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Answers to comments of all Reviewers. 
 
Original comments of the Reviewers are listed in black, our answers - in blue colour, citations 
from the updated manuscript – in blue colour and italic. 
 
Pages  1-6: Answers to Reviewer 1 
Page       7: Answers to Reviewer 2 
Pages 8-13: Answers to Reviewer 3 
 
 
Answers to comments of the Reviewer 1 with point-by-point references to modifications in 
the manuscript. 
 
The usefulness of the suggested approach for capturing extreme events 
One of the major motivations given for the use of a large number of clusters in full field data 
was that this would help capture extreme events, whereas PCA based approaches with 
smaller numbers of clusters may not capture extremes. Unfortunately, neither side of this 
claim has been demonstrated. I also have some reasons to doubt the claim: looking at their 
figure 8, there is not much sign that the more common weather patterns are less extreme 
supporting than the rare patterns. Further, other work has shown that persistent regimes 
(i.e. common weather types) can drive cold and warm extremes. 
As I suggested previously: 
“I suggest that the authors more tightly focus the structure of the article around the 
importance of handling rare synoptic conditions and extremes in clustering  approaches, 
showing an example situation where an impactful event was linked to a very rarely occurring 
circulation as motivation. I would then suggest a concrete demonstration that the EOF 
Kmeans with MSE approach more poorly handles rare circulations than the SSIM approach in 
ERA Interim….” 
 
We added to the manuscript a new chapter that presents potential weather extremes 
associated with the synoptic classes (Lines 809-832): 
 
5 Weather extremes affiliated with the synoptic classes 
We compute maps of exceedance probabilities for two variables - daily near-surface air 
temperature tas and daily total precipitation pr – for each synoptic class using maps of 
exceedance of 90th-percentile for days in corresponding clusters. The computed for each 
class map of exceedance probability is limited to the area of Germany only as we were able 
to validate these data using data-sources of national observations. Figure 14 shows the maps 
of exceedance probabilities of 90th-percentile for temperature and precipitation affiliated 
with four exemplary synoptic classes. The class SP5, not a very rare one with occurrence of 
3.7% in the data, has no indication to exceptionally warm or wet weather as both maps of 
exceedance probability remain “empty” (no exceedance). For the class SP2 the map of 
exceedance probability for precipitation shows a frequent exceedance of 90th-percentile 
everywhere in Germany with a higher probability in the southern region. The class SP35, one 
of the rare classes with only 0.5% of data, appears to be frequently “hot”. The class SP29, 
also a rare one, frequently exhibits warm and wet weather conditions. 
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Figure 14: Examples of synoptic classes and corresponding maps of exceedance probability for temperature 
(tas) and precipitation (pr). 
 
We add new Figures S3-S7 (in supplementary) that show probability of exceedance of the 
90th-percentile for temperature and precipitation for each synoptic class.  
 
We add the description of additional data of temperature and precipitation (lines 207-212): 
Additionally to zg, we retrieve ERA-Interim daily near-surface atmosphere temperature (tas) 
and daily total precipitation (pr) for demonstrating potential weather extremes affiliated 
with each synoptic class (See Chapter 5). For these daily variables we compute 90th-
percentile map on the original spatial resolution within the chosen domain over the period 
1979-2018. For each daily variable we create a map of exceedance: locations where the 
variable exceeds its 90th-percentile gets the value of 1, otherwise – 0. These binary maps are 
summed up for days of the same synoptic class and normalized by the number of days in this 
class. Final map represents the exceedance probability for the synoptic class.   
 
We add to the conclusions (890-893): 
We apply the new method on the reanalysis data ERA-Interim and built a set of synoptic 
classes (application of the classification method on other data sets may build other sets of 
synoptic classes). We demonstrate that separating rare classes may be useful for diagnostics 
of extreme weather events affiliated with these classes. Here we clearly make use of multiple 
synoptic classes as only few of them would hamper such attribution. 
 
Even if it is the case that rare circulations are associated with rare extremes, when you 
compute the Jensen-Shannon divergence, you weight each class by frequency!  
So representation of rare flows has almost no impact on the resulting quality index. 
 
So representation of rare flows has almost no impact on the resulting quality index. 
Usefulness for climate model evaluation The authors also emphasise the value of their 
method for climate model evaluation. Indeed, circulation based metrics can be very useful 
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for such analysis. This can and has been done several different ways (although it would be 
easy to think otherwise reading the authors’ work), with only a 
few regimes at one extreme as in [1], or on a gridpoint basis as in [2] at the other extreme. 
However, I am seriously concerned that the method the authors suggest is not suitable for 
this purpose. 
 
We added a new chapter “Sensitivity of Jensen-Shannon distance metric” to the manuscript 
(supplement) on the sensitivity of the Jensen-Shannon distance. In this chapter we show 
how JS-distance changes in response to distortion in original distributions in frequent and 
rare elements. We show that single error in a rare element makes a small contribution to the 
JS-distance, but multiple errors in rare elements provide large changes in the JS-distance. 
 
We add to the manuscript the following statement (lines 582-585):  
Such distance measure is robust against the “noise” from rare classes and as well as rare 
class-to-class transitions, but not insensitive to them. We show Jensen-Shannon distance 
metric on various pairs of distributions Figure S2 and discuss its sensitivity in supplement 
chapter “Sensitivity of Jensen-Shannon distance metric”. We support this statement by the 
new chapter “Sensitivity of Jensen-Shannon distance metric” added to the supplement. 
 
As the Quality Indices (computed on Jensen-Shannon-distance) may look much of the same 
magnitude, we decided to refrain from describing the Quality Index in the present 
manuscript (as it may be only relevant for future evaluation application) and focus on 
demonstrating the Jensen-Shannon distance for differentiating among CMIP6 models. 
Therefore, we adapted the Table 3: “CMIP6 Models and their Jensen-Shannon distances 
(JS)...” and the discussion of its content (lines 855-873):    
The Jensen–Shannon distance (JS) is computed for the one-dimensional statistics (HIST, 
HISTDJF, HISTMAM, HISTJJA, HISTSON) as well as for the two-dimensional TRANSIT, PERSIST 
between the two probability distributions for each model and the reference. Resulting values 
of JS (Table 3) can be combined to suit objectives of the model evaluation, for example, 
seasonally separated JS(HISTDJF), JS(HISTMAM), JS(HISTJJA), JS(HISTSON) can be used in 
evaluating seasonal frequencies of synoptic patterns, JS(PERSIST) for evaluating of the 
duration of synoptic patterns. In this paper, we equally weight all JSs and compute the Mean 
Jensen-Shannon distance (Table 3). A Jensen-Shannon distance of 0.0 indicates the identity 
between the model and the reference. The benchmark for this study: the Mean Jensen-
Shannon distance for the alternative reanalysis NCEP1 is 0.034 and can be viewed as the best 
possible JS for a model.    
 
Table 3: CMIP6 Models and their Jensen-Shannon distances (JS). The mean Jensen-Shannon distance (Mean JS) 
is computed for each model as the mean of its individual JSs for each model statistic. The two last rows contain 
the mean (MEAN) and the standard deviation (STDDEV) of all JSs for the same statistic across 32 CMIP6 models. 
 

Nr Model name 
JS for individual statistics Mean 

JS HIST HISTDFJ HISTMAM HISJJA HISTSON TRANSIT PERSIST 

- ERAINT(ref.reanalysis) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
- NCEP (alt.reanalysis) 0,013 0,017 0,020 0,028 0,021 0,079 0,062 0,034 
1 ACCESS-CM2 0,057 0,115 0,065 0,125 0,080 0,165 0,128 0,105 
2 AWI-ESM-1-1-LR 0,072 0,097 0,092 0,126 0,114 0,170 0,125 0,114 
3 BCC-CSM2-MR 0,061 0,096 0,085 0,140 0,111 0,168 0,122 0,112 
4 BCC-ESM1 0,067 0,113 0,106 0,143 0,104 0,171 0,124 0,118 
5 CanESM5 0,061 0,124 0,097 0,091 0,096 0,174 0,128 0,110 
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6 CESM2 0,064 0,093 0,081 0,116 0,101 0,164 0,126 0,107 
7 CESM2-FV2 0,079 0,125 0,087 0,138 0,120 0,181 0,136 0,124 
8 CESM2-WACCM-FV2 0,074 0,118 0,113 0,151 0,089 0,174 0,132 0,122 
9 CMCC-CM2-SR5 0,073 0,111 0,080 0,161 0,100 0,176 0,125 0,118 
10 CNRM-CM6-1 0,059 0,105 0,081 0,150 0,088 0,169 0,128 0,111 
11 CNRM-ESM2-1 0,043 0,098 0,087 0,119 0,089 0,164 0,126 0,104 
12 EC-Earth3 0,054 0,091 0,076 0,137 0,095 0,164 0,120 0,105 
13 EC-Earth3-Veg 0,068 0,091 0,081 0,165 0,085 0,170 0,117 0,111 
14 FGOALS-f3-L 0,068 0,147 0,104 0,173 0,076 0,170 0,124 0,123 
15 FGOALS-g3 0,073 0,141 0,097 0,145 0,081 0,175 0,138 0,121 
16 GISS-E2-1-G 0,061 0,127 0,097 0,178 0,093 0,171 0,120 0,121 
17 HadGEM3-GC31-LL 0,050 0,108 0,078 0,107 0,086 0,161 0,132 0,103 
18 HadGEM3-GC31-MM 0,054 0,090 0,084 0,116 0,077 0,163 0,122 0,101 
19 INM-CM4-8 0,071 0,106 0,096 0,170 0,110 0,182 0,136 0,124 
20 INM-CM5-0 0,059 0,089 0,095 0,121 0,123 0,166 0,139 0,113 
21 IPSL-CM6A-LR 0,065 0,099 0,099 0,181 0,131 0,169 0,132 0,125 
22 IPSL-CM6A-LR-INCA 0,056 0,124 0,094 0,176 0,131 0,168 0,136 0,126 
23 KACE-1-0-G 0,051 0,090 0,081 0,125 0,079 0,163 0,130 0,103 
24 MIROC6 0,063 0,105 0,076 0,136 0,094 0,164 0,136 0,111 
25 MPI-ESM-1-2-HAM 0,061 0,104 0,085 0,127 0,104 0,168 0,122 0,110 
26 MPI-ESM1-2-HR 0,057 0,105 0,082 0,098 0,088 0,166 0,118 0,102 
27 MPI-ESM1-2-LR 0,056 0,103 0,070 0,112 0,085 0,164 0,124 0,102 
28 MRI-ESM2-0 0,052 0,090 0,098 0,122 0,079 0,161 0,118 0,103 
29 NorESM2-LM 0,077 0,124 0,134 0,175 0,126 0,180 0,142 0,137 
30 NorESM2-MM 0,065 0,108 0,087 0,127 0,126 0,172 0,129 0,116 
31 TaiESM1 0,060 0,121 0,091 0,119 0,091 0,166 0,134 0,112 
32 UKESM1-0-LL 0,060 0,073 0,082 0,139 0,089 0,161 0,128 0,105 
- MEAN (32 models) 0,062 0,107 0,089 0,138 0,098 0,169 0,128 0,113 
- STDDEV(32 models) 0,008 0,016 0,013 0,024 0,017 0,006 0,007 0,009 

 
The mean Jesnsen-Shannon distance, meanJS, indicates how well the respective model 
captures the synoptic circulation in the reference data ERA-Interim (smaller distance – better 
match between the model and the reference, and vice versa). This distance metric can be 
easily transformed into a quality index using the formulae of Sanderson et al. (2015) and 
together with quality indices for scalar variables can be used for ranking the climate model 
simulations and as an evaluation measure. For example, the climate simulation NorESM2-LM 
(Nr 29) seems to underperform all other models (Mean JS=0.137) whereas other models have 
higher values. Such diagnostic is a useful complement for model evaluation: poor quality 
scores from evaluation of synoptic patterns should be seen as warning prior to analysing 
scalar variables. 
 
Usefulness for climate model evaluation  
The authors also emphasise the value of their method for climate model evaluation. Indeed, 
circulation based metrics can be very useful for such analysis. This can and has been done 
several different ways (although it would be easy to think otherwise reading the authors’ 
work), with only a few regimes at one extreme as in [1], or on a gridpoint basis as in [2] at 
the other extreme. 
However, I am seriously concerned that the method the authors suggest is not suitable for 
this purpose. 
The author’s explain that using similarity as a metric, ~37 weather patterns are needed to 
fully capture the diversity of European circulations. I accept this, and it is a useful 
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perspective, and similarity is a nice way to quantify this. Exploring spatial and seasonal 
variations in this number of ‘necessary patterns’ could be an interesting dynamical study. 
But, for model evaluation, the question of relevance is not how many weather patterns you 
need, but how many weather types you can constrain, given data limitations. 
 
We add the following text to the manuscript (lines 614-618):  
At the first glance at Figure 7 all 37 classes may look “patchy” and not different enough from 
each other. However, all these classes are not similar according to our definition as each pair 
of them has a similarity value smaller than 0.40 (the threshold chosen for the classification 
algorithm). It is important to note that as the class separation is done in terms of SSIM these 
classes do not have to be differentiated in terms of MSE. We showed previously (Figure 1 and 
Figure 3) examples of pairs of patterns that are similar in terms of MSE, but differ in terms of 
SSIM.   
Also we add (lines 844-846): As each class is represented by its medoid, the class separation 
is sharper and the assignment of data samples less ambiguous as compared to the common 
practices of using centroids. The attribution of each data element to a class is done using 
SSIM with respect to the class medoids. 
 
The authors compute error metrics for weather pattern frequency (37 elements), transition 
matrix (37x37 =1369 elements) and persistence probability over days 1-8 (37x8=296 
elements). Simply put, using 40 years of ERA-Interim the sampling uncertainty in such fine-
grained metrics are almost certainly far larger than any difference between climate models 
and era-interim. The fact that the inter-model variation in scores is so low reinforces this 
point. I believe your quality index is almost entirely noise, averaged over a few hundred 
variables.  
I make this claim quite confidently, as I know that it is difficult to find significant differences 
in the frequency and persistence of models and reanalysis when only using 3-10 regimes, 
and 100 years of data. Of course I would be pleased to be proven wrong: if you can 
rigorously constrain sampling variability in model and observational statistics, and so provide 
upper and lower bounds on your quality index, and still get meaningful results, then the 
scientific contribution is strong. Otherwise, I would move away from climate model 
evaluation as a goal for this methodology. 
 
We complemented the manuscript with additional part “Analysis of the robustness of the 
estimates for the statistics HIST/TRANSIT/PERSIST” (in supplement), where we analyse the 
robustness of the estimated statistics. We added to the manuscript the following part (lines 
838-844): 
As we suggest using the statistics HIST, TRANSIT and PERSIST for evaluation of climate 
models, a question on the robustness of these statistics may arise. We take 40 sub-samples 
(30 years each) of the original ERA-Interim full data set of 1979-2018 and assign these data 
to the final 37 synoptic classes. For each statistic we compute the mean and the standard 
deviation (sd) of these 40 re-samples. As a very rough, zeroth-order check of robustness we 
compare the estimated values in the frequency histograms and the TRANSIT/PERSIST 
matrices with two times their resampling standard deviation. We discuss the results of this 
analysis of robustness in detail in the supplement (“Analysis of the robustness of the 
estimates for the statistics HIST/TRANSIT/PERSIST”).   
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We added the chapter “Analysis of the robustness of the estimates for the statistics 
HIST/TRANSIT/PERSIST” to the supplement.  
 

Synthetic data 
The synthetic data section raises some questions for me. One clear point that I found 
interesting is that K-means leads to distorted patterns (i.e. not circles as in the synthetic 
data). However, I think the other points would be better made in ERA Interim than in the 
synthetic data. The synthetic data does not have multimodal structure, so there is no reason 
to expect any clustering algorithm to give very clear clusters: there are no clusters to 
identify, just ‘hallucinations’ of the method. In fact, you could argue that in non-structured 
data, a good clustering algorithm should give unclear structures. 
 
We have re-written the part of the text to make it more clear (Lines 166-172): 
We generated this synthetic data using Gaussian-shaped anomalies trying to mimic the 
smooth shape of geopotential patterns (the real data we wish to use later) and to illustrate 
how such anomalies are treated by the classification algorithm. The synthetic data are 
generated randomly and have no genuine structure of the geopotential patterns. However, 
any clustering algorithm should produce clusters governed by the position of the largest 
anomaly in the domain and its sign. The original circular shapes of the synthetic generated 
data help to illustrate how such shapes are grouped into classes by classifications in a simpler 
manner as if we would have used the real data for this demonstration (using real data makes 
these distortions less obvious). 
 
Also, I do not follow the claim about snowballing: the k-medoids with SSIM produces the 
most snowballing of all algorithms shown in figure 4. 
 
The “snowballing” does not mean forming classes with many elements but classes with 
“vanishing structure” (i.e. with dissimilar elements in one class), which is not the case in 
Figure 4 d. We explained this in the manuscript lines 317-325: 
We already showed (Figure 1 and Figure 3) that small MSE does not guarantee the structural 
similarity of compared patterns. Classes built with k-means-MSE show very little structural 
detail as a result of building cluster centroids over multiple class elements, whose structural 
similarity remained unaccounted. The danger of having such classes “with vanishing 
structure” is that they may serve as attractors for further elements as the clustering 
algorithm runs targeting at minimizing MSE only. This leads to the so-called “snowballing” 
effect i.e. the more elements are assigned to this class, the less structure shows its centroid, 
the more elements are assigned and so on. Cluster 9 (Figure S1) is a good example of such 
“snowball”-class: although all shown elements have comparable small MSE to the final class 
centre, their visual (for an observer) and computed similarity (value of SSIM) differs strongly 
as shown for a group of the first 28 elements (out of 132) indicating a strong structural 
inhomogeneity of patterns contained in one class. This example demonstrates the danger of 
building “snowball” classes when using MSE as distance metric for data with highly 
structured patterns. 
 
We added also (Lines 800-803):  
Figure 13 shows the high similarity between the class medoids and their centroids and 
indicates that these classes are not “snowballs”: although the classes may have many 
members, they show pronounced and similar (within the class) structural patterns.  
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Answers to comments of the Reviewer 2 with point-by-point references to modifications in 
the manuscript. 
 
The authors have made a significant effort to improve their manuscript upon my earlier 
suggestions. 
Nevertheless, I would like to read the author's response to Reviewer 1 raised weaknesses 
before recommending acceptance. 
 
We hope Reviewer 2 would find our answers to comments of Reviewer 1 convincing. 
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Answers to comments of the Reviewer 3 with point-by-point references to modifications in 
the manuscript. 
 
General Comments  

1. While the manuscript is very detailed in explaining and testing the methodology that 
was developed to classify synoptic circulations the connection and application of the 
method to the main motivation for its development, “to extend the evaluation 
routine for climate simulations”, is not given the same amount of detail and attention 
as it should. The manuscript as is should more clearly demonstrate how the method 
accomplishes this objective and how it adds value to the current evaluation of 
climate simulations that would warrant the effort required to implement it. One 
possible suggestion, given the length of the paper and detail provided to the actual 
methodology and its testing, could be to make the application of evaluating CMIP6 
simulations with this algorithm as a separate manuscript where that specific 
application of the method can be discussed and demonstrated in a complete manner.  
 

Our proposed method provides only a metric that can be used in a comprehensive 
evaluation routing for climate simulations along with a number of other [already existing] 
metrics. We state this in the manuscript more clearly (lines 20-24): 
We demonstrate an exemplary application of the synoptic circulation classes obtained with 
the new classification method for evaluating CMIP6 historical climate simulations and an 
alternative reanalysis (for comparison purposes): output fields of CMIP6 simulations (and of 
the alternative reanalysis) are assigned to the classes and the Jensen-Shannon distance is 
computed for the match in frequency, transition and duration probabilities of these classes. 
We propose using this distance metric to supplement a set of commonly used metrics for 
model evaluation. 
 
We clarify the following statement in the conclusions (lines 899-905): 
Using the distance metric proposed in this study would help to avoid misinterpretations in 
model evaluation such as “right results for wrong reasons” - when a good match of scalar 
variables (temperature, precipitation etc.) between a model and the reference is achieved 
but the distance metric for synoptic patterns alerts about poor model performance. We 
believe, the use of such distance metric for synoptic patterns as proposed in this study would 
improve evaluating routines currently used for climate models and may give valuable 
feedback for model developers.  We emphasize readers’ attention here: the evaluation of 
model dynamics performed using synoptic classifications should not replace but complement 
(!) existing evaluation routines that use scalar variables and other metrics. 
 
We indeed plan to write a follow-up paper on the “full evaluation” of the CMIP6 models. 

 
2. While there is a good discussion in the introduction with respects to building synoptic 

classes in pervious work there was no mention of works that used approaches such 
as Machine Learning and AI which is becoming more popular within Earth system 
science as well as other fields. For example, Gervais et al. (2016) uses Self-Organizing 
Maps to classify Artic Air Masses from CESM-LE. I think it would be important to 
discuss how approaches like SOMs, Random Forrest, etc. have been used in the 
classification of synoptic patterns and how this new approach compares to them.  
 

We extended the introduction (lines 118-124): 
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A relatively new group of synoptic classification methods uses self-organizing maps 
(Kohonen, 2001). These SOM methods employ a neural network algorithm that discovers 
patterns in data in an unsupervised way. Such algorithms have an advantage as compared to 
methods based on the principal component analysis (PCA) and subsequent clustering of data 
as the SOM do not require orthogonality and stationarity of identified classes. Studies that 
use the SOM-technique to classify synoptic patterns and relate these patterns to local 
weather (Cassano et al., 2006; Gervais et al., 2016; Hewitson and Crane, 2002; Jiang et al., 
2011) typically use a pre-defined number of classes and employ the Euclidean distance 
measure for similarity between data elements and centroids for representing cluster centres. 
 
And added this (Line 233-235): 
Although k-means and its multiple variants, as well as the more general group of SOM-based 
methods with neighbour radius ≥1, are commonly applied in the field of the atmospheric 
science, they exhibit serious limitations with regard to our aims… 
 
Unfortunately, we were not able to find in [available to us] literature any application of 
random forests to classifications of synoptic weather patterns. 
 
Specific Comments  
 
LINE 20 – Why not state what the alternative reanalysis is instead of keeping it vague by just 
saying “alternative reanalysis”?  
 
We added a new comment on the choice of the reanalysis data to make it clearer (Lines 216-
220):  
The third data set is the alternative reanalysis NCEP1 (Kalnay et al., 1996). Any other 
reanalysis dataset may be taken. Assuming that the alternative reanalysis captures the 
synoptic circulation of the reference data ERA-Interim (both reanalysis product use and share 
at least some portion of global weather observations) better than any unconstrained global 
circulation model, the evaluation of an alternative reanalysis gives an estimate of the lower 
bound for the attainable value of the distance metric. 
   
LINE 175 – Would this method also work if considering more than one atmospheric variable 
mapped on the same domain, or can it only work with the use of a single variable?  
 
We add (lines 68-75): 
Weather patterns can be defined at a regular temporal step, typically one day (Lamb, 1972; 
Hess and Brezowsky, 1952; Fabiano et al., 2020; Cannon, 2012) and be classified independent 
on their duration (James, 2006; Cannon, 2012; Beck et al., 2007; Fettweis et al., 2010). 
Alternatively, only recurrent, quasi-stationary and temporally persistent states of the 
atmospheric circulation would be classified (Dorrington and Strommen, 2020; Hochman et 
al., 2021) eliminating short-term patterns in the final set of classes. 
There is no “universally correct” recipe on how to build synoptic classes and how many of 
them. Each application requires a number of classes constructed in a way best suitable for its 
purposes. A set of classes can be determined subjectively by an expert, as the well-known 
Hess-Brezowski Grosswetterlagen (Gerstengarbe and Werner, 1993; James, 2006; Hess and 
Brezowsky, 1952) or the Lamb weather types (Lamb, 1972), or using an automated 
classification method. 
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Weather situations are often described as patterns of positive and negative anomalies of 
geopotential (Hochman et al., 2021; Fabiano et al., 2020; Fettweis et al., 2010) or surface 
pressure (Lund, 1963; Beck et al., 2007), or a combination of both (Cannon, 2012; James, 
2006) seen together at the horizontal scale of about 1000 km (synoptic scale). 
 
But there is a variety of methods, which construct synoptic patterns on the basis of more 
than one variable (e.g. Bisolli&Dittmann 2001). 
 

- Bisolli, P. and Dittmann, E. (2001): The objective weather type classification of the 
German Weather Service and its possibilities of application to environmental and 
meteorological investigations. Meteorologische Zeitschrift, Vol. 10, No. 4, 253-260 

 
We also add a comment on the possible extension of the method (lines 886-889): 
In this paper we describe the method – the recipe – to build a set of synoptic classes. We do 
not propose an "optimal classification" of synoptic patterns for all purposes. Depending on 
the purpose of classification, the presented classification method can be extended (from the 
single variable - geopotential anomaly at 500 hPa) to multiple variables by either targeting 
the optimization algorithm on a vector of similarity values, or defining the SSIM for vector-
valued variables. 
 
LINE 175 – For this work, one time step a day was used, is the reason for this due to 
computational/time constraints or are there other issues that may arise using this method 
with more regular time steps, such as all timesteps in ERA-Interim or even if moving to the 
hourly timesteps in ERA-5. If there are restrictions associated with the method and 
temporal/spatial resolution of data that can be used it would be good to mention them at 
some point.  
We added a more detailed description of the data selection to the manuscript (lines 182-
187): 
Simulated synoptic regimes are represented by the geopotential height (zg) at the pressure 
level of 500hPa sampled daily at 12:00 UTC for two practical reasons: 1) it often matches the 
mid-day peak in extreme weather conditions and 2) it is a typically available time for model 
output (for subsequent model evaluation). There is no necessity of using more frequent fields, 
for example 1-, 3-, or 6-hourly, as this would increase the data volume but would not add 
more information on the synoptic patterns: these patterns do not replace each other in few 
hours but extend over large spatial scales and may persist for several days or longer. 
 
LINE 195 – Its not clear why NCEP1 was chosen as the alternative reanalysis compared to 
other available reanalysis datasets. Why would the assumption “Assuming that the 
alternative reanalysis captures the synoptic circulation of the reference data ERA-Interim 
better than any unconstrained global circulation mode” be made? Can more be said about 
this decision?  
 
We refer to our comment on the choice of the reanalysis data (Lines 216-220) as above:  
The third data set is the alternative reanalysis NCEP1 (Kalnay et al., 1996). Any other 
reanalysis dataset may be taken. Assuming that the alternative reanalysis captures the 
synoptic circulation of the reference data ERA-Interim (both reanalysis product use and share 
at least some portion of global weather observations) better than any unconstrained global 
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circulation model, the evaluation of an alternative reanalysis gives an estimate of the lower 
bound for the attainable value of the distance metric. 
The assumption that an alternative reanalysis captures the synoptic patterns of ERA-Interim 
better that an unconstrained model is based on the construction of the reanalysis product: 
reanalysis data are updated weather forecasts initiated with the blend of past weather 
forecasts and the observations. Two different reanalysis data sets ERA-Interim and NCEP1, 
both assimilating real observations, can be seen as two “realizations” of the real 
weather/climate.  
 
LINE 198 – I am assuming all datasets are normalized with EQ. 1? Is this correct?  
 
Yes. In Equation 1 the normalization around the 0-mean and by the standard deviation is 
used. It is necessary because the variance of the geopotential changes seasonally (larger in 
summer, smaller in winter). The normalization is done in order to be able to cluster summer 
and winter synoptic patterns without being over-sensitive to the higher summer variance in 
these fields.  
We added the following explanation to the manuscript (lines 195-197): 
Some typical synoptic patterns may occur in different seasons but should be grouped into one 
class. As the mean and the variance of the geopotential change seasonally (larger in summer, 
smaller in winter) the original data should be pre-processed in order to reduce the sensitivity 
of the classification to the summer variance and the mean in the data. 
 
LINE 375 – I’m not sure this is clear, is the “final cluster” what is used as the initialization 
clusters, or the final result of the entire method being presented in the manuscript?  
 
The second. The two-stage algorithm stops, when no similar clusters are left to combine. 
[This is the final set of clusters.] The centres (medoids) of final clusters give the set of classes. 
We specified this now clearly in the text (lines 388-390): 
Some typical synoptic patterns may occur in different seasons but should be grouped into one 
class. As the mean and the variance of the geopotential change seasonally (larger in summer, 
smaller in winter) the original data should be pre-processed in order to reduce the sensitivity 
of the classification to the summer variance and the mean in the data. 
 
LINE 444 – When stating “well separated …from the entire data set” does this mean the 
clusters should be well separated from the data that is not assigned to the given cluster?  
 
Cluster separation is a measure that quantifies the similarity of elements within clusters as 
compared to homogeneous/random data or other clusters. We use 1) explained variation 
EV, 2) Euclidean distance ratio DRATIO and 3) similarity ratio SSIMRATIO measures to 
quantify this separation. These measures characterise how clusters differ to other clusters 
(DRATIO and SSIMRATIO) and to the whole data set (EV). Ideally the EV must be as close as 
possible to 1, DRATIO – as small as possible (close to 0 ) and SSIMRATIO as high as possible. 
This follows from the definitions of these metrics. 
  
LINE 451 – Are these “similarity diagrams” what is shown in Figure 10?  
 
Yes. Similarity between classes derived with different merging threshold. 
 



12 
 

LINE 461 – If it has been established that using values such as Euclidean distance does not 
perform well when considering things such as synoptic patters what is the value in 
calculating Metric 2?  
 
The metric EV is widely used to describe the separation and representability of classes in the 
wide community of classification methods for synoptic patterns. This metric is 
recommended within the project COST Action 733 report (Tveito et al., 2016) as we referred 
in Line 463. We use it to show how it degrades with tightening the threshold on similarity for 
cluster building. Values of EV show that - despite using medoids for building clusters - the 
final classes still explain a large portion of variance (although Euclidean distance was not 
targeted by the optimization!). We say (lines 670-671): 
Please note: metrics EV and DRATIO illustrate only (!) the influence of the THmerge on the final 
set of classes and do not describe the quality of classes as they are computed using the 
Euclidean Distance – a measure that was not optimized by the clustering algorithm. 
 
LINE 585 – To clarify, there are 183 “runs” but each run is done for varying data volumes 
from 1 to 40 years. So, is it correct to say the method is done 183 x 40 times? Or the output 
of each run is just saved after each year of data is added?  
 
In total 183x40 runs: for each of 40 data volumes and for each of three merging thresholds 
60+1 runs.   
 
LINE 660 – It is difficult to see the dashed and grey lines in Figure 10.  
 
We agree. We updated this figure. It is Figure 9 now (its number changed as some figures 
were moved to the supplement in the present version of the manuscript). 
 
LINE 805 – While I understand the reasoning for showing the 5 most frequent SP-classes one 
of the benefits mentioned was the ability for the algorithm to preserve less frequent 
patterns that are more likely to be associated with extremes. I think it is important to 
demonstrate this ability/benefit. I would suggest maybe showing a couple of these patterns 
instead of just focusing on the most frequent SP-classes. 
 
We agree. We added a new chapter to the manuscript (Lines 809-832): 

5 Weather extremes affiliated with the synoptic classes 

We compute maps of exceedance probabilities for two variables - daily near-surface air 
temperature tas and daily total precipitation pr – for each synoptic class using maps of 
exceedance of 90th-percentile for days in corresponding clusters. The computed for each 
class map of exceedance probability is limited to the area of Germany only as we were able 
to validate these data using data-sources of national observations. Figure 14 shows the maps 
of exceedance probabilities of 90th-percentile for temperature and precipitation affiliated 
with four exemplary synoptic classes. The class SP5, not a very rare one with occurrence of 
3.7% in the data, has no indication to exceptionally warm or wet weather as both maps of 
exceedance probability remain “empty” (no exceedance). For the class SP2 the map of 
exceedance probability for precipitation shows a frequent exceedance of 90th-percentile 
everywhere in Germany with a higher probability in the southern region. The class SP35, one 
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of the rare classes with only 0.5% of data, appears to be frequently “hot”. The class SP29, 
also a rare one, frequently exhibits warm and wet weather conditions. 

 

Figure 14: Examples of synoptic classes and corresponding maps of exceedance probability for 
temperature (tas) and precipitation (pr). 

We add new Figures S3-S7 (in supplementary) that show probability of exceedance of the 
90th-percentile for temperature and precipitation in each synoptic class. 


