral and coralline algal calcification (Cornwall et

al., 2024). However, ecosystem trajectories are uncertain, and much more future research is required to determine

the generality of these findings.

The adverse impacts on coral and coralline algal calcification are direct negative effects, when combined with the
direct positive effects on other taxa (such as opportunistic turfing algae). Susceptible species would start to give
way to tolerant species over time (as generally occurs at natural analogues in the field (Fabricius et al., 2011;;
Comeau et al., 2022), and other non-coral taxa would start to dominate space on what once were traditional coral

reefs. OA-3

—Species that are
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capable of maintaining stable internal carbonate chemistry or compensate for these changes tend to be more tolerant
to OA.

Interactions

Reduced calcification increases disease risk and weakened skeletons are vulnerable to storms (Suwa et al., 2010; Anthony et

al., 2011; Steffen et al., 2015; Setter et al., 2022). There is also some evidence that elevated CO, will exacerbate heat stress

induced declines in coral calcification and physiological performance, though the strength and direction of these interactions
varies widely by coral reef taxa, and even within different coral genera (Kornder et al., 2018). However, of greater immediate

importance to the majority of corals will be successive marine heatwaves that will reduce the coral cover of less heat tolerant
species, populations and genotypes over the majority of the oceans in the near future (van Hooidonk et al., 2014;; Cornwall et

al., 2021;; Logan et al., 2021;; Cornwall et al., 2023). Survivors of this human-driven evolutionary force will not necessarily

be those that are tolerant to OA also, and thus numerous tipping-peints-in-time-could-occur—Recent—evidence-indicates-that

oloaical tinnina noints within_coral ree aused-solelv by ocean d onwould o around 550 nom-—ro

6. Deoxygenation

Deoxygenation on coral reefs is perhaps the least studied of the major threats directly linked to climate change “triple-threat>

that-alse-treludessuch as warming and acidification (Hughes et al., 2020). However, there is sufficient evidence to say that
dissolved oxygen is a critical resource on coral reefs, and that oxygen limitation (i.e. hypoxia) results in non-linearities and
feedbacks that contribute to ecological tipping points (FRs}(Nelson and Altieri 2019). The consequences of crossing these
TPs are perhaps most dramatically evident in sudden mass mortality events, which has led to calls to accelerate the research
agenda on deoxygenation on coral reefs (Altieri et al., 2017). The oxygen concentration threshold at which corals lose their

ability to maintain homeostasis is 2 mg/L with lethal doses between 0.5-2 mg/L (Hughes et al., 2020; Johnson et al., 2021a;
Hughes-etal.;-2022).
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The problem of deoxygenation on coral reefs is becoming more prevalent and severe in the Anthropocene from a combination
of global climate change (Altieri and Gedan 2015;; Pezner et al., 2023), as well as local pollution in the form of excess nutrient
and organic matter (Diaz and Rosenberg 2008), that are magnified by local oceanographic patterns (Adelson et al., 2022). Fwo
different-methods-independently-estimated-thatAround 13% of coral reefs glebally-are at risk of deoxygenation, and the

percentage-of reefs thateross the threshold-into-thisrisk-categonythis is likely to increase with continued climate change (Altieri
etal., 2017;; Pezner et al., 2023).

We suggest that evidence to date for feedbacks and non-linear thresholds indicates that a TP framework should be used to
guide future research on deoxygenation in coral reefs, and that hypoxia should be considered in studies of thermal stress and

acidification.

Interactions

Climate-related variables of temperature and acidification are also likely to exacerbate deoxygenation by affecting the
physiological responses of corals and other reef organisms. It is widely recognized that increased temperatures lead to increased
metabolic demand and decreased tolerance thresholds in marine organisms including corals (Vaquer-Sunyer and Duarte, 2011;;
Alderdice et al., 2022;; Weber et al., 2012). Given the prevalence, co-occurrence, and synergistic effects of these co-stressors
with deoxygenation, a multi-stressor perspective is essential, and many of the assumed thresholds for TPs on coral reefs based
on single or even double stressor treatments under laboratory experiments are likely overly conservative estimates. -Coral reefs
are vulnerable to a number of feedbacks that exacerbate deexygenatedeoxygenation events-when-TPs-are-exceeded-—These,
these include: bleaching (Altieri et al., 2017;; Alderdice 2021; Johnson et al., 2021a,b-Alderdice-2021);;), excessive dead

material from mass mortality events (Simpson et al., 1993), coral disease and algal growth (Dinsdale and Rohwer, 2011), -and

shifts in the coral microbiome (Howard et al., 2023).

7. Storm intensity

The direct force of wind and waves, along with changes in storm direction, increase risks of physical damage and exposure to
reduced water quality and sediment runoff (IPCC 2018). Storms contribute to unstable rubble substrate, compromising coral
settlement (Sheppard et al., 2020). Furthermore, frequent intense storms can hinder reef recovery (Puotinen et al., 2020). Setter

etal., (2022) ascribe a threshold value of storm strength category <4 with a return time of >5 years.

Interactions
Ocean warming may increase the severity of cyclones (IPCC 2021; Setter et al., 2022) and coral bleaching has likely reduced
the ability of reefs to recover from cyclone damage (Laffoley and Baxter 2016). The likelihood of more intense cyclones within

time frames of coral recovery by mid-century poses a global threat to coral reefs and dependent societies (Cheal et al., {2017).



99
00
01
02

303

304
05
06
07

308

309

|310

311
12

Em

314

315

316

317

318

319

320

321

322

323

324

325

326

|1327

Storms can have an antagonistic interaction with heat stress, reducing bleaching severity, but also generate sediment
resuspension (Gardner et al., 2005;; Manzello et al., 2007;; Carrigan &and Puotinen, 2014;; Puotinen et al., 2020;; Setter et al.,
2022). Reduced calcification increases susceptibility to storm impacts (SetterSuwa et al., 2622;2010; Anthony et al., 2011;
Suwa-et-al-2010;; Steffen et al., 2015; Setter et al., 2022).

8. Sea level rise

Sea-level rise (SLR) can cause ‘reef drowning’ from exceeding Darwin Point thresholds (Grigg 2008). Saunders et al., (2016)
make-the- importantpeintnote that while individual corals may keep pace with SLR, likely maximum reef framework accretion
rate on reef flats is only 3mm3 mm yr-L. Saintilan et al., (2023) estimate likely vulnerability to RSLRrelative SLR at Zmm7
mm yr-1 for coral reef islands. GMSLGlobal mean sea level between 2006 and 2018 increased to 3.7 {3-2-to-4-2)-mm yr-1
(IPCC 2021). Under SSP1-2.6, due to the risk of loss of reef structural integrity and transitioning to net erosion by mid-century

the rate of sea level rise is very likely to exceed that of reef growth by 2050, absent adaptation (IPCC 2022). Depending on
reef type and location suggested SLR threshold rates range from 4-9mm9 mm yr-L.

Closely connected seagrass and mangrove ecosystems (Guannel et al., 2016) are very vulnerable to projected SLR rate-and
magnitude(SaintHan(Saunders et al., 20232014; Tornqvist et al., 2021; SaundersSaintilan et al., 26442023) which will further
compromise coral reef resilience and functionality. In summary, SLR rate and magnitude looks increasingly likely to
overwhelm the accretion ability of coral reefs which will be further challenged by increased wave energy, sedimentation,
turbidity and resultant compromised light conditions for symbiont photosynthesis (Sainti 5 N i =
Saunders et al., 2014; Woodroffe &and Webster 2014; Tornqvist et al., 2021; Saintilan et al., 2023).

Interactions
Moderate rates of sea level rise may potentially aidprovide cooling for some reefs eontendcontending with thermal stress and
thus have an antagonistic effect (Brown-etal—2019:-Cinneretal—2015:-Baldock et al., 2014; Cinner et al., 2015; Brown et

al., 2019; Zuo et al., 2021). However, SLR rate and magnitude predictions (eg. Ciraci et al., 2023;; Vernimmen and Hooijer

2023) imply increasingly synergistic impacts, especially in the tropics (Spada et al., 2013; Hooiler and Vernimmen 2021;
Cazenave et al., 2022;:-Spada—-et-ak—2043). High SLR rate and magnitude can change the interactions from antagonistic to
synergistic, for example: reducing light availability, increasing sedimentation and turbidity (Laffoley and Baxter, 2016; Perry
etal., 2018; IPCC 2022).
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9. Pollution_& disruption

Here we use pollution as an all-encompassing term covering sediment, eutrophication, turbidity and chemicals-, while

disruption as a term covering local land use change, human population density and overfishing. Sedimentation reduces water

clarity and hence solar energy supply, at-the-same-timefurthermore sediments settling on corals require greater energy to

remove. It is caused mainly by land-based activities such as coastal urbanisation, with plumes in large tropical river systems

travelling many km from-disturbance-sites-(Brodie et al., 2012).- Organic pollution from sewage and agricultural run-off (e.g.
fertiliser) are the main causes of eutrophication (increase in nutrient content in water), which reduce light, actively poison
invertebrates, introduce pathogens and reduce resistance to disease with direct impact on corals being decreased colony sizes,
growth anomalies, and reduced growth and survival (Setter at al 2022). Metals and organic chemicals can rupture cell

membranes, disrupt enzyme pathways reducing corals’ ability to resist other stressors. Plastics have also been identified as

anothera major cause of coral reef stress due to light interference, toxin release, physical damage, anoxia and increasing the
likelihood of pathogen disease 20-fold (Lamb et al-., 2018).

ishing- Land use
can be used as a proxy for quantifying land-based pollution and other human stressors on coral reefs (Packet et al., 2008;;
Cinner et al., 2012;; Setter et al., 2022). Setter et al., (2022) use human population density as the closest indicator available to
quantify local human stressors, involving coral growth anomalies and disease, low biodiversity and fish biomass and reduced
growth and survival. To calculate reef change threshold exceedance, Setter et al., (2022) use an ideal value of summed
proportion agricultural/urban land use <0.5 in a 56km50 km radius around a reef. Perhaps the most direct physical
humandisruptive impact is overfishing with IPBS (2019) stating that more than 80% of the world’s coral reefs are severely

over-fished or have degraded habitats (McClanahan et al., 2015)-which-disrupts-ecosystem-balanee:2015).

Interactions

Under certain circumstances poorer water quality can mediate bleaching resilience through a shading effect. Pollution

exacerbates stress and increases disease risk, both of which are exacerbated by thermal stress. Eutrophication increases

deoxygenation and exacerbates crown-of-thorn-seastar (COTS) outbreaks (De’ath and Fabricius 2010; Redding et al., 2013;

11
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Laffoley and Baxter 2019; MacNeil et al., 2019). Sites with historic disturbance may recover more slowly from heat stress

and storms (Walker et al., 2024). Overfishing can lead to algae overgrowth inducing disease &and lowering calcification
(Fabricius 2005; Packett et al., 2009;; Maina et al., 2013;; Kroon et al., 2014; Prouty et al., 2017 Kreon-et-al;2014;

1110. Disease

Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef
functionality, and ecosystem services (Alvarez-Filip et al., 2022). Disease outbreaks are-pesinghave severe consequences for
coral reef ecosystems, resulting in extensive coral mortality and endangering theirlong-term survival. Noteworthy events
include the rapid proliferation of diseases like Stony Coral Tissue Loss Disease (SCTLD), Black Band Disease(BBDB};, and

various forms of White Syndrome (Alvarez-Filip et al., 2022} —Regions-such-as-the-Great-Barrier-Reef-the-Caribbean;-the
Pacifi nds—and-the Indian-Ocean-have been parti 2 impacted-bv-these outbrea n-some--on e nassina—the

largely by a changing environment and are contributing to whole ecosystem regime shifts (Thurber et al., {2020).-2020).

Although diseases are becoming increasingly prevalent with temperature rise and pollution, these, by themselves, have had

relatively little overall impact outside of the Caribbean Sea, to date. In the Caribbean SCTLD is a major present source of coral

mortality, impacting more than a third of all reef-building coral species present, and potentially driving the extinction of Pillar

coral Dendrogyra cylindrus (among others). The relative impact of diseases elsewhere is likely to change in the future,

becoming more prevalent and interacting with heatwaves and other stressors (Estrada-Saldivar et al., 2021; Cavada-Blanco et

al., 2022).

Interactions

Some coral diseases (but not all) have been linked to both marine heat-wavesheatwaves and the longer-term warming trend
(Bruno et al., 2007;; Randall and van Woesik, 2015). For example, viral infections of coral symbiotic dinoflagellate partners
(Symbiodiniaceae) will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis
underpinning coral reef ecosystems (Howe-Kerr et al., 2023). Furthermore, predation scars frem-predaters-{e-g—problem-and
invasive-speeies)-leave corals susceptible to disease (Nicolet et al., 2018)._Invasive species can directly cause or increase the

risk of disease spread.

12
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1211. Invasive and other problem species

Increased native and invasive coral predatorpredators and competitor-populationscompetitors can have severe impacts on reef

ecosystems—A-primereefs. One example is the severe-impactsimpact of COTS on the Great Barrier Reef (Uthicke et al., 2015).
The coral-killing sponge, Terpios hoshinota, is a global invasive species which has led to a significant decline in living coral
cover at various geographical locations (Thinesh et al., 2017).

Interactions

Warming is a driving factor in the increased impact of invasive and problem species. Studies on Mexican Pacific coast coral
reefs confirmed that post bleached corals are increasingly vulnerable to boring sponge impacts (Carballoe et al., 2012). COTS
outbreaks appear to be significantly influenced by a combination of heat stress resiliency (Byren et al., 2024) and increased
larval survivorship due to higher food availability, linked with anthropogenic runoff and warmer sea temperature facilitating

faster settlement of larvae (Uthicke et al., 2015). Predation scars can leave corals susceptible to disease (Nicolet et al., 2018).

1312. Reef impact example
Chagos Archipelago demonstrates positive feedback (tippinrg-peintsTPs).

Observations from the Chagos Archipelago, central Indian Ocean, reveal several related lessons. Coral cover collapsed 90%
after the-heatwaves ofin 2015-2016-by-90%-There-were-very. Very few surviving-adults capable of spawning survived, with

recommencenew growth not observed for 3 years (Sheppard and Sheppard, 2019).

Settlement of larvae, when it occurred, was compromised due-teby disintegrating substrates. In many shallow areas, where
wave energy had already swept the substrate clear of rubble, large areas are becoming covered by the encrusting and bioeroding
sponge Cliona spp (Sheppard et al., 2020-skeletons-formed-a-very-abrasive-layeron-the-substrate) andtike-liguid-sandpaper;
almost no larvae were seen in these areas. These sponges are clearly increasing; with one reef showing over 80% Cliona cover

preventing coral larvae settlement.

On at least one lagoon floor, the former foliaceous coral dominance was also killed with skeletons disintegrating resulting in
fine sediment covering all surfaces. Both sedimented surfaces and turbid water are hostile to larval settlement, and none were

seen in such areas over many hectares.

The scenario of fewer corals producing fewer larvae, more turbid water in some areas and less substrate available for settlement
is a classical positive feedback or tippingpeintTP situation. These factors all act synergistically in a direction that inevitably

leads to an ever more impoverished reef system. Recovery from this will require a prolonged period without heat stress and a

13



417 gradual removal of the vast volumes of sediment and rubble left from previous bleaching events-_(Sheppard and Sheppard,

418 2019).

419

120

421 Figure 1: Reef slope on Salomon atoll, Chagos Archipelago, before and after the mass mortality caused by warming in
422 2015

123 1413. Cascade effects contributing to coral reef tippingpeintTP threshold sensitivity

124 The cascading effects of well-researched tipping-peintsTPs in other globally important ecesystems-such-as-Amazon-rainforest;
125  Greenland-lee-Sheet-AMOC, systems have not been_sufficiently assessed for their potential impact on coral reef systems.

426 Accelerating West Antarctic Ice Sheet melt (Naughten et al., 2023), increasing methane emissions (Zhang et al., 2023) and
“27  Arctic sea ice decline have the potential to increase rate and magnitude of coral reef stressor impacts-, including temperature
428  and SLR. For example, Liu etal., (2022) predict that 37—-48% of the increase of strong EI Nifio near the end of the 21st century

129 is associated specifically with Arctic sea-ice loss._Many climate impact predictions make assumptions of the stability of the
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wider earth system, but this may not hold true and lead to dramatic cascading impacts, for example, Ke et al., (2024) show

dramatic decline in land carbon sinks in 2023 which will have wider implications on CO; levels and associated stressors.

1514. Resilience and adaptation

Lenton et al., (2023) state ‘The potential for coral adaptation to warming is a critical but poorly known factor, and subject to
high levels of variation locally. The potential effectiveness of restoration for coral reefs at scale, and with enhanced capacity
to resist future threats, are both currently poor. The effect of climate migration on coral recovery is retpoorly known, with
potentially positive effects at higher latitude (with in-migration), but negative at lower latitudes (with out-migration, but no
replacement; Herbert-Read et al., 2023).” {RCC{2022)-IPCCs ARG “Impacts and vulnerability” report states that ‘impacts of
climate change may overwhelm attempts at restoration/conservation, particularly when the ecosystem is already near its tipping
pointTP, as is the case with tropical coral reefs (Bates et al., 2019; Bruno et al., 2019).

Mass coral mortality repeated more than twice per decade and over local, regional and ocean scale, and by aggregation to
global scales, is increasingly recognized as giving insufficient time for recovery of impacted populations and ecological
function (Hughes et al., 2018a,-20648b;b; Obura et al., 2022;; Lenton et al., 2023; Venegas et al., 2023). Ecological and
biogeographical (spatial) feedback loops prevent recovery through failure of reproduction, dispersal, recruitment and growth
of corals (Sheppard et al., 2020){see-Reef-impact-example). Other stressors reduce the ability of corals to resist thermal stress
thus lowering tipping thresholds. Increasing frequency and intensity of regional scale coral mortality events (1+ °C warming)

are suggestive of the majority of coral reefs already having reached atheir bleaching tipping—peintTP (IPCC 2022). The
potential for thermal refuges for corals under likely future scenarios is doubtful (Beyer et al., 2018; Dixon et al., 2022; Setter
et al., 2022; Lenton et al., 2023) as very few or no reef areas are predicted to remain below tipping thresholds of all key
stressors. The existence of putative refuges at greater depths (Bongaerts and Smith, 2019) or higher latitudes (Setter et al.,
2022) are not strongly supported by recent work (Hoegh-Guldberg et al., 2017; Hoegh-Guldberg et al., 2018; Rocha et al.,
2018; Montgomery et al., 2021;- IPCC 2022).

EwvideneeThere is evidence of athe persistence of heat adapted genotypes atbut the eostloss of the-reductionpoorly adapted
corals leads to a loss of eeral-diversity;--e—the-reef-may-survive-but-the biodiversity-diminishes (Fox et al., {2021) Although

potential for adaptation exists, stronger warming rates may outpace adaptive processes and limit coral persistence (Logan et

al., 2021).; Venegas et al., 2023). Historical/ and paleo evidence forexpansion-and-contraction-ofreefsHinked-to-warming-and
coohing-suggestingsuggests fringe distributions are likely to be compromised by increasing frequency and intensity of beth

warm-and-cold-extreme-weather events-(Toth et al., 2021). Donovan et al., (2021) show that local stressors act synergistically

with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins have magnified coral loss in

the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss,
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suggesting that effective local management, alongside global efforts to mitigate climate change, can-helpcould aid coral reefs

s&ww&the#n%hmpeeen&survwal Agostini et al., (2021) suggest%h%%s&anee%@eea#ae%eaﬂ%%e@%myn@%be

ing that ocean

acidification will reshape coral communities around the world, selecting species that have an inherent resistance to
elevated pCO..

Kleypas et al., (2021) provide a blueprint for coral reef survival and state that even-with-strong-chmate-mitigation-existing
conservation measures such as marine protected areas and fisheries management are no longer sufficient to sustain the-reef

eeesystemecosystems and many additional and innovative actions to increase reef resilience-must-also-be-taken.. Anthony et
I, (2020) discuss the-challenges-and-eppertunities-of-embracing-new interventions; and provide a conceptual model to help
frame-decision-problems-and-ebjectives-and-guide effective strategy choices-in-the-face-of complexity-and-uncertainty.. They

also state that warm-adapted_coral traits may not spread fast enough in most coral species to keep up with the rate of global
warming, even under strong carbon mitigation. Hughes et al., (2023) provide recommendations and a conceptual framework
to guide restoration projects and emerging-approaches-and-highlightstate that coral restoration is likely to continue to fail even
atsmall-seales-unless climate change and other anthropogenic impacts are urgently reduced.
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15. Conclusions

Robust inclusion of multiple, interacting stressors into vulnerability assessments will lead to a greater understanding of coral
reef futures and address the-concerns that assessments have been too reliant on temperature thresholds (McClanahan 2022;

Klein et al., 2024). Stressor onset rate, magnitude and overshoot factors are important considerations for determining potential

transitional-stresser-impact states-from-antagonistic-through-to-synergistiestressor interactions and their significance.

Veron et al., (2009) eencludedargue that to ensure the-long-term viability of coral reefs, atmospheric CO; levels must be
reduced significantly below 350ppm-Considering-cbserved-and-predicted-stressor-impacts-this threshold-could-be-considered

Lenton et al., (2023)-

term consequences of >350 ppm as a critical TP threshold, along with a global mean surface temperature (relative to pre-

industrial) tipping—peint-threshold of 1.2°C (range 1-1.5°C)—and—an—atmespheric—CO,—thresheld—of-350ppm;), whilst

acknowledging that the “combined effects of long-term warming, sea level rise, ocean acidification, deoxygenation, and other

stressors, bears more investigation.” The significance of both these TP thresholds is highlighted by the fact that global warming

has already reached 1.2°C and CO, levels have exceeded 420 ppm. Considering the calculations of von Schuckmann et al.,

(2020) that CO, levels would need to be reduced to 353 ppm to realise the Paris temperature target, 350 ppm is likely to be

insufficient for realising a 1.2°C TP threshold, especially as other significant greenhouse gases are still increasing.

ingWe note that interacting stressors,
ocean response dynamics, GHG emissions overshoot and cascade considerations have yet to be rebusthy-assessed-sufficiently
evaluated. These and other uncertainties around tipping—peintTP sensitivities for such a crucially important ecosystem
underlines the imperative of robust threatassessment (Heinze-etal;-202%-Aronson and Precht, 2016; Dixon, Forster and Beger
., 2021; Heinze et al., 2021; Laffoley et al., 2022; Lenton et al., 2023) and, in the case of knowledge gaps and uncertainties,

employing a precautionary principle;- (Rockstrom et al., 2021; OECD 2022; Deutloff et al., 2023; Lenton et al., 2023b; Ripple
et al., 2023; Lenton-etak—2023b,-Fletcher et al., 2024) to-tipping-peints-and-faveurfavouring lower range threshold values.
Recognising threat severity is essential if the necessary response actions are to be realised.
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508

509 Figure 2: Visualisation of stressor interactions. Red links denote synergistic associations-{expanding-negative-impacts)
510  and blue links denote both synergistic and antagonistic associations depending on magnitude and other factors.
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