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Abstract. We develop a new classification method for synoptic circulation patterns with the aim to extend the evaluation 

routine for climate simulations. This classification is applicable to any region of the globe of any size given the reference data. 10 

Its unique novelty is the use of the modified structural similarity index metric (SSIM) instead of traditional distance metrics 

for cluster building. This classification method combines two classical clustering algorithms used iteratively, hierarchical 

agglomerative clustering (HAC) and k-medoids, with only one pre-set parameter - the threshold on the similarity between two 

synoptic patterns expressed as the structural similarity index measure SSIM. This threshold is set by the user to imitate the 

human perception of the similarity between two images (similar structure, luminance and contrast), whereby the number of 15 

final classes is defined automatically. 

We apply the SSIM-based classification method to the geopotential height at the pressure-level of 500hPa from the reanalysis 

data ERA-Interim 1979-2018 and demonstrate that the built classes are 1) consistent to the changes in the input parameter, 2) 

well separated, 3) spatially stable, 4) temporally stable, and 5) physically meaningful. 

We demonstrate an exemplary application of the synoptic circulation classes obtained with the new classification method for 20 

evaluating CMIP6 historical climate simulations and an alternative reanalysis (for comparison purposes): output fields of 

CMIP6 simulations (and of the alternative reanalysis) are assigned to the classes and the Jensen-Shannon distance is computed 

for the match in frequency, transition and duration probabilities of these classes. We propose using this distance metric to 

supplement a set of commonly used metrics for model evaluation.  
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1 Introduction 

Research institutions around the world conduct climate studies and share their knowledge with the society and policy makers 30 

through The Intergovernmental Panel on Climate Change (IPCC, www.ipcc.ch). The climate simulations used in the IPCC 

reports are available to other scientists, besides those who run the models, through the Coupled Model Intercomparison Project 

(CMIP, www.wcrp-climate.org/wgcm-cmip). The first two phases (CMIP1 and CMIP2) of this initiative addressed the ability 

of numerical climate models to simulate the present climate and to respond to an increase of carbon dioxide concentration in 

the atmosphere (Meehl et al., 1997; Meehl et al., 2000). The extended follow-up phase CMIP3 (Meehl et al., 2007) provided 35 

output of coupled ocean-atmosphere model simulations of 20th-22nd century climate for the 4th Assessment Report (AR4) of 

IPCC (www.ipcc.ch/report/ar4/syr/). As the number of climate simulations in the subsequent projects CMIP5 (Taylor et al., 

2012) and CMIP6 (Eyring et al., 2016) continued to increase, new requirements on the "quality" and "reliability" of such 

simulations emerged. Having multiple models at their disposition, final users have a choice to use all models or only those 

models, which pass a quality check i.e. an evaluation routine. Although testing and comparing models may create an illusion 40 

of finding the best one in all its features, we emphasize here: there is no universally valid and absolutely objective evaluation 

procedure for all purposes. It is important to include a broad suite of metrics into the evaluation spectrum, but various 

applications may require different subsets of these metrics.   

Hannachi et al (2017) emphasized the importance of the correct representation of weather regimes, their spatial patterns, and 

persistence properties in global circulation models as they could properly simulate the climate variability and long-term 45 

climatic changes under an external forcing such as, for example, the global warming. However, traditional techniques for 

climate model evaluation, which are rooted in evaluation techniques for numerical weather prediction models, mainly focus 

on individual variables and derived indices as summarized by Gleckler et al. (2008). These techniques use scalar variables, 

called “metrics“, and often illustrate symptoms of problems without explaining their causes that possibly may originate from 

incorrect simulation of synoptic weather. As some studies have already demonstrated that the performance of a model varies 50 

as a function of weather types (Díaz-Esteban et al., 2020; Nigro et al., 2011; Perez et al., 2014; Radić and Clarke, 2011) we 

suggest to account for models synoptic behaviour in evaluation routines. But how to capture the correctness of the large scale 

atmospheric dynamics in models? 

The atmospheric circulation is a continuum that gradually changes and its dynamics can be described by a finite number of 

representative "states"/"typical patterns" i.e. classes. Hochman et al. (2021) showed that such representation of the atmosphere 55 

by quasi-stationary circulation patterns, often also termed as weather regimes, is a physically meaningful way to describe the 

atmosphere (and not only a useful statistical categorization as it may be argued). Muñoz et al. (2017) also suggested using the 

weather-typing approach to diagnose a range of variables in a physically consistent way helping to understand causes of model 

biases. For evaluation purposes, any climate model simulation can be represented as a sequence of typical synoptic situations, 

previously classified. Common variables used for representing the synoptic circulation are the sea level pressure, geopotential 60 



3 
 

heights and wind vector fields. Statistical measures, such as frequency and duration of each class, computed from the assigned 

sequence can be evaluated against reference data derived, for example, from a reanalysis.  

Many questions arise when building a classification of weather situations: 

- On which spatial and temporal scales should weather situations be classified?  

- Do the frequency and persistence of each weather situation play a role in the classification?  65 

- How many classes are sufficient to describe the atmospheric circulation?  

Answers to these questions are not trivial and strongly depend on the purpose of the classification. 

add Weather patterns can be defined at a regular temporal step, typically one day (Lamb, 1972; Hess and Brezowsky, 1952; 

Fabiano et al., 2020; Cannon, 2012) and be classified independent on their duration (James, 2006; Cannon, 2012; Beck et al., 

2007; Fettweis et al., 2010). Alternatively, only recurrent, quasi-stationary and temporally persistent states of the 70 

atmospheric circulation would be classified (Dorrington and Strommen, 2020; Hochman et al., 2021) eliminating short-term 

patterns in the final set of classes. 

There is no “universally correct” recipe on how to build synoptic classes and how many of them. Each application requires a 

number of classes constructed in a way best suitable for its purposes. A set of classes can be determined subjectively by an 

expert, as the well-known Hess-Brezowski Grosswetterlagen (Gerstengarbe and Werner, 1993; James, 2006; Hess and 75 

Brezowsky, 1952) or the Lamb weather types (Lamb, 1972), or using an automated classification method. Multiple different 

synoptic classifications have been developed over years as summarized by Yarnal et al. (2001) and Huth et al. (2008). An 

overview and systematization of existing classification methods for synoptic patterns was compiled in a joint effort of 

multiple European Institutions in the COST Action 733 and summarized in the final project report (Tveito et al., 2016). A 

large number of classes is often used in classification methods that root in synoptic meteorology. Such methods - for 80 

example, the ZAMG-classification with 43 classes (Baur, 1948; Lauscher, 1985) and the Grosswetterlagen-based 

classification by James (2006) with 58 weather types (29 for winter and 29 for summer) - give priority to a high structural 

differentiation among synoptic patterns, at the same time trying to maximize the homogeneity inside classes. This attempt 

may produce some classes, which have a small number of members or could be even empty.  On the other hand, methods 

that use a small number of classes focus on large-scale circulation regimes and can be used for investigating possible 85 

precursors for their changes, for example shifts of the jet stream (Dorrington and Strommen, 2020). These methods may 

handle the pattern diversity in a sub-optimal way: prioritize a low number of classes over the high intra-class homogeneity 

and leave multiple synoptic patterns unclassified. 

Our purpose is to extend a traditional evaluation routine for climate models, which typically rests on a set of metrics for scalar 

variables (Gleckler et al., 2008), by a set of diagnostics considering the correctness of weather pattern representation. We are 90 

not the first ones to evaluate model dynamics in such way. Riediger and Gratzki  (2014) evaluated climate indices (mean values 

or hot, cold, wet and dry days) computed for five global circulation models and a reanalysis conditioned on different weather 

types in a recent and a future climate using a threshold based classification method for the Central European region (Dittmann 

et al., 1995). Cannon (2020) used two atmospheric classifications constructed on two reanalyses for evaluating historical 
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simulations of 15 pairs of global climate models from CMIP5 and CMIP6 datasets; the number of circulation classes used in 95 

this study was 16 as suggested in the COST733cat database over smaller European domains (Philipp et al., 2010). Herrera-

Lormendez et al. (2021) used Jenkinson-Collison classification adapted to Europe for evaluating some CMIP6 models against 

three reanalyses and analysed future changes in circulation for these models. 

A “good” set of weather types should be able to describe all physically admissible states and events in the climate system i.e. 

rain fall events and heat periods can be explained by an occurrence of individual weather types or a particular sequence of 100 

certain weather types. Muños et al. (2017) and Nguyen-Le and Yamada (2019) investigated rainfall intensities in dependence 

of weather types. Adams et al. (2020) found that extreme temperature events, as well as cold anomalies, are related to 

circulation patterns. As we keep in mind the possible linkage between weather types and extreme weather, we would like to 

have an automated classification that  

- produces structurally differentiated classes (similar as it is done in synoptic meteorology),  105 

- is applicable to any domain on the globe, 

- provides high homogeneity inside classes, and  

- encompasses almost all synoptic situations leaving no/or very few situations unclassified.  

In our opinion, the last condition is especially important because rare synoptic situations may be linked to severe weather and 

should be carefully handled in the evaluation procedure for climate models. Therefore, the wide variety of classification 110 

methods that focus on very few quasi-stationary weather regimes do not suite our purpose as they eliminate rare synoptic 

patterns from the analysis. Semi-automated classifications do not suite our purpose of model evaluation either, because these 

methods require expert knowledge to define weather types in the considered region; this would limit our future options of 

evaluation to only regions with available experts’ knowledge. 

A relatively new group of synoptic classification methods uses self-organizing maps (Kohonen, 2001). These SOM methods 115 

employ a neural network algorithm that discovers patterns in data in an unsupervised way. Such algorithms have an advantage 

as compared to methods based on the principal component analysis (PCA) and subsequent clustering of data as the SOM do 

not require orthogonality and stationarity of identified classes. Studies that use the SOM-technique to classify synoptic patterns 

and relate these patterns to local weather (Cassano et al., 2006; Gervais et al., 2016; Hewitson and Crane, 2002; Jiang et al., 

2011) typically use a pre-defined number of classes and employ the Euclidean distance measure for similarity between data 120 

elements and centroids for representing cluster centres. Also the majority of classification methods included in the 

COST733cat database (Philipp et al., 2010) and in the literature (Cannon et al., 2001; Hochman et al., 2021; Grams et al., 

2017; Muñoz et al., 2017; Fabiano et al., 2020) uses the k-means clustering algorithm (Milligan, 1985) in conjunction with the 

Euclidean distance as a metric to measure the degree of similarity between clustered data elements. In this paper we elaborate 

on the draw-backs of using mean fields as cluster centres in the classification of atmospheric data fields and suggest an 125 

alternative representation of cluster centres.    

Distance metrics typically used in classification algorithms are often Euclidean norms (L2 –norms), mean squared error (MSE) 

or Pearson’s Distance. MSE remains the standard criterion for comparing modelled and observed signals in climate science 
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and in optimization routines despite of its weak performance and serious shortcomings in comparing structured signals 

(pressure or geopotential fields can also be seen as “images”) as thoroughly discussed by Wang and Bovik (2009). Following 130 

the suggestions of Wang and Bovik (2009), we refrain from using MSE as a distance measure in classifying weather types, 

and propose using the alternative Structural Similarity Index Metric (SSIM) introduced by Wang et al. (2004) for comparing 

geopotential fields.  

Following the above mentioned arguments, we introduce the new two-stage classification method for synoptic circulation 

patterns as an alternative to existing methods of clustering. The novel approach allows accounting for rare synoptic situations, 135 

which may be linked to severe weather and builds synoptic classes automatically without prior experts’ knowledge. This 

alternative method, in our opinion, bears its own scientific value, because as the very least it corroborates previous results, but 

it even improves upon those previous results in both statistical (number of classes is defined automatically) and climatological 

aspects (all synoptic situations are classified, applicable to arbitrary regions of the globe without further experts’ knowledge). 

The novelty of this method consists of the following features:  140 

- it classifies all input data without pre-filtering and pre-initialization of classes,  

- it builds classes with strong structural differentiation and high inter-class homogeneity,  

- it uses a structural similarity metric instead of a distance-metric for classifying data,  

- it represents classes by their medoids instead of centroids, and  

- it uses an iterative combination of the hierarchical agglomerative algorithm with a partitioning k-medoids algorithm 145 

to determine the number of clusters automatically.  

This classification algorithm does not need an initial distribution of elements and gradually continues building and reviewing 

clusters until there is no more clusters to be built and reviewed according to a given threshold of similarity. 

We demonstrate that the new classification produces a set of well-separated classes, not necessarily of similar size, consistent 

(small changes in the pre-set parameter do not alter classes strongly), stable with respect to the temporal selection of data (for 150 

example randomly chosen and shuffled), stable across various spatial resolutions and data volumes, and physically 

interpretable (i.e. final classes represent real synoptic situations).   

In this paper we describe the new classification method and demonstrate its application to evaluation of global circulation 

models. The final result of the evaluation is expressed as the Jensen-Shannon distance that can be computed on models 

statistics.  155 

The paper is structured in the following way: 1) introduction, 2) data and domain description, 3) description of the classification 

method, 4) presentation of resulting classes, 5) presentation of weather extremes affiliated with the synoptic classes, 6) use of 

the derived classes in computing the distance metric for evaluating CMIP6 climate simulations, and 7) our conclusions and an 

outlook for future applications. 
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2 Data 160 

We use four datasets in this study.  

The first dataset, a dataset of synthetic data, is used to demonstrate the performance of the classification method explaining 

why modifications to the classical k-means algorithm are necessary. We generated this synthetic data using Gaussian-shaped 

anomalies trying to mimic the smooth shape of geopotential patterns (the real data we wish to use later) and to illustrate how 

such anomalies are treated by the classification algorithm. The synthetic data are generated randomly and have no genuine 165 

structure of the geopotential patterns. However, any clustering algorithm should produce clusters governed by the position of 

the largest anomaly in the domain and its sign. The original circular shapes of the synthetic generated data help to illustrate 

how such shapes are grouped into classes by classifications in a simpler manner as if we would have used the real data for this 

demonstration (using real data makes these distortions less obvious). 

The synthetic data of 1000 elements was generated for the domain of 22x22 grid points. Each field includes one large and 10 170 

smaller Gaussian-shaped superimposed anomalies with randomly chosen sizes, randomly placed within the domain and with 

randomly chosen signs (negative or positive anomaly); additionally, a randomly generated linear shift of the mean is added to 

each field. Examples of generated anomaly fields are shown in Figure 1. 

 

Figure 1: Examples of synthetic data fields. Fields are shown pairwise (a1-b1, a2-b2,..) for demonstrating how visually perceived 175 
similarity is quantified in terms of SSIM and MSE given under the lower plot for each pair. Contour lines show the amplitude of 
negative anomalies (black) and positive anomalies (red) with interval of 0.25. Pairs are ordered by their SSIM-values from a 
dissimilar pair (on the left) to a strongly similar pair (on the right). Note: smaller MSE does not guarantee larger SSIM-values as 
for the pair a1-b1. 

The second dataset, reanalysis data, the Reanalysis ERA-Interim (Dee et al., 2011) for the period of 1979-2018 is used as a 180 

realistic historical representation of the atmospheric circulation in Europe. The original spatial resolution of this data is 

approximately 80 km (T255 spectral) on 60 levels. Simulated synoptic regimes are represented by the geopotential height (zg) 
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at the pressure level of 500hPa sampled daily at 12:00 UTC for two practical reasons: 1) it often matches the mid-day peak in 

extreme weather conditions and 2) it is a typically available time for model output (for subsequent model evaluation). There 

is no necessity of using more frequent fields, for example 1-, 3-, or 6-hourly, as this would increase the data volume but would 185 

not add more information on the synoptic patterns: these patterns do not replace each other in few hours but extend over large 

spatial scales and may persist for several days or longer. Data fields zg are sampled on a grid of 2ºx3º as suggested by 

participants of the COST Action 733 (Tveito et al., 2016). The coarse-scale sampling is sufficient due to the fact that the 

synoptic-scale 500-hPa geopotential height does not require high resolution to reproduce the key physical mechanisms (Muñoz 

et al., 2017). The chosen domain (Figure 2) has 22x22 grid points with the lower left corner at (20ºW, 29ºN). 190 

 

 

Figure 2: Domain for classification of synoptic circulation patterns: crosses show sample points every 2º in latitude and every 3º in 
longitude directions, 22x22 grid points in total. The solid black line shows the outer edge of the domain. 

Some typical synoptic patterns may occur in different seasons but should be grouped into one class. As the mean and the 195 

variance of the geopotential change seasonally (larger in summer, smaller in winter) the original data should be pre-processed 

in order to reduce the sensitivity of the classification to the summer variance and the mean in the data. To allow this, we pre-

process the original geopotential height fields (zg): removing the seasonal amplitude from the original daily data and normalize 

the resulting fields by the daily standard deviation as in Eq. (1): 

= − /                (1) 200 
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The mean μzg and the standard deviation σzg are calculated for each grid point and for each day of the year from the 40-years 

of reanalysis data; both fields are smoothed in time with 151-days running average for each grid cell of the domain. The long 

smoothing period was chosen with the purpose to produce smooth seasonal curves of the mean 500hPa-geopotential and its 

standard deviation. Using such smooth mean and standard deviation curves for the normalization of the geopotential fields 

(prior to clustering) we preserve much of the fields anomaly. The resulting geopotential anomaly fields zga are used in the 205 

classification. 

Additionally to zg, we retrieve ERA-Interim daily near-surface atmosphere temperature (tas) and daily total precipitation (pr) 

for demonstrating potential weather extremes affiliated with each synoptic class (See Chapter 5). For these daily variables we 

compute 90th-percentile map on the original spatial resolution within the chosen domain over the period 1979-2018. For each 

daily variable we create a map of exceedance: locations where the variable exceeds its 90th-percentile gets the value of 1, 210 

otherwise – 0. These binary maps are summed up for days of the same synoptic class and normalized by the number of days 

in this class. Final map represents the exceedance probability for the synoptic class.   

The third data set is the alternative reanalysis NCEP1 (Kalnay et al., 1996). Any other reanalysis dataset may be taken. 

Assuming that the alternative reanalysis captures the synoptic circulation of the reference data ERA-Interim (both reanalysis 

product use and share at least some portion of global weather observations) better than any unconstrained global circulation 215 

model, the evaluation of an alternative reanalysis gives an estimate of the lower bound for the attainable value of the distance 

metric. 

 The 4th dataset of climate model output from the Coupled Model Intercomparison Project Phase 6 (CMIP6, https://www.wcrp-

climate.org/wgcm-cmip/wgcm-cmip6, (Eyring et al., 2016)). Based on data availability we chose 32 global circulation models 

for the historical period 1979-2014, preferably simulation version r1i1p1f1, when available, or r1i1p1f2/r1i1p1f3 otherwise. 220 

We use the output data for geopotential at 500hPa of 32 the chosen models to demonstrate a possible evaluation routine that 

uses the synoptic classes derived on the reference reanalysis. 

3 Method 

A frequently used approach for identifying circulation regimes is to apply the k-means clustering algorithm (Milligan, 1985) 

to the synoptic circulation data: an overview can be found in the COST733cat database (Philipp et al., 2010) and in the recent 225 

literature (Cannon et al., 2001; Hochman et al., 2021; Grams et al., 2017; Muñoz et al., 2017; Fabiano et al., 2020). K is the 

number of classes to be built (this number must be set prior to the classification) and Means denotes the average of data 

elements within each class (also called centroid). The k-means method partitions the input data into K clusters, so that each 

data element belongs to the cluster with the nearest centroid minimizing within-cluster variances; the k-means method is simple 

and always converges to a solution. Although k-means and its multiple variants, as well as the more general group of SOM-230 

based methods with neighbour radius ≥1, are commonly applied in the field of the atmospheric science, they exhibit serious 

limitations with regard to our aims:  
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1) use of centroids (means of all elements in a cluster) to represent classes: using mean fields as cluster centres in the 

classification of atmospheric data fields may be suboptimal and lead to building classes with dissimilar elements (as 

shown later in this paper),  235 

2) require a pre-specified number of classes,   

3) use of structure-insensitive distance metrics (e.g. Euclidean distance) for the optimization of the element assignment 

among classes. The k-means clustering assigns every data element to the cluster centre that is closest to it. This makes 

the method sensitive to noise in the data and may lead to an assignment of a data element to a structurally dissimilar 

cluster centre (Falkena et al., 2021); a pair of data fields is structurally dissimilar when it shows patterns perceived 240 

by an observer (or characterized with any structural similarity measure) as dissimilar. 

The mean squared error (MSE) and the Pearson correlation coefficient (PCC) are probably the dominant quantitative 

performance metrics in the field of model evaluation and optimization. The k-means clustering algorithm typically uses the 

MSE to measure the distance between clustered data elements.  However, Wang and Bovik (2009) demonstrated that the MSE 

has serious disadvantages when applied on data with temporal and spatial dependencies and on data where the error is sensitive 245 

to the original signal. Mo et al. (2014) in turn demonstrated that the PCC as a metric is insensitive to differences in the mean 

and variance. However, atmospheric data (pressure, geopotential, temperature fields) often reveal dependencies in time and 

space, as well as shifts in the mean and differing variances. Both studies mentioned above (Mo et al., 2014; Wang and Bovik, 

2009) recommend using an alternative measure for signal/image similarity, the Structural Similarity (SSIM) index, to quantify 

the goodness of match of two patterns. The SSIM (Wang et al., 2004) simulates the human visual system that “recognizes” 250 

structural patterns and error-signal dependencies, and shows a superior performance as a similarity measure over the MSE and 

PCC. 

3.1 Structural Similarity Metric SSIM and its modification.  

We use the Structural Similarity index SSIM (Wang et al., 2004) for measuring the similarity between synoptic patterns (SP) 

represented by the geopotential height anomalies zga. These fields are highly structured images, meaning that the sample points 255 

of these images have strong spatial dependencies, and these dependencies carry important information about the structures of 

the highs and lows in the field. The SSIM incorporates three perception-based components of image difference: structure 

(covariance), luminance (mean) and contrast (variance):  

( , ) =           (2) 

where 260 

x, y – non-negative signals/images, 

µx, µy - average values for x and y, 

σx, σy - variance for x and y, 

σxy - covariance of x and y, 
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c1, c2 - stabilizing constants for weak denominator.  265 

For each pair of images the SSIM-value is computed, which ranges −1≤SSIM(x,y)≤1. The SSIM(x,y)=1 if and only x=y  (x and 

y are two identical images). In practice, most SSIM-values are positive and SSIM(x,y)<1 identifying some difference between 

two images. Negative values of SSIM only occur when the covariance term σxy is negative. The SSIM-value is usually computed 

for multiple sliding windows inside the image. But for simplicity here, only one SSIM-value is computed for the whole domain. 

As the selected domain is relatively large and extends to high latitudes, areal weighting was applied to all fields prior to 270 

computing SSIM.   

From the formulation of SSIM (2) it is important to note that it is applicable as similarity metric only to same-sign data. 

However data in climate-related applications are often mixed-sign and/or normalized (with the mean around zero). Therefore, 

SSIM in its original form (2) cannot be used as the product of means µx and µy with different signs in combination with the 

negative covariance term σxy as it would yield a positive SSIM-value. To overcome this limitation Mo et al. (2014) proposed 275 

to “shift” x and y by the minimum value of the two fields:  x’ = x - ψxy and y’ = y - ψxy are non-negative, where ψxy = min(xn, 

yn| n=1, 2, ... ,N). However, this modification weakens the sensitivity of SSIM to the difference between the means as a result 

of enlarged denominator.  

We suggest an alternative modification, which only moderately modifies the magnitude of the denominator preserving the 

difference between the original means µx and µy: 280 

( , ) =          (3) 

where 

μ =
| |

             (4) 

μ =  μ + μ − μ .           (5) 

The latter formulae (3) is applicable to floating-point data with mixed-sign.  285 

The choice of stabilizing constants is “somewhat arbitrary” as SSIM is “fairly insensitive” to these values - the authors say 

(Wang et al., 2004).  Baker et al. (2022) suggest that c1 and c2 should be the same as to make both terms equally influential 

and propose c1 and c2 to be “small enough to not disproportionately influence” the final SSIM-value. We set c1 = c2 = 1e-8 as 

suggested by Baker et al. (2022). 

3.2 Examples of MSE and SSIM as a measures of similarity.  290 

We get the first glance at the ability of SSIM to capture the structural similarity from its application on the synthetic data 

(Figure 1). Figure 1 shows fields of the synthetic pairs of maps (ai,bi) for i=1,2,.. and their respective values of structural 

similarity SSIM(ai,bi) and the mean square error MSE(ai,bi) under each pair. Assuming MSE and SSIM are capable measures 

for similarity between two signals we expect MSE to decline with growing SSIM as the distance between more similar signals 

should be smaller than the distance between less similar signals. We ordered exemplary pairs in Figure 1 by their increasing 295 
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SSIM-value (from left to right side of the plot), but see that respective MSE-values of these pairs do not decline monotonously 

with increasing similarity. It is remarkable that MSE(a1,b1)< MSE(a2,b2) i.e. the distance between the pair of  signals (a1,b1) is 

smaller than the distance between the pair (a2,b2), although signals a1 and b1 are obviously less similar to each other (they have 

anomalies of different sizes and placements) as signals a2 and b2. This example implies that using MSE in a clustering algorithm 

would rather group the pair (a1,b1) into the same class than the pair (a2,b2). Such preference results from the insensitivity of 300 

MSE to the spatial correlation and could lead to building classes with structurally dissimilar members. Using SSIM instead of 

MSE helps to capture the degree of similarity between clustered signals in a better way on the exemplary synthetic data.  

Now we show that SSIM applied to real geopotential height anomalies zga is preferable over MSE:  in Figure 3 both pairs of 

geopotential anomalies have MSE(a,b)=MSE(a,c)=0.1, however the pair a-b has a high value of SSIM(a,b)=0.7, whereas for 

the other pair SSIM(a,c)=-0.3 that indicates dissimilarity. In other words, the MSE does not detect “obviously” dissimilar 305 

geopotential anomaly patterns.   

 

Figure 3: The pairs of geopotential anomaly fields a-b and a-c have same small MSE=0.1 but are strongly different in terms of SSIM: 
SSIM (a, b) = 0.7 means fields a and b are similar, SSIM (a, c) = -0.3 means fields a and c are dissimilar. Contour lines show the 
amplitude of anomalies with interval of 1.  310 

These two examples, with the synthetic data (Figure 1) and the real geopotential data (Figure 3), illustrate the weakness of the 

MSE as similarity metric for comparison (and subsequent clustering) of structured data fields as compared to the SSIM. 

Therefor we propose using SSIM as similarity measure in a new clustering algorithm. 

3.3 Modifications of k-means applied to synthetic data 

For supporting our previous arguments (about deficiencies of MSE distance measure) we setup and run three experimental 315 

classifications on the synthetic data: 1) the classical k-means clustering algorithm with the distance measure MSE (k-means-

MSE), 2) the k-means with the alternative similarity measure SSIM (k-means-SSIM), and 3) the k-medoids with the similarity 
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measure SSIM (k-medoids-SSIM). For obtaining comparable results, we initialize all three experimental classifications with 

the same 9 class centres (Figure 4a), which we a-priori derived by an independent run of the hierarchical agglomeration 

clustering (HAC) algorithm (with the SSIM-measure for cluster merging) on the synthetic data set. The HAC-algorithm belongs 320 

to a family of hierarchical algorithms and uses a completely different strategy for cluster building as opposed to the partitioning 

algorithms k-means and k-medoids. This insures that the classes obtained with HAC for the subsequent initialization of the k-

means and k-medoids algorithms do not provide any hidden advantage for either of these algorithms.  

 

Figure 4: Cluster centres: a) derived by HAC-algorithm and used for the subsequent initialization of the partitioning algorithms, 325 
resulted from b) k-means-MSE classification, c) k-means-SSIM classification, and d) k-medoids-SSIM classification. Contour lines 
show the amplitude of negative (black) and positive anomalies (red) with interval of 0.25. In panels b), c) and d) above each plot 
numbers of elements (in brackets) in each class are shown. 

Results of k-means-MSE classification (Figure 4b): these class centres (centroids) visibly deviate from the corresponding 

initialization fields (Figure 4a) in first place by the reduced magnitude of anomalies as a result of averaging multiple fields. 330 

Classes 3, 5 and 9 also have skewed shapes of anomalies, originally circular, as a result of averaging multiple patterns with 

variously placed anomalies. We already showed (Figure 1 and Figure 3) that small MSE does not guarantee the structural 
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similarity of compared patterns. Classes built with k-means-MSE show very little structural detail as a result of building cluster 

centroids over multiple class elements, whose structural similarity remained unaccounted. The danger of having such classes 

“with vanishing structure” is that they may serve as attractors for further elements as the clustering algorithm runs targeting at 335 

minimizing MSE only. This leads to the so-called “snowballing” effect i.e. the more elements are assigned to this class, the 

less structure shows its centroid, the more elements are assigned and so on. Cluster 9 (Figure S1) is a good example of such 

“snowball”-class: although all shown elements have comparable small MSE to the final class centre, their visual (for an 

observer) and computed similarity (value of SSIM) differs strongly as shown for a group of the first 28 elements (out of 132) 

indicating a strong structural inhomogeneity of patterns contained in one class. This example demonstrates the danger of 340 

building “snowball” classes when using MSE as distance metric for data with highly structured patterns. 

Results of k-means-SSIM classification (Figure 4c): in an attempt to avoid building structurally inhomogeneous clusters we 

replaced the Euclidean distance metric MSE by the structural similarity measure SSIM in the classification algorithm, yielding 

the k-means-SSIM classification. Retrieved classes show some structural patterns that resemble the initial anomaly patterns in 

the data, although weakly pronounced: the amplitude of the large anomaly is reduced and smaller anomalies have nearly 345 

vanished by averaging. We see: using SSIM instead of MSE helped to preserve circular shapes of the initial anomalies to some 

degree, implying that only structurally similar patterns are grouped into one class. However, resulting classes are too smooth 

in structure (reduced amplitude of anomalies) due to averaging by building centroids.  

Assuming the synthetic data represents some physically meaningful field, for example a pressure or a geopotential field, the 

weakening of the anomalies amplitude by k-means-SSIM and k-means-MSE may have serious implications on the 350 

interpretability of the resulting classes i.e. these classes do not represent any of the original data elements and, therefore, none 

of the realistic states of the atmosphere associated with these data. Additionally, such smooth fields would not be able to 

represent synoptic situations with extreme gradients that may be linked to extreme weather. 

We construct a new k-medoids-SSIM classification (Figure 4d) as we keep the similarity metric SSIM (it showed advantages 

in structure-preserving as compared to MSE) but replace the representation of cluster centres in the clustering algorithm by 355 

single “representative” elements – medoids (Kaufman and Rousseeuw, 1990). A medoid is the element of the class with the 

smallest dissimilarity to all other elements in this class. Each medoid itself is part of the data. Retrieved classes (Figure 4d) 

show strong anomaly amplitudes and not necessarily resemble their initialization fields, except classes 2 and 7 those medoids 

remained nearly “untouched” by the classification. The distribution of cluster elements in k-medoids-SSIM is done at each step 

of the algorithm by computing the medoid (= element with most mean similarity to all cluster elements) of each cluster. This 360 

procedure is less sensitive to the addition of new elements to the cluster than the re-computation of centroids: new cluster 

elements do not necessarily modify the clusters medoid defined at the previous step of the algorithm. This  robustness of the 

k-medoids algorithm (Kaufman and Rousseeuw, 1990) with regard to outliers and noise helps to avoid “snowballing” in cluster 

building and explains the match of classes 2 and 7 to their initial fields i.e. the initialization of these classes was a “good guess” 

that proved to be robust throughout the k-medoids-SSIM algorithm (Note: initial fields ought not to be “good guesses” and to 365 

remain preserved by the algorithm). 
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Following the arguments resulting from the application of the three classification algorithms on the synthetic data with 

structured patterns and structured errors, we propose using k-medoids algorithm with the similarity metric SSIM for 

classification of the real geopotential data as only this algorithm builds a set of classes that represent data elements and include 

only structurally similar elements. 370 

3.4 Initialization of classes 

There are multiple ways of defining the number of classes for the partitioning algorithm k-medoids (similarly to k-means) 

ranging from a random guess to the analysis of the data based on principal component analysis PCA, also known as empirical 

orthogonal functions, Huth (2000). Lee and Sheridan (2012) suggested the initialization of the clustering algorithm by selected 

PCAs. The reason for this statement was the common assumption that the first few modes returned by PCA are physically 375 

interpretable and match the underlying signal in the data. However, Fulton and Hegerl (2021) tested this signal-extraction 

method and demonstrated that it has serious deficiencies when extracting multiple additive synthetic modes (false dipoles 

instead of monopoles, which may lead to serious misinterpretation of extracted modes). They also found that PCA tends to 

mix independent spatial regions into single modes. Huth and Beranová (2021) demonstrated that unrotated PCAs (still often 

used) result in patterns that are rather artefacts of the analysis than true modes of variability. Additionally, methods that apply 380 

the PCA-filtering to input data, do not suite our purpose as these methods eliminate rare synoptic patterns from the analysis 

taking into account only a few PCAs with the largest Eigen-values and prevent building classes for rare synoptic situations. 

Guarded by the above mentioned ideas, we decided not to use the PCA-based initialization of the clustering algorithm. For the 

initialization of k-medoids we suggest using another classical clustering algorithm - hierarchical agglomerative clustering 

(HAC). An example of HAC-retrieved initial classes we described in chapter “3.3 Modifications of k-means applied to synthetic 385 

data” with the synthetic data: the HAC-algorithm builds classes whose centres are used to initialize the subsequent partitioning 

algorithm. Furthermore, we suggest using a combination of the two clustering algorithms – HAC and k-medoids – interactively 

i.e. merge similar clusters at the first step (HAC) and distribute all data elements to the new clusters at the second step. This 

two-stage algorithm stops, when no similar clusters are left to combine. This is the final set of clusters. The centres (medoids) 

of final clusters give the set of classes. We describe the new two-stage clustering algorithm below. 390 

3.5 New classification method: two-stage clustering algorithm 

Following the previous considerations, we made three essential decisions to modify the classic k-means algorithm in order to 

construct an algorithm better suitable (from our perspective) for building classes of synoptic patterns: 

- Decision 1: use an alternative similarity measure 

- Decision 2: use medoids to represent classes  395 

- Decision 3: use a two-stage algorithm for the stepwise determination of the number of classes  
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The two-stage clustering algorithm combines two clustering methods - the hierarchical agglomerative clustering (HAC) and 

the k-medoids clustering - in such way that the output from the first is used as input into the second and vice versa. It inherits 

the strengths of both contributing algorithms.  

Initially each data element represents its own cluster. Similarity between each pair of synoptic patterns is computed as structural 400 

similarity index metric SSIM. The HAC is a very flexible clustering method that can use any distance or [dis]similarity measure 

as it allows different rules for aggregating data into clusters (Schubert and Rousseeuw, 2021). At each step, HAC determines 

the number of clusters and their medoids using a threshold on the SSIM-value for merging similar elements into one cluster. 

The merging threshold THmerge is set by the user and intuitively means the minimal human-perceived similarity of a pair of 

data elements to be included/merged into one cluster. K-medoids builds clusters (similarly to the widely-known method of k-405 

means) using the medoid-prototypes and an arbitrary [dis]similarity measure SSIM for cluster elements (D’urso and Massari, 

2019; Schubert and Rousseeuw, 2021): it rearranges all data elements among medoid-prototypes (an operation that HAC cannot 

do) in order to maximize the within-cluster homogeneity. K-medoids in few iterations produces optimized clusters. The new 

medoids are computed and initialize the next step of HAC and so on. 

At each iteration of the two-stage clustering, the two steps are done in the following way: 410 

1. The 1st Step: HAC (merge clusters):  

1.1. Clusters with sufficient similarity SSIM>THmerge are merged: clusters with higher similarity are merged prior 

to those with lower similarity (the similarity between two clusters is measured as the similarity between their medoid 

fields) 

1.2. Temporary cluster medoids are recomputed   415 

2. The 2nd Step: k-medoids (recompose clusters): 

2.1. Temporary cluster medoids from the first step are used to initialize the k-medoids clustering algorithm  

2.2. Each data element is assigned to the cluster with the most similar medoid 

2.3. Cluster medoids are recomputed 

2.4. K-medoids clustering is repeated until an optimum (for the given number of medoids!) distribution of all 420 

data elements is achieved 

Both steps are repeated until there is no sufficiently similar pair of clusters left to be merged.  

The presented classification method, as any other classification method, requires some pre-set parameters. The final number 

of clusters produced by the two-stage clustering algorithm depends on the threshold THmerge for merging elements into clusters 

and, eventually, on the amount of data to be clustered. Although the choice of THmerge is crucial, there is no statistical or 425 

analytical formula for computing this threshold, it can only be chosen subjectively by comparing pairs of synoptic patterns 

(SPs) and asking observers about their perception of similarity. Examples of “similar” synoptic patterns are shown in Figure 

5. We analysed multiple pairs of SPs and, based on the personal perception of similarity (our own as well as of persons not 

involved in the development of this classification method), estimated that the threshold value THmerge must lie between 0.40 

and 0.45 for recognizable similarity i.e. pairs with SSIM-value less than 0.40 being generally perceived as dissimilar. Figure 5 430 
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illustrates examples of similarity between three exemplary reference SPs and arbitrarily chosen SPs with SSIM-values of 0.60, 

0.50, 0.45, 0.40, and -0.10 to each reference. SPs with SSIM≥0.60 are "strongly similar" to the reference, SPs with the 

0.40≤SSIM<0.60 are “similar”, and with the SSIM<0.40 - "weakly similar" to the reference. SPs with SSIM<0 are "dissimilar" 

to the reference as, by definition of SSIM, the negative values of SSIM result from negative covariance of compared patterns. 

 435 

 

Figure 5: Examples of three synoptic patterns zga (left column "reference"). Each row contains examples of alternative synoptic 
patterns with the SSIM-value to the “reference”. Contour lines show the amplitude of anomalies with interval of 1. 

The definition of the threshold THmerge implies that a reduction of its value loosens the requirement on data similarity for cluster 

building and provides a smaller number of final classes. In contrary, an increase of THmerge tightens the requirement on the data 440 

similarity for cluster building and, therefore, leads to a larger number of final classes. At the same time, the higher THmerge also 

loosens the requirement of separation between classes and permits a higher similarity among them. Thus varying the value of 

THmerge may be used, to some extent, to steer the clustering algorithm to produce the number of final classes of a particularly 

desired magnitude.  

Keeping in mind the intended application (evaluation of climate models) the question arises: how many classes do we need to 445 

describe the synoptic flow? In the present study, we use 40 years of daily synoptic patterns, 14600 daily data fields, which is 

a usual number of available reference data in climate research for the industrial time. How many classes do we need to represent 

synoptic situations of these 40 years? Would 10 or 100 be sufficient? The answer to this question is not trivial. The number of 

derived classes depends on the pre-set parameter THmerge. Whereas, values of THmerge smaller than 0.40 were mainly discarded 

by observers, testing higher values remains reasonable. We test three values for the threshold THmerge - 0.40, 0.425, and 0.45.   450 

Thus we produce three sets of classes whose separability in dependence of the THmerge can be analysed.  
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3.6 Criteria for the evaluation of the clustering algorithm. Choice of the threshold THmerge for class merging. 

We analyse the performance of the new method using four criteria suggested by Huth (1996): The clusters should (i) be 

consistent when pre-set parameters are changed, (ii) be well separated both from each other and from the entire data set, (iii) 

be stable in space and time, and (iv) reproduce realistic synoptic patterns. 455 

Cluster consistency. The consistent evolution of classes implies that small changes in the pre-set parameter THmerge lead only 

to small changes in the classes. For illustrating the sensitivity of the clustering algorithm to the choice of THmerge it was run for 

three values chosen in the previous chapter, the reference value 0.40 and two higher values 0.425 and 0.45. Classes are 

consistent if an increase in the number of classes caused by a change in THmerge is realized predominantly by splitting a few 

classes, with others remaining almost unchanged. Such evolution is difficult to quantify. The consistency of the clusters is 460 

illustrated by similarity diagrams - diagrams that resemble the "arrow diagrams" in Huth (1996) - for the sets of classes built 

with the varying parameter THmerge.  

Cluster separability. We calculate two metrics introduced in in the COST Action 733 report (Tveito et al., 2016) for 

characterizing the separability and within-class variability. Additionally we introduce a new indicator of class separability in 

terms of similarity. The separation of clusters from randomly chosen data is addressed by the comparison of the 465 

metrics/indicators calculated on the clusters to the metrics calculated on "random groups". The "random groups" are generated 

for each cluster as groups of the same size but of randomly chosen data elements (one realization).    

Metric 1: The explained variation EV of the data is determined as the residual between 1.0 and the ratio of the sum of squares 

within classes (synoptic types) WSS to the total sum of squares TSS: 

= 1 −             (6) 470 

Metric 2: The distance ratio DRATIO is the ratio of the mean distance between elements assigned to the same class DI and the 

mean distance between elements assigned to different classes DO. The Euclidean distance is used for computing DI and DO: 

=             (7) 

We construct a new indicator SSIMRATIO for the class separability, similarly to the DRATIO, is defined as the ratio of the 

mean similarity within classes (SSIMin) to the mean similarity among different classes (SSIMout): 475 

=            (8) 

The mean similarity within classes SSIMin is calculated as the mean “internal” similarity of all classes, where mean similarity-

value of each element j to each element k of the same class i is computed:  

= ∑ ,           (9) 

, = ∑ ∑ ( , ),        (10) 480 

where n – number of classes, mi – number of elements in class i, SSIM(j, k) – similarity of element j to element k of the same 

class i. 
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Mean similarity to other classes SSIMout is calculated as the mean similarity of all class elements to all class elements of all 

other classes except its own:  

= ∑ ,           (11) 485 

, = ∑
∑ ,

∑ ( , ), ,       (12) 

where n – number of classes, mi – number of elements in class i, SSIM(j, k) – similarity of element j to element k of any other 

class but not of the same class, ∑ , - number of all elements in all classes except class j.  

Indicator SSIMRATIO could be viewed as an indicator of separability of classes in terms of pairwise similarity value: larger 

values tell us about stronger within-class similarity in comparison to similarity of other classes. 490 

Note: After comparing the computed metrics and indicators, we discuss the choice of the threshold THmerge. Once 

chosen, this value of THmerge will be used for further analysis throughout the paper. 

According to the stop-criterion of the clustering algorithm, each pair of derived classes has similarity value less than THmerge 

i.e. in the classification obtained with THmerge=0.40 each pair of final class medoids is less similar to each other than this 

threshold. Although the classes are represented by the cluster medoids in the clustering algorithm, it is also reasonable to 495 

require that the resulting cluster centroids (means) be at least not "strongly similar" (SSIM<0.60) to each other. We compute 

matrices of similarities for medoids and for centroids and analyse how well the medoid-separation algorithm provides the 

separation of centroids in the final set of classes. 

Cluster temporal stability. The amount of input of synoptic data is crucial for building the representative set of classes. In 

periods of only few years of data important synoptic circulations might be simply un- or under-represented because of long-500 

term variability and, therefore, missing in the final set of classes. The clustering algorithm is run on a continuously increasing 

data volume of 1,2,..,40 years taken in the chronological order: classes for 1979-1979 (1-year period), classes for 1979-1980 

(2-year period), ...  classes for 1979-2018 (40-year period). This input data used in chronological order is called “reference 

data”.   

However, the classification method may produce a different number of classes for data of the same volume but different years. 505 

Therefore, in order to produce estimations of class numbers that are robust to the choice of the data, we run additionally 60 

classifications for the same data volumes of 1,2,…,40 years but picking the data randomly:  

1) 30 classifications are built with data sampled randomly out of the whole data set (bootstrap method for data 

selection i.e. data elements may be repeated), cluster centres are initialized as described above in the method: 

clusters with higher similarity are merged prior to those with lower similarity  510 

2) 30 other classifications are built on the data selected randomly (but without repetitions) and cluster centres are 

initialized randomly: cluster pairs are merged randomly without the preference for more similar pairs (also in a 

case when the input data is the same as the “reference data”, the random initialization of cluster centres yields 

different pathways of class merging)   
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The first group of the 30 classifications serves to prove the robustness of the classification method to the selection of the input 515 

data. The second group of the 30 classifications serves to illustrate the robustness to the initialization of clusters by the input 

data. We call both of two groups together “randomized data”.  

We expect that after a certain critical data amount is accumulated, further increase does not lead to a discovery of new classes 

and the temporal stability of the method is achieved. The minimum critical data amount, minNYR (=minimum number of years 

of data), is set when the number of resulting classes "levels out" and stabilizes.  520 

The total 61 classifications (obtained on 1 “reference data” + 60 “randomized data”) are compared to each other in the 

following way:  

1) search for each class i of the classification k its counterpart (most similar class) j in the classification l: each pair of 

counterparts (i,j) is detected by maximizing SSIM(i,j) for all i and j; 

2) weight the similarity value SSIM(i, j) by the frequency of i in the classification k: SSIM(i, j)*HIST(i), where HIST(i) 525 

is the relative frequency of class i in the classification k; 

3) compute the total mean weighted similarity, mwSSIM, of the classification k to the classification l as the sum of 

weighted similarity values for all pairs of classes and their counterparts: 

( , ) = ∑ ( , ) ∗ ( )          (13) 

where N – is the number of classes in the classification k, i=1,..N, 530 

j – is the counterpart of class i (class i belongs to the classification k, class j is belongs to the classification l and is the 

most similar element to i), 

HIST(i) – frequency of the class i in the classification k. 

We compute the matrix of mwSSIM values using the 61 classifications retrieved on at least minNYR years of data (note: the 

number minNYR is defined on the “reference data” as the minimum number of years of input data necessary to represent 535 

possibly all classes i.e. further increase of this number does not increase the number of resulting classes). We require this 

matrix to have all elements mwSSIMi,j>0.40, i.e. each pair of classifications derived on the same volume of data must be on 

average similar to each other. This “mean similarity” of the classifications indicates the temporal stability of the classes. 

Cluster spatial stability. The stability of the method in space cannot be addressed by applying the clustering algorithm 

straightforwardly to the data on lower/higher spatial resolution because the pre-set threshold for cluster merging THmerge is not 540 

directly transferable to other spatial grids. The reason for this is simple: a pair of images at a high resolution that appears 

dissimilar to an observer may have similar low-resolution prototypes (when similarity-determining details are averaged out). 

However, it can be required that the method determines structurally similar classes at any spatial resolution. To test this, the 

clustering algorithm is run on the same data but of reduced (4ºx6º) and increased (1ºx1.5º) spatial resolution. The corresponding 

data sets were built by a resampling of the original data on the low-resolution (4°x6°) and on the high-resolution (1°x1.5°). 545 

The retrieved classes from these data sets are compared to the classes on the reference grid (2ºx3º).  

Cluster reproduction and representativity. The method uses medoids as cluster centres and, therefore, the resulting class 

representatives (set of medoids) are elements of the original data and are physically interpretable/plausible synoptic patterns. 
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However, it is necessary to demand that a cluster medoid represents all cluster elements and their whole entity as a group. For 

each cluster, we compare the cluster centre (medoid) to the cluster mean (centroid) and calculate their similarity value. Based 550 

on the similarity values we analyse the representativity of the cluster elements by the medoids. We require that all medoids are 

strongly similar (SSIM>0.60) to their centroids. Representing a cluster by a medoid guarantees that the medoid has a minimum 

similarity to each of the cluster elements, furthermore, it is the element with the largest total similarity to all of cluster elements. 

If a centroid and a medoid of some class are dissimilar, this indicates that there is a group of elements in the class that are 

dissimilar to the medoid.    555 

3.7 Statistics for model evaluation and the Jensen-Shannon distance metric 

The classification done on the “reference data” (reanalysis ERA-Interim of 1979-2018) yields the set of “reference SP-classes”. 

Each data element of the reference data itself, of an alternative reanalysis data (NCEP1) and of each CMIP6-model are assigned 

to one of the “reference SP-classes” to which it has the maximal similarity. We suggest to compare different datasets assigned 

to the “reference SP-classes” using the following statistics: histogram of frequencies (HIST) for SP-classes through all years 560 

and seasons, histograms of frequencies for each season (HISTDJF, HISTMAM, HISTJJA, HISTSON), the matrix of transitions 

(TRANSIT) between available classes (frequency for each SP-class to follow another SP-class), and probability of persistence 

(PERSIST) of each SP-class for 1, 2,.. 25 days. Whereas, statistics HIST, HISTDJF, HISTMAM, HISTJJA, and HISTSON are one-

dimensional vectors with the number of components equal to the number of SP-classes, the TRANSIT and PERSIST are two-

dimensional matrices. In case of high dimensionality i.e. many SP-classes, the comparison of these vectors and matrices may 565 

become awkward and ambiguous. Therefore for quantifying differences between pairs of such statistics we suggest to weight 

contributions of each class by its frequency. We compute Jensen-Shannon divergence (Eq.14, similar to the widely used 

Kullback-Leibler divergence but symmetric and it always has a finite value):  frequent elements govern contributions to the 

distance measure, and vice versa, rare elements make smaller contributions.  The Jensen–Shannon divergence, JSD, used here 

to measure the similarity between two probability distributions P and Q defined on the same probability space , is computed 570 

in this way:  

( ∥ ) = ∑ ( ) ln
( )

( )∈ + ∑ ( ) ln
( )

( )∈        (14) 

where the probability distributions P and Q are the normalized (the sum of  all elements is 1.0) frequency histograms, transition- 

and persistence-matrices of the reference (Q) and a model (P); space  is a one- or two-dimensional space; M is the mean 

probability distribution: 575 

=              (15) 

It is common to compute the square root of JSD as a true metric for distance, the Jensen–Shannon distance (Eq.16): 

( ∥ ) = ( ∥ )          (16) 
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Such distance measure is robust against the “noise” from rare classes and as well as rare class-to-class transitions, but not 

insensitive to them. We show Jensen-Shannon distance metric on various pairs of distributions Figure S2 and discuss its 580 

sensitivity in supplement chapter “Sensitivity of Jensen-Shannon distance metric”. 

4 Results 

4.1. Synoptic classes, effect of the threshold THmerge on the number of classes  

We run the classification algorithm on the “reference data” of consistently increasing data volume of 1, 2,.. 40 years and 

perform 60 additional runs with the “randomized data” for the same data volumes. We repeat every run three times varying 585 

the threshold THmerge – the threshold on similarity between two SPs that defines when these SPs are merged into one class. In 

total (1+ 60)*3 = 183 runs of classification algorithm, each yielding a set of classes, are available for the analysis. Figure 6 

shows the evolution of the number of classes in dependence on the volume of input data for three values of THmerge. Figure 6 

illustrates the influence of tightening the requirement on similarity for building clusters: higher thresholds THmerge produce 

larger numbers of final classes with higher within-class similarity of its members. However, at the same time the higher THmerge 590 

also loosens the requirement to separation among classes (higher similarity between classes is possible).  

 

Figure 6: Number of classes depends on the threshold THmerge and on the amount of clustered data. For each tested value of THmerge 
the black solid line shows the mean number of classes computed on 61 classifications (1 with “reference data” + 60 with “randomized 
data”); the shaded area shows the range of one standard deviation from the mean. The circles show numbers of classes from 595 
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classifications with the “reference data”; circles with crosses highlight class numbers with THmerge=0.425. The horizontal dashed 
lines show the mean number of classes for each THmerge-value computed on the “reference data” of 40 years.  

The application of three values for the threshold THmerge= 0.40, 0.425, and 0.45 to the “reference data” of maximal volume of 

40 years produce 37, 52 and 89 classes, respectively. Computed on all 61 classifications (1 with “reference data” + 60 with 

“randomized data”) for varying THmerge the numbers of classes (mean ± standard deviation) are estimated 42±6, 59±4, and 600 

84±5, respectively (Figure 6). As expected, the higher values of THmerge provide larger numbers of classes, although not larger 

standard deviations of these numbers from their means, as a result of tightening the requirement for within-class similarity.  

One of the features of our new two-stage clustering algorithm is that it classifies all synoptic patterns including rare ones. This 

is the reason for the high number of classes build by this algorithm. Figure 7 shows the 37 classes built on the 40 years of the 

“reference data” with THmerge=0.40: the six most frequent classes SP1, SP3, SP4, SP6, SP15 and SP27 represent together 605 

∼42% of the input data, 10 most rare classes (SP11, SP20, SP21, SP23, SP26, SP30, SP31, SP34, SP35, SP37) represent 

together less than 5% of the input data. 

 

Figure 7: SP-classes (anomalies of geopotential height) obtained on the “reference data” (ERA-Interim Reanalysis, 1979-2018) with 
the threshold for similarity THmerge=0.40. Frequencies of SP-classes are shown above the corresponding plots. 610 

At the first glance at Figure 7 all 37 classes may look “patchy” and not different enough from each other. However, all these 

classes are not similar according to our definition as each pair of them has a similarity value smaller than 0.40 (the threshold 
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chosen for the classification algorithm). It is important to note that as the class separation is done in terms of SSIM these 

classes do not have to be differentiated in terms of MSE. We showed previously (Figure 1 and Figure 3) examples of pairs of 

patterns that are similar in terms of MSE, but differ in terms of SSIM.  615 

We take a closer look at the six most frequent SP-classes and their full fields (mean + anomaly) as shown in Figure 8. We 

compare these six classes to the 29 synoptic weather patterns GWL-REA v1.3 fields (personal communication) developed in 

German Meteorological Service (Deutscher Wetterdienst, www.dwd.de )  -  Hess-Brezowksy Grosswetterlagen identified on 

reanalysis data based on correlations in combination with Lamb Weather Type statistics (James and Ostermöller, 2022). For 

each of the six SP-classes we compare its similarity value to each of the GWL-REA v1.3 field (Geopotential) and identify the 620 

most similar one/pair: 

- SP1: Cyclonic South-Westerly (SWZ- Südwestlage zyklonal)/Cyclonic Westerly (WZ - Westlage zyklonal) 

- SP6: Low over Central Europe (TM- Tief Mitteleuropa) 

- SP27: Low over the British Isles  (TB - Tief Britische Inseln) 

- SP15: Anticyclonic Westerly (WA- Westlage antizyklonal) 625 

- SP4: Anticyclonic South-Easterly (SEA - Südostlage antizyklonal) 

- SP3: Anticyclonic North-Westerly (NWA - Nordwestlage antizyklonal) 
 

Correspondences of the six frequent classes to the patterns GWL-REA v1.3 provide us with an evidence that, albeit not tuned 

to and not required to mimic semi-manual classifications, the new classification method determines not just arbitrary synoptic 630 

patterns but meaningful synoptic situations described by experts. 
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Figure 8: Geopotential Height [m] for six most frequent SP-classes. The contour lines show the geopotential height levels every 100 
m (labelled). The number of the SP-class and its frequency are on the top of each plot. 

The three sets of classes obtained on the “reference data” of the full volume with varying THmerge are further analysed with 635 

respect to consistency, separability, stability, and representativity of the data. 

4.2 Cluster consistency 

The evolution of classes built with different values of THmerge is presented in the form of a diagram (Figure 9), which is also 

called “arrow diagram” suggesting that lines show how classes are related among different sets of classes. For the “arrow 

diagram” in Figure 9 the classes are derived by running the clustering algorithm on the data of one full year. We chose this 640 

minimal data volume to build classes with few elements for demonstrating the tightening similarity constrain (by the threshold 

THmerge) in the best way as classes with large numbers of elements may reveal similarities among subsets of some elements 

and overload the diagram. In Figure 9 identical classes (SSIM=1 for the medoids) are connected with thick solid black lines, 

strongly similar classes (0.60≤SSIM<1) are connected with dashed thick black lines, similar classes (0.40≤SSIM<0.60) are 

connected by thin grey lines, where connections with 0.40≤SSIM<0.425 are dashed.  When increasing the merging threshold 645 

0.40  0.425 the total number of classes rises 31  34 with 26 classes remaining identical or "strongly similar", 5 remain 

without a strongly similar counterpart and 8 new classes emerge. Further rising the threshold value 0.425  0.45 leads to 

building of 39 classes with 36 classes remaining identical or strongly similar, 2 classes remain without a strongly similar 

counterpart and 7 new classes emerge. The new emerging classes may have similarity to more than one previous class. We see 

that 23 classes retain their medoids through the two steps of tightening the similarity constrain (0.40  0.425 0.45). It is 650 

important to note: the identical classes have only one counterpart in each set of classes that means they are “transferred” to the 

next set of classes obtained with a higher THmerge and not “split” into new classes. The “strongly similar” classes typically have 

only one or - rarely - only few counterparts i.e. they are rarely split. New emerging classes may have similarities to multiple 

original classes. The fulfilment of the demand on the consistency of class evolution is shown by the prevalence of identical 

classes in the diagram, indicating one-to-one correspondence between classes of different sets. The identical classes, which 655 

remain unchanged, are connected with thick solid lines and are often accompanied by a ‘bunch’ of thin lines. Such 'bunches' 

are mainly produced by the breaking off some elements from the class on the left side into its own class on the right side; the 

medoid of the original class on the left side remains preserved. For new emerging classes (on the right side) similarities to 

multiple original classes (on the left side) are acceptable as new classes may contain elements broke off from multiple original 

left side classes. An unwanted form of the diagram would be a distribution of classes from set to set connected with thin lines, 660 

without clearly preserved identical types. 
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Figure 9: Similarity between classes derived with different merging threshold: (left) 31 classes obtained with THmerge=0.40, (middle) 
34 classes with THmerge=0.425, and (right) 39 classes with THmerge=0.45. Black thick lines connect identical classes (SSIM=1), black 
dashed lines connect "strongly similar" classes (0.60≤SSIM<1), grey lines connect similar classes (0.40≤SSIM<0.60), where 665 
connections with 0.40≤SSIM<0.425 are dashed. Following the black solid lines from left-to-right: 23 classes retain their medoids. 

4.3 Cluster separability 

The metrics EV, DRATIO and indicators SSIMin, SSIMout, SSIMRATIO computed on the classes obtained with increasing 

THmerge illustrate the importance of the choice of this threshold and its influence on the number of derived classes and their 

separability. Table 1 presents the values of the chosen metrics and indicators. Please note: metrics EV and DRATIO illustrate 670 

only (!) the influence of the THmerge on the final set of classes and do not describe the quality of classes as they are computed 
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using the Euclidean Distance – a measure that was not optimized by the clustering algorithm. Therefore, EV and DRATIO 

should not be used to assess the absolute performance of the classification, but the relative performance depending on THmerge.   

Classifications with larger numbers of classes achieve a better skill EV than those with less classes due to the natural fact that 

a larger number of classes captures a higher fraction of the variation. The extreme case, when the total variation is explained 675 

completely (EV=1), is achieved when the number of classes is equal to the number of data. Therefore, it would be dangerous 

to favour classifications with larger numbers of classes based on this metric. In the present study, the set of classes obtained 

with THmerge=0.45 provides the highest ratio of explained variation. Clusters of randomly chosen groups, as expected, show 

nearly no explained variation at all (see Table 1).   

Values of the metric DRATIO <1.0 indicate that, on average, elements within classes have shorter Euclidean distance to each 680 

other than to elements of other classes. Smaller values of DRATIO indicate a stronger separation of classes. The highest value 

of THmerge=0.45 provides the lowest value of DRATIO and, therefore, shows the best separation of classes in terms of Euclidean 

distance. In randomly chosen groups the value of DRATIO is close to 1, as also shown in Table 1, because of nearly equal 

distances between elements of the same class and of different classes.   

Table 1: Metrics for classes obtained in three experiments with varying merging-threshold (THmerge) applied on the “reference data” 685 
of 40 years. Values after “/” are those computed on random groups. 

THmerge Number 

of  

classes 

EV 

classes/random 

DRATIO 

classes/random 

SSIMin 

classes/random 

SSIMout 

classes/random 

SSIMRATIO 

classes/random 

0.40 37 0.3825/0.0028 0.6059/0.9968 0.3252/0.0317 0.0158/0.0316 20.58/1.00 

0.425 52 0.4055/0.0042 0.5839/0.9954 0.3412/0.0319 0.0180/0.0316 19.96/1.01 

0.45 89 0.4476/0.0066 0.5447/0.9929 0.3695/0.0317 0.0215/0.0316 17.19/1.00 

 

Indicators SSIMin and SSIMout represent the influence of the similarity constrain by THmerge on the separability/homogeneity of 

the final classes. A good performance of the classification is achieved when similarity among elements of one class SSIMin is 

much higher than the similarity to elements of other classes SSIMout i. e. SSIMRATIO should be maximized. The maximal 690 

mean similarity among elements of the same class (SSIin=0.3695) is given by THmerge=0.45, however, the mean similarity 

between pairs of elements of different classes (SSIout=0.0215) is also the highest for this threshold indicating stronger 

similarities among elements of different classes as well. Finally, SSIMRATIO – an indicator of class separation on terms of 

similarity - is highest (20.58) for THmerge=0.40 and shows the favourable separation of classes in terms of similarity among 

elements.  695 

At this point we make an important decision and choose the classification obtained with the merging threshold of 

THmerge =0.400 for further analysis for two reasons: 1) this threshold provides good class separation; 2) using this value 

we produce fewer classes, which can be meaningfully statistically analysed (a higher threshold value would produce 
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more classes with fewer members).  It is also important to note that a smaller number of classes is easier to describe 

verbally, more intuitive to understand and to separate visually. 700 

The stop-criterion in the clustering algorithm guarantees that the maximum similarity between final classes is less than THmerge. 

In other words, there is no pair of final medoids similar to each other, otherwise they would have ended up in the same cluster. 

Although it cannot be demanded that cluster centroids (means) also satisfy the same criterion on the maximum pairwise 

similarity, it can be demanded that cluster centroids are at least not "strongly similar" i.e. pairwise SSIM<0.60. Figure 10 

shows matrices of pairwise similarities for medoids (left) and for corresponding centroids (right). Some pairs of centroids have 705 

a similarity value higher than any pair of medoids (circles show SSIM≥0.40) due to the fact, that the similarity of medoids but 

not of centroids was the optimized quantity in the clustering algorithm. The maximal similarity for a pair of centroids is 

SSIM=0.542 (for centroids 1 and 22) i.e. there is no pair of "strongly similar" centroids. This gives an evidence that the two-

stage clustering algorithm that uses medoids as class centres produces classes with also meaningfully separated centroids. 

 710 

 

Figure 10: Matrix of pairwise similarity values for 37 classes derived with THmerge=0.40. Left panel: the matrix of SSIM for cluster 
medoids. Right panel: the matrix of SSIM for cluster centroids. Circles show similarity values greater than 0.40. Only the upper left 
half of each matrix is shown due to the symmetry; diagonal elements have SSIM=1.  

4.4 Cluster stability 715 

Temporal stability. As we apply the classification algorithm on the data volume of 1,2, .. 40 years. The number of derived 

classes “levels off” after approximately 30 years of daily data for all values of THmerge (Figure 6): this means that all possible 

synoptic patterns are likely to be captured within 30 years. This data volume matches with periods typically used for assessing 

the variability of other climate variables. Thus, we recommend the minimum critical data amount minNYR=30 years of data 

for a temporally stable classification. To support this recommendation, we compute the matrix of the “mean weighted 720 
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similarity”  mwSSIM for 61 sets of classes retrieved on 30, 35 and 40 years of data. We require this matrix to have all elements 

mvSSIMi,j> 0.40 i.e. each pair of sets of classes must be on average similar to each other.  

The number of classes in all 61 sets generated on minNYR=30 years of data varies from 36 to 59 classes, with the mean number 

of classes 42. For all 61 sets of classes, we computed the pairwise mean weighted similarity mwSSIM (Figure 11). The value 

of mwSSIM(k,l) shows the match of all classes from the set k to all classes from the set l, weighted by the frequency of the 725 

classes in the set k. The matrix of pairwise mwSSIM values is not symmetric: mwSSIM(k,l)≠mwSSIM(k,l) as the sets k and l 

may have different numbers of classes and also the classes differ. When the numbers of classes in sets k and l are different, the 

following may occur: for class i from set k the class j from set l is the most similar counterpart, but (!) for the class j from the 

set l a different class h from set k is the most similar one, leaving the class i being the second most similar counterpart for j. In 

a case of a “perfect match” the mwSSIM=1 i.e. indicating the identity of two sets of classes. Negative values of mwSSIM would 730 

indicate two different sets of classes without any element from one set similar to any element in the other set. In our analysis 

we only consider mwSSIM for different pairs of classifications (diagonal elements of the mwSSIM matrix are always 1.0 

anyway).  The maximum mwSSIM = ~1.00 (almost identity!) is attained by 7% of all pairs, strong similarity with mwSSIM ≥ 

0.60 show 54% of all pairs. The mean value of pairwise mwSSIM for all [different] classifications is 0.63. Figure 11 shows 

that all sets of classes are similar to all sets of classes in a pairwise comparison i.e. all pairwise similarity values are greater 735 

than the threshold (THmerge=0.40) with the minimum mwSSIM =0.53. This is indeed a good result. This allows us to say that 

the two-stage classification produces similar sets of clusters also when initialized by randomly chosen subsets of the input 

data. 
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Figure 11: Mean weighted similarity, mwSSIM, for each of 61 sets of classes to each other. Each set of classes was derived on minNYR 740 
=30 years of input data. The diagonal elements are not shown because mwSSIM=1 of a set of the classes to itself. The matrix is not 
symmetric: mwSSIM(k,l)≠mwSSIM(k,l) as the sets of classes k and l may have a different number of classes. 

We repeat the calculation of mwSSIM on 35 and 40 years of data (not shown) in order to make sure that the classification 

algorithm produces similar sets of classes on larger data volumes as well. When the data volume is set minNYR=35 the number 

of classes varies from 31 to 48 among 61 sets of classes, with minimum mwSSIM = 0.55 and mean mwSSIM = 0.65. On the 745 

maximal data volume (40 years) number of classes varies from 35 to 49, with minimum mwSSIM = 0.54 and mean mwSSIM 

= 0.64. These calculations of mwSSIM on other data volumes only support our previous findings: all pairwise values of 

mwSSIM are greater than the similarity threshold indicating that our two-stage clustering algorithm applied to randomly chosen 

data builds sets of similar classes. 

Spatial stability. For testing the stability of the method in space, additionally to the classes on the reference data set (2ºx3º), 750 

two sets of classes were built on the low-resolution (4ºx6º) and on the high-resolution (1ºx1.5º) by resampling the original 

reanalysis fields to these spatial resolutions. The clustering algorithm was run with the data on each spatial resolution using 

the same threshold THmerge=0.40. This poses some restrictions on the interpretation of the results. First: two images on different 

spatial resolutions derived from the same original image are not necessarily identical (!) in terms of SSIM because they contain 

different amounts of information. The SSIM-value deteriorates with the increasing spatial resolution as the degree of detail in 755 
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the images grows. Following this argument, it would be impossible to build the same set of classes at various spatial resolutions 

with the same threshold on similarity. However, it can be required that some classes emerge at all spatial resolutions. Examples 

of such SP-classes are shown in Figure 12 at three spatial resolutions.  

 

Figure 12: Examples of SP-classes on three spatial resolutions. The middle column shows reference SPs built from the “reference 760 
data” (2ºx3º, 22x22 grid cells) with their frequencies (%). The left-side column shows corresponding patterns on the low-resolution 
(4ºx6º, 11x11 grid cells), the right-side column - on the high-resolution (1ºx1.5º, 44x44 grid cells). Both plots for low- and high-
resolution counterparts show the SSIM-value to the reference SP-class on top of each plot.  

Figure 12 shows six SP-classes at the original resolution (middle plots) and their counterparts in the low- and high-resolution 

sets of classes. Please note: the SP-classes are built at each resolution independently and are not just re-sampled copies of the 765 

same classes. Therefore, some discrepancy must be tolerated among the classes at different resolutions as they are medoids of 

independently formed classes. Despite of such discrepancies the SP-classes show essentially the same geopotential anomalies 
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at all spatial resolutions. Although it is not required, classifications on the three spatial resolutions have 37 classes each. The 

mean similarity for all 37 SP-classes built on the “reference data” to their counterparts on the low-resolution is 0.53; to their 

counterparts on the high-resolution is 0.52. These high numbers (>0.40) indicate the ability of the new clustering algorithm to 770 

reproduce similar SP-classes on different spatial resolutions i.e. spatial stability of this algorithm.  

4.5 Cluster reproduction and representativity 

The two-stage classification method uses medoids for representing clusters for the reasons of stability. A medoid of a cluster 

can be seen as “the representative element” of this cluster i.e. element most similar to all other elements in the cluster (definition 

of the medoid). Once the cluster is changed (merged with another one by the hierarchical step for example) the medoids are 775 

recomputed. Every new attribution of an element to a cluster is done to the most similar medoid (this ensures exclusive 

attribution of similar elements to clusters). For the final set of classes we demonstrate that the medoids are strongly similar to 

cluster means (centroids) i.e. cluster medoids effectively represent the mean patterns of their classes. We analyse the set of 37 

classes built on the “reference data” and compute for each class the similarity value between its centroid and medoid (Table 

2). A good representativity is achieved when medoid and centroid of each class are "strongly similar". The Table 2 shows 780 

exactly this: SSIM(medoidi, centroidi)≥0.60 for all classes i. If the medoid and the centroid are “strongly similar”, it guarantees 

that there are no or negligibly few “extravagantly” dissimilar members in that class. Otherwise, the mean (centroid) would 

have lost its similarity to the medoid being distorted by the averaging with dissimilar members. The "strong similarity" between 

medoids and centroids for all 37 classes was found indicating the very good representability of clusters by their medoids. The 

mean similarity between medoids and centroids over all 37 classes is 0.78; weighted by the class frequency is 0.79. This is a 785 

very good result that shows the strong resemblance between medoids and centroids of the clusters and illustrates the 

representativity of classes by their medoids. 

Table 2: Set of 37 SP-classes on “reference data” with THmerge=0.40: index of Synoptic Pattern (SP), Fraction (Fr) in percent of the 
class in the “reference data” and the Similarity (SSIM) value between medoid and centroid of the class. 

SP Fr [%] SSIM SP Fr [%] SSIM SP Fr [%] SSIM SP Fr [%] SSIM 
1 11.6 0.77 11 0.5 0.71 21 0.1 0.67 31 0.2 0.75 
2 4.4 0.85 12 2.2 0.79 22 3.9 0.77 32 1.6 0.76 
3 4.9 0.81 13 3.3 0.78 23 0.9 0.70 33 3.8 0.84 
4 5.2 0.81 14 2.3 0.83 24 1.0 0.76 34 0.9 0.73 
5 3.7 0.80 15 5.7 0.80 25 1.0 0.76 35 0.5 0.81 
6 8.0 0.79 16 3.7 0.76 26 0.5 0.84 36 1.7 0.76 
7 3.7 0.81 17 3.3 0.80 27 6.5 0.76 37 0.3 0.74 
8 1.8 0.79 18 2.1 0.82 28 1.5 0.72 - - - 
9 3.1 0.77 19 2.0 0.74 29 1.1 0.75 - - - 
10 2.4 0.77 20 0.4 0.73 30 0.3 0.79 - - - 

 790 
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Figure 13 illustrates medoids and centroids for the five most frequent SP-classes. As expected, each medoid has a higher 

amplitude of anomalies and the corresponding centroid shows essentially the same pattern but with weaker anomalies. The 

Mean Absolute Difference (the sum of absolute differences between each element in the class and its medoid) between the 

two shows the highest values at the locations of strong amplitudes in the medoid fields and lower values at locations on "edges" 

of synoptic patterns. This is expectable because the covariance term of SSIM (Eq. 3) penalizes a displacement of anomalies 795 

stronger than a mismatch of anomalies’ amplitudes i.e. steers the clustering method to prefer correctly placed anomalies over 

their correctly estimated amplitudes (by a false placement). Figure 13 shows the high similarity between the class medoids and 

their centroids and indicates that these classes are not “snowballs”: although the classes may have many members, they show 

pronounced and similar (within the class) structural patterns. This illustrates that the clustering method sensitively groups SP-

patterns with similar composition of the anomalies into classes using the SSIM as a similarity measure for pairs of geopotential 800 

fields.      

 

Figure 13: Medoids (left column), means/centroids (centre column) and their Mean Absolute Difference (right column) for five most 
frequent SP-classes. Frequency of each SP-class is shown on top of each medoid plot, SSIM between medoid and centroid is shown 
on the top of each plot of the mean. 805 
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5 Weather extremes affiliated with the synoptic classes 

We compute maps of exceedance probabilities for two variables - daily near-surface air temperature tas and daily total 

precipitation pr – for each synoptic class using maps of exceedance of 90th-percentile for days in corresponding clusters. The 

computed for each class map of exceedance probability is limited to the area of Germany only as we were able to validate 

these data using data-sources of national observations. Figure 14 shows the maps of exceedance probabilities of 90th-percentile 810 

for temperature and precipitation affiliated with four exemplary synoptic classes. The class SP5, not a very rare one with 

occurrence of 3.7% in the data, has no indication to exceptionally warm or wet weather as both maps of exceedance probability 

remain “empty” (no exceedance). For the class SP2 the map of exceedance probability for precipitation shows a frequent 

exceedance of 90th-percentile everywhere in Germany with a higher probability in the southern region. The class SP35, one of 

the rare classes with only 0.5% of data, appears to be frequently “hot”. The class SP29, also a rare one, frequently exhibits 815 

warm and wet weather conditions.  

 

 

Figure 14: Examples of synoptic classes and corresponding maps of exceedance probability for temperature (tas) and precipitation 
(pr).  820 
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Maps of exceedance probabilities for all classes are shown in supplementary material (Figure S3 - Figure S7). Some clusters 

show no exceedances of 90th-percentile for either variable (SP3, 5, 9, 14, 17, 37), but some others do. Apart from the type of 

extreme events, which materialize through persistence of possibly not very rare circulation types (SP 1, 2, 6, 7, 15), there are 

others that are related to rare circulation patterns. Rare classes (with occurrence of less than 2% in total data) SP 25, 28, 29, 

30, 34 and 35 are often very warm. Rare classes SP 19, 20, 21, 23, 24, 29, 30, 31, 32, 36 show high probabilities of intense 825 

precipitation. Precipitation is an especially “difficult” variable to evaluate in models. Dry/wet biases in models may result from 

bad physical parameterisations or/and from models disability to reproduce the correct synoptic pattern. Therefore, knowing 

that a particular synoptic pattern often goes along with strong precipitation, we can check if a model is able to reproduce this 

pattern or not. This knowledge would help to attribute precipitation errors to errors in models physics or dynamics. 

6 Statistics and the Jensen-Shannon distance metric for evaluation of CMIP6 historical climate simulations 830 

In Figure 15 we show examples of the three statistics: histogram of class frequencies HIST, class-to-class transition matrix 

TRANSIT, and matrix of persistence PERSIST of each class for 1,2,..8 days. We chose to present these statistics for only three 

data sets - the reference and two models - for demonstration purposes. Figure 15a shows the large spread of frequencies of SP-

classes that conditions high spread in frequencies of transition matrices (Figure 15b) and persistence matrices (Figure 15c).  

As we suggest using the statistics HIST, TRANSIT and PERSIST for evaluation of climate models, a question on the robustness 835 

of these statistics may arise. We take 40 sub-samples (30 years each) of the original ERA-Interim full data set of 1979-2018 

and assign these data to the final 37 synoptic classes. For each statistic we compute the mean and the standard deviation (sd) 

of these 40 re-samples. As a very rough, zeroth-order check of robustness we compare the estimated values in the frequency 

histograms and the TRANSIT/PERSIST matrices with two times their resampling standard deviation. We discuss the results of 

this analysis of robustness in detail in the supplement (“Analysis of the robustness of the estimates for the statistics 840 

HIST/TRANSIT/PERSIST”).   

For evaluation of CMIP6 climate historical simulations, we assign each models output to the set of reference SP-classes and 

compute the Jensen–Shannon distance (Eq.12) for this model to the reference. As each class is represented by its medoid, the 

class separation is sharper and the assignment of data samples less ambiguous as compared to the common practices of using 

centroids. The attribution of each data element to a class is done using SSIM with respect to the class medoids. 845 
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Figure 15: Examples of statistics for the reference data and two CMIP6-models: a) HIST – histogram of frequencies for each SP-
class; b) TRANSIT matrices for each pair of SP-classes; where diagonal elements show transition for the same class i.e. persistence, 
c) PERSISTENCE matrices that show number of events when each SP-class persisted for 1,2, ..8 days (this statistic is shown in 850 
absolute values - non-normalized – for better readability).  

The Jensen–Shannon distance (JS) is computed for the one-dimensional statistics (HIST, HISTDJF, HISTMAM, HISTJJA, HISTSON) 

as well as for the two-dimensional TRANSIT, PERSIST between the two probability distributions for each model and the 

reference. Resulting values of JS (Table 3) can be combined to suit objectives of the model evaluation, for example, seasonally 

separated JS(HISTDJF), JS(HISTMAM), JS(HISTJJA), JS(HISTSON) can be used in evaluating seasonal frequencies of synoptic 855 

patterns, JS(PERSIST) for evaluating of the duration of synoptic patterns. In this paper, we equally weight all JSs and compute 

the Mean Jensen-Shannon distance (Table 3). A Jensen-Shannon distance of 0.0 indicates the identity between the model and 
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the reference. The benchmark for this study: the Mean Jensen-Shannon distance for the alternative reanalysis NCEP1 is 0.034 

and can be viewed as the best possible JS for a model.    

Table 3: CMIP6 Models and their Jensen-Shannon distances (JS). The mean Jensen-Shannon distance (Mean JS) is computed for 860 
each model as the mean of its individual JSs for each model statistic. The two last rows contain the mean (MEAN) and the standard 
deviation (STDDEV) of all JSs for the same statistic across 32 CMIP6 models.  

Nr Model name JS for individual statistics Mean JS 
HIST HISTDFJ HISTMAM HISJJA HISTSON TRANSIT PERSIST 

- ERAINT(ref.reanalysis) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
- NCEP (alt.reanalysis) 0,013 0,017 0,020 0,028 0,021 0,079 0,062 0,034 
1 ACCESS-CM2 0,057 0,115 0,065 0,125 0,080 0,165 0,128 0,105 
2 AWI-ESM-1-1-LR 0,072 0,097 0,092 0,126 0,114 0,170 0,125 0,114 
3 BCC-CSM2-MR 0,061 0,096 0,085 0,140 0,111 0,168 0,122 0,112 
4 BCC-ESM1 0,067 0,113 0,106 0,143 0,104 0,171 0,124 0,118 
5 CanESM5 0,061 0,124 0,097 0,091 0,096 0,174 0,128 0,110 
6 CESM2 0,064 0,093 0,081 0,116 0,101 0,164 0,126 0,107 
7 CESM2-FV2 0,079 0,125 0,087 0,138 0,120 0,181 0,136 0,124 
8 CESM2-WACCM-FV2 0,074 0,118 0,113 0,151 0,089 0,174 0,132 0,122 
9 CMCC-CM2-SR5 0,073 0,111 0,080 0,161 0,100 0,176 0,125 0,118 
10 CNRM-CM6-1 0,059 0,105 0,081 0,150 0,088 0,169 0,128 0,111 
11 CNRM-ESM2-1 0,043 0,098 0,087 0,119 0,089 0,164 0,126 0,104 
12 EC-Earth3 0,054 0,091 0,076 0,137 0,095 0,164 0,120 0,105 
13 EC-Earth3-Veg 0,068 0,091 0,081 0,165 0,085 0,170 0,117 0,111 
14 FGOALS-f3-L 0,068 0,147 0,104 0,173 0,076 0,170 0,124 0,123 
15 FGOALS-g3 0,073 0,141 0,097 0,145 0,081 0,175 0,138 0,121 
16 GISS-E2-1-G 0,061 0,127 0,097 0,178 0,093 0,171 0,120 0,121 
17 HadGEM3-GC31-LL 0,050 0,108 0,078 0,107 0,086 0,161 0,132 0,103 
18 HadGEM3-GC31-MM 0,054 0,090 0,084 0,116 0,077 0,163 0,122 0,101 
19 INM-CM4-8 0,071 0,106 0,096 0,170 0,110 0,182 0,136 0,124 
20 INM-CM5-0 0,059 0,089 0,095 0,121 0,123 0,166 0,139 0,113 
21 IPSL-CM6A-LR 0,065 0,099 0,099 0,181 0,131 0,169 0,132 0,125 
22 IPSL-CM6A-LR-INCA 0,056 0,124 0,094 0,176 0,131 0,168 0,136 0,126 
23 KACE-1-0-G 0,051 0,090 0,081 0,125 0,079 0,163 0,130 0,103 
24 MIROC6 0,063 0,105 0,076 0,136 0,094 0,164 0,136 0,111 
25 MPI-ESM-1-2-HAM 0,061 0,104 0,085 0,127 0,104 0,168 0,122 0,110 
26 MPI-ESM1-2-HR 0,057 0,105 0,082 0,098 0,088 0,166 0,118 0,102 
27 MPI-ESM1-2-LR 0,056 0,103 0,070 0,112 0,085 0,164 0,124 0,102 
28 MRI-ESM2-0 0,052 0,090 0,098 0,122 0,079 0,161 0,118 0,103 
29 NorESM2-LM 0,077 0,124 0,134 0,175 0,126 0,180 0,142 0,137 
30 NorESM2-MM 0,065 0,108 0,087 0,127 0,126 0,172 0,129 0,116 
31 TaiESM1 0,060 0,121 0,091 0,119 0,091 0,166 0,134 0,112 
32 UKESM1-0-LL 0,060 0,073 0,082 0,139 0,089 0,161 0,128 0,105 
- MEAN (32 models) 0,062 0,107 0,089 0,138 0,098 0,169 0,128 0,113 
- STDDEV(32 models) 0,008 0,016 0,013 0,024 0,017 0,006 0,007 0,009 
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The mean Jesnsen-Shannon distance, meanJS, indicates how well the respective model captures the synoptic circulation in the 

reference data ERA-Interim (smaller distance – better match between the model and the reference, and vice versa). This 865 

distance metric can be easily transformed into a quality index using the formulae of Sanderson et al. (2015) and together with 

quality indices for scalar variables can be used for ranking the climate model simulations and as an evaluation measure. For 

example, the climate simulation NorESM2-LM seems to underperform all other models (Mean JS=0.137) whereas other 

models have higher values. Such diagnostic is a useful complement for model evaluation: poor quality scores from evaluation 

of synoptic patterns should be seen as warning prior to analysing scalar variables.  870 

7 Conclusions 

We presented a new two-stage classification method that uses the Structural Similarity Index Measure (SSIM) for building 

classifications of synoptic circulation patterns, which are described by geopotential anomaly at the level of 500hPa. This 

classification method produces a set of well separated, consistent, and representative classes. The algorithm demonstrated its 

robustness against temporal variability and to the spatial resolution of the data. It classifies all input data fields without pre-875 

filtering and pre-initialization of classes, it builds structurally different classes with inter-class homogeneity. While explaining 

the procedure of developing the two-stage classification algorithm, we demonstrated the disadvantage of using the classical 

clustering algorithm k-means and the MSE as distance measure for cluster building when classifying meteorological fields 

such as geopotential. We hope this demonstration helps users and developers of classification methods to be careful with 

interpreting their results and to be conscious that some problems (such as “snowballing”) may be avoided by simple 880 

modifications of the clustering algorithm as illustrated in this paper. 

The important strength of the new classification method - its applicability to any region on the globe with no requirements on 

prior knowledge about weather types at that region. The applicability of our classification method to any region allows 

evaluation of models quasi-globally as it is done by Cannon (2020) for evaluation of CMIP5 and CMIP6 models: in 6 

continental-scale regions (or more). 885 

In this paper we describe the method – the recipe – to build a set of synoptic classes. We do not propose an "optimal 

classification" of synoptic patterns for all purposes. Depending on the purpose of classification, the presented classification 

method can be extended (from the single variable - geopotential anomaly at 500 hPa) to multiple variables by either targeting 

the optimization algorithm on a vector of similarity values, or defining the SSIM for vector-valued variables.  

We apply the new method on the reanalysis data ERA-Interim and built a set of synoptic classes (application of the 890 

classification method on other data sets may build other sets of synoptic classes). We demonstrate that separating rare classes 

may be useful for diagnostics of extreme weather events affiliated with these classes. Here we clearly make use of multiple 

synoptic classes as only few of them would hamper such attribution.  

As an example, we use this set of classes to evaluate the performance of 32 global CMIP6 climate models in the CORDEX-

EU domain. Model data were attributed to the reference set of classes and statistical parameters (frequency of occurrence of 895 
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each pattern, frequency of transitions from one pattern to another, persistence of each pattern) were computed for these models. 

We compared these statistical parameters to the parameters computed on the reference data, calculating the Jensen-Shannon 

distance metric, and suggest using it for computing a Quality Index (Sanderson et al., 2015) in evaluation routines for climate 

models as an additional diagnostic measure. Using the distance metric proposed in this study would help to avoid 

misinterpretations in model evaluation such as “right results for wrong reasons” - when a good match of scalar variables 900 

(temperature, precipitation etc.) between a model and the reference is achieved but the distance metric for synoptic patterns 

alerts about poor model performance. We believe, the use of such distance metric for synoptic patterns as proposed in this 

study would improve evaluating routines currently used for climate models and may give valuable feedback for model 

developers.  We emphasize readers’ attention here: the evaluation of model dynamics performed using synoptic classifications 

should not replace but complement (!) existing evaluation routines that use scalar variables and other metrics. Another 905 

application of the synoptic classes in the evaluation of climate models is the so-called “weather-pattern-based model 

evaluation” (Nigro et al., 2011). Surface climate model data are analysed conditionally on each class: this allows for the 

determination of model errors as a function of synoptic class and can highlight if certain errors occur under some synoptic 

situation and not others. Alternatively to evaluation, other applications of the two-stage classification are possible. A linkage 

of synoptic classes to extreme weather could be used in improving predictability of the numerical models as it was done by 910 

Nguyen-Le and Yamada (2019) who classified anomalous weather patterns associated with heavy rainfall in Thailand and 

implemented classification results into a Global Spectral Model (GSM) of the Japan Meteorological Agency improving the 

forecast skill with the lead time up to 3 days. However, we doubt that using synoptic classes in a form of “precursor” for 

particular weather events would be the best-suited instrument for improving weather forecasts beyond 3 days lead-time.   

Code and data availability 915 

The ERA-Interim reanalysis data are available https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim. The 
NCEP1 reanalysis data are available at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html.  

The Global Climate Model data used in this study are part of the World Climate Research Programme's (WCRP) 6th 
Coupled Model Intercomparison Project (CMIP6) open-access data. It was accessed through the Earth System Grid 
Federation (ESGF; https://esgf-node.llnl.gov/search/cmip6/. 920 
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