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Abstract. Earth System Models (ESM) represent the time evolution of the biophysical (energy, water cycles) and 10 

biogeochemical (carbon cycle) components of the Earth. When used for near-future projections in the context of the Coupled 

Model Intercomparison Project (CMIP), they use as forcings the evolution of greenhouse gas and other pollutant concentrations 

and land-use changes simulated by an ensemble of Integrated Assessment Models (IAMs) for a combination of socio-economic 

pathways and mitigation targets (SSPs). More precisely, only one IAM output is used as representative of a single SSP while 

the inter-IAM spread is large for ammonia emissions and land-use changes, for instance. This makes the comparison of key 15 

ESM diagnostics among SSPs significantly noisy, without the capacity of disentangling SSP-driven and IAM-driven factors. 

In this paper, we quantify the projected change in land carbon store (CLCS) for the different SSPs with an advanced version 

of a land surface model embedded into IPSL-CM6 ESM. Through a set of land-only factorial simulations, we specifically aim 

at estimating the CLCS uncertainties associated with land-use change and nitrogen deposition trajectories. We showed that the 

spread of the simulated change in global land carbon store induced by the uncertainty on land-use changes is slightly larger 20 

than the one associated with the uncertainty on atmospheric CO2. Globally, uncertainty associated with N depositions is 

responsible for a spread in CLCS lower by a factor three, than the one driven by atmospheric CO2 or land-use changes. Our 

study calls for making available additional IAM scenarios for each SSP to be used in the next CMIP exercise, in order to 

specifically assess the IAM-related uncertainty impacts on the carbon cycle and the climate system. 

1 Introduction 25 

In the framework of the Phase 6 of the Coupled Model Intercomparison Project (CMIP6), the ScenarioMIP experiments 

(O’Neill et al., 2016) address the near-future evolution (2015-2100) of the Earth System for a combination of socio-economic 

and climate policy scenarios. Five shared socio-economic pathways (SSPs) are explored (Riahi et al., 2017) with contrasted 
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assumptions regarding the future evolution of society in terms of population growth, economic development, urbanization and 

other factors. Driven by these five socio-economic pathways, an ensemble of Integrated Assessment Models (IAMs) simulate 30 

the evolution of energy and land-use systems and the associated emissions of GHG and other pollutants. In the context of 

ScenarioMIP, a selection of simulations is performed for the five socio-economic pathways with or without mitigation strategy 

(baseline scenario) leading to specific radiative forcings in 2100 (O’Neill et al., 2016). As defined in O’Neill et al. (2016), we 

label these eight scenarios as SSPx-y with x the selected SSP and y the 2100 radiative forcing. In the following, and by 

simplicity, we refer to these eight scenarios as SSPs. In order to be used by Earth System Models (ESM), IAMs outputs are 35 

harmonized to be consistent with the data used for the historical period and downscaled from the IAMs large-region scale to a 

finer gridded one. Harmonization and downscaling are performed for land-use (Hurtt et al., 2020) and for emissions of GHG 

and other atmospheric compounds impacting climate such as ammonia or nitrogen oxides (Feng et al., 2020; Gidden et al., 

2019).  

Most of the CMIP6 experiments designed to assess the contemporary evolution of the Earth system have been performed in a 40 

so-called concentration-driven mode. In such configuration, atmospheric CO2 concentration ([CO2]) is imposed, and fossil 

CO2 fuel emissions are computed a-posteriori as the remaining flux compatible with the time evolution of [CO2] and the net 

land-atmosphere and ocean-atmosphere CO2 fluxes. Liddicoat et al. (2021) computed the compatible fossil fuel CO2 emissions 

deduced from the historical and ScenarioMIP experiments of nine ESMs. They showed that the multimodel mean cumulative 

compatible fossil fuel CO2 emissions over 1850-2100 were in closed agreement with the estimate based on observation (for 45 

the historical period) and the IAMs (for the period 2015-2100) for the different SSPs. The absolute relative difference between 

the multimodel mean and the observation/IAM-based estimate ranges from 1% (for SSP3-7.0) to 13% (for SSP1-1.9), proving 

the overall good consistency between ESM and IAM carbon (C) cycle modelling. However, the model spread is large, with an 

intermodel standard deviation ranging from 5% (for SSP5-8.5) to 15% (for SSP4-3.4) of the multimodel mean compatible 

fossil fuel CO2 emissions. This large disagreement between ESMs is primarily attributable to the land carbon response, with 50 

an intermodel standard deviation for the land carbon store between 1850 and 2100 of the order of 67% of the multimodel 

mean, while the one for the ocean carbon store does not exceed 6%.  

In this context, our paper focus on the projected ESM land carbon store for the different SSPs and in particular on an additional 

source of uncertainty related to the IAM forcings. Indeed, five IAMs simulated the evolution of the energy and land-use 

systems and associated gas emissions for each SSP but only outputs of a single IAM per SSP have been harmonized and 55 

downscaled to be further used as ESM inputs. These selected interpretations of SSPs are called “markers” and the other IAM 

scenarios for each SSP “non-makers” (Riahi et al., 2017). While the anthropogenic CO2 emission trajectories simulated by the 

different IAMs for a given SSP are relatively similar (https://tntcat.iiasa.ac.at/SspDb, see also (Bauer et al., 2017) for a specific 

analysis for fossil fuel emissions only), there are large inter-IAM spreads for land-use trajectories (Popp et al., 2017; Riahi et 

al., 2017) but also for nitrogen (N) fertilizer usage (Sinha et al., 2019) and pollutant emissions (in particular ammonia, 60 

https://tntcat.iiasa.ac.at/SspDb).  
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This selection of marker IAMs as representatives of a single SSP while the inter-IAM spread is large, makes difficult the 

uncertainty analysis of key ESM diagnostics as a function of SSPs, without the capacity of disentangling SSP-driven and IAM-

driven factors (Sinha et al., 2019; Monier et al., 2018). While this difficulty gets support to the development of coupled human-

Earth system (CHES) models (Monier et al., 2018) to gain in modelling consistency, this option does not facilitate the 65 

assessment of an IAM-specific uncertainty and of its impact on the ESM diagnostics.  

In this paper, we quantify the projected change in land carbon store (CLCS) for the different SSPs from land-only simulations 

of the ORCHIDEE-v3 land surface model (Vuichard et al., 2019) driven by climate data from the IPSL-CM6 ESM (Boucher 

et al., 2020). In addition, through a set of crossed multi-factorial simulations, we also aim at estimating the CLCS uncertainties 

associated specifically to climate and [CO2] (CCO2), land-use change (LUC) and nitrogen inputs (NIN) trajectories. We first 70 

present the ORCHIDEE-v3 model, the forcing datasets used as well as the modelling protocol and computed metrics used in 

the study (Section 2). We then present and discuss the CLCS resulting from our set of simulations and their sources of 

uncertainty, globally and for eight large regions (Section 3). Last, some recommendations are drawn in the perspective of the 

next CMIP exercise (Section 4).  

 75 

2 Methods 

2.1 The ORCHIDEE-v3 model 

ORCHIDEE (Organizing Carbon and Hydrology In Dynamic Ecosystems) is a global process-based terrestrial ecosystem 

model used to quantify energy, water, carbon and nitrogen flows and associated stocks in the soil-vegetation-atmosphere 

continuum (Krinner et al., 2005; Vuichard et al., 2019). For the last CMIP6 exercise (Boucher et al., 2020), ORCHIDEE-v2, 80 

a carbon-only version of ORCHIDEE has been used as the land component of the Earth System Model of the Institut Pierre 

Simon-Laplace (IPSL-CM6). ORCHIDEE-v3 is an advanced version in which N cycle and the C-N interactions have been 

included (Vuichard et al., 2019). ORCHIDEE-v3 needs as input data, information about climate (near-surface air temperature, 

precipitation, short and long-wave incoming radiation, specific air humidity), atmospheric CO2 concentration, land cover, but 

also atmospheric N deposition (NHx and NOy) and N fertilizer rates on managed lands. ORCHIDEE-v3 showed good 85 

performance at simulating Gross Primary Productivity (GPP) and Leaf Area Index (LAI) both at site and global scales 

(Vuichard et al., 2019). It also ranked with a good score for a set of key land variables in a recent model benchmark study 

(Seiler et al., 2022) as well as in the TRENDY model inter-comparison project (Friedlingstein et al., 2022).  

2.2 Model input datasets 

Inputs related to atmospheric CO2 concentration ([CO2]), land-use, wood harvest, N-fertilizer and nitrogen deposition are those 90 

used for the historical and the different SSP CMIP6-related experiments and stored on input4MIPs nodes (https://esgf-

node.llnl.gov/projects/input4mips/). Land-use, wood harvest and N-fertilizer input data are produced by the Land-Use 

Harmonization 2 (LUH2) project (Hurtt et al., 2020). Land use information from LUH2 consists of fractions of grid cell area 
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at 0.25° resolution for cropland (five sub-categories), managed pasture, rangeland, urban, primary and secondary forested and 

non-forested land. The procedure needed for translating the original data for land-use into the fifteen land classes of 95 

ORCHIDEE is described in Lurton et al. (2020). For the period 2015-2100, LUH2 data is based on land use and land 

management information from the eight different marker scenarios generated by IAMs. Nitrogen deposition fields are produced 

by the CAM-Chem climate-chemistry model (Hegglin M. et al., 2016) with emission data from the different marker scenarios 

for the period 2015-2100. Climate data used as inputs of the land-only ORCHIDEE-v3 simulations correspond to the IPSL-

CM6A-LR model outputs (at a global resolution of 2.5°x1.27° in longitude and latitude) for the historical and the different 100 

SSP CMIP6 experiments. 

2.3 Reference simulations 

In order to get C and N vegetation and soil pools at equilibrium, we ran a spin-up simulation with the boundary conditions of 

year 1850 but recycling climate data for the period 1850-1869 in order to account for an inter-annual variability. From this 

equilibrium state, simulations ran for the historical period (1850-2014) and for each of the eight SSP experiments from 2015 105 

to 2100. 

2.4 Land-use and Nitrogen inputs related sensitivity simulations 

The objective was to investigate the impact on CLCS of the uncertainty associated to land-use and nitrogen inputs (ie., 

atmospheric N deposition and N fertilization) for a given SSP p. Given that all gridded harmonized data for the land-use and 

nitrogen inputs of non-marker scenarios of SSP p are not available, we used the gridded data (for land-use and nitrogen inputs) 110 

from marker scenarios of selected alternative SSPs to assess the sensitivity of the projected land carbon store for SSP p to land-

use and nitrogen inputs uncertainties. In other words, we used the selected SSP markers spread as a proxy for the inter-IAM 

spread regarding the land-use and nitrogen inputs trajectories for any given SSP. This is a strong assumption but supported by 

the comparison between inter-SSP markers and inter-IAM trajectories for the different SSPs (see Figures 1, 2, A1, A2 and 

A3).  115 

Due to computing time resources, we limited our sensitivity study to four SSP markers among the eight available and for each 

of these four SSPs, we used the land-use and nitrogen inputs trajectories of this set of four SSP markers to assess their impacts 

on CLCS. The selected SSPs were SSP1-1.9, SSP3-7.0, SSP4-3.4 and SSP5-8.5. We selected these four SSPs because 1/ they 

encompass a large spread of CO2 level in 2100 ranging from 394 to 1135 ppm; and 2/ the inter-IAM spreads for land-use but 

also N-related input data trajectories from this selection are comparable to those from the eight SSPs. 120 

Based on the IAM output data produced for CMIP6 available on the SSP Database (https://tntcat.iiasa.ac.at/SspD), we showed 

that the inter-selected SSP markers spread of the forested global land area in 2100 is narrower than the inter-IAM spread for 

six out of eight SSPs (Fig. 1). Similarly, the inter-selected SSP markers spread of the global NH3 emissions in 2100 is narrower 

than the inter-IAM spread for seven out of the eight SSPs (Fig. 2). However, for some variables simulated by IAMs, the inter-

selected SSP markers spread is significantly larger than the inter-IAM spread for many SSPs. This is particularly the case of 125 
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NOy emissions (Fig. A3) for which the inter-selected markers spread is larger than the inter-IAM spread for any of the eight 

SSPs. Thus, depending of the driving variable considered (forested lands, pasture or croplands, NH3 or NOy emissions) and 

of the SSP considered, the use of the selected SSP markers spread as a proxy may translate into an upper or lower estimate of 

the inter-IAM spread. Overall, our assumption of using the land-use and N trajectories of the different SSP markers as a 

surrogate of the trajectories simulated by the different IAMs for each SSP looks reasonable (from the above analysis).  130 

In addition, using alternative SSP scenarios for a given driving variable (for instance LUC or nitrogen atmospheric deposition) 

while keeping the other driving variables from a single SSP may break down the coherency between driving variables, as 

established within each IAM. However, we showed that while NH3 emissions show a good linear relationship with cropland 

area for most of the IAMs, the slope of this relationship is significantly different across IAMs (Fig. A4). This indicates that no 

common and unique relationship exists across IAMs and thus using the marker SSP spread for each variable independently of 135 

the others is a reasonable assumption.  

 

2.5 Metrics assessing the change in land carbon store and its sensitivity to land-use and nitrogen inputs uncertainties 

We analysed specifically the projected change in land carbon store (CLCS) for the four selected pathways and its sensitivity 

to the different land-use and N-inputs marker trajectories from these selected SSPs. To perform this analysis, we ran a set of 140 

sixteen sensitivity simulations for each of the four selected reference simulations, where land-use and N-related data from the 

four SSPs is used independently as forcing (four land-use trajectories times four N-inputs trajectories).  

We expressed CLCS as a function of climate and atmospheric [CO2] (CCO2), land-use change (LUC) and nitrogen inputs 

(NIN) trajectories (CLCS(CCO2, LUC, NIN)) and quantified the impact of CCO2, LUC and NIN trajectories on CLCS by 

computing mean (𝜇) and standard deviation (𝜎) metrics based on the following equations: 145 

𝑋!"!#,!!%&(𝑗, 𝑘) = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}'()*).,,-*../,0*-.0,1*2.1,       (1) 

𝑋!"!#,"3!(𝑖, 𝑘) = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}4()*).,,-*../,0*-.0,1*2.1 ,       (2) 

𝑋!"!#,565(𝑖, 𝑗) = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}7()*).,,-*../,0*-.0,1*2.1 ,       (3) 

where X stands for 𝜇 or 𝜎; and the indices i, j and k stand for CCO2, LUC and NIN trajectories, respectively, each spanning 

the different SSPs. 150 

From the above generic equations, we can further quantify the mean CLCS and standard deviation associated specifically to 

different land-use (LUC) and different atmospheric N deposition and fertilisation (NIN) trajectories, for each of the four 

selected SSPs (s), 𝑋!"!#,"3!8 	and	𝑋!"!#,5658 ,	defined	as: 
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𝑋!"!#,"3!8 = 𝑋!"!#,"3!(𝑖 = 𝑠, 𝑘 = 𝑠)          (4) 

and 𝑋!"!#,5658 = 𝑋!"!#,565(𝑖 = 𝑠, 𝑗 = 𝑠)          (5) 155 

for s = 1-1.9, 3-7.0, 4-3.4 and 5-8.5.  

We also quantified the CLCS and standard deviation associated to land-use plus atmospheric N deposition and fertilisation 

(LUC+NIN), 𝑋!"!#,"3!95658 . It is written as: 

𝑋!"!#,"3!95658 = 𝑋{𝐶𝐿𝐶𝑆(𝑖 = 𝑠, 𝑗, 𝑘)}4,7()*).,,-*../,0*-.0,1*2.1  ,      (6) 

 160 

In order to report on the overall dispersion of CLCS and the contribution from the three drivers (CCO2, LUC and NIN), we 

first computed 𝜇 and 𝜎 accounting for all drivers: 

𝑋!"!#,:%: = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}',4,7()*).,,-*../,0*-.0,1*2.1 ,       (7) 

We then computed the mean standard deviation, 𝜎!"!#,; in order to quantify the impact on CLCS of each of the three drivers 

(D being CCO2, LUC or NIN) irrespective of the combinations of the two others: 165 

𝜎!"!#,!!%& = 𝜇:𝜎!"!#,!!%&(𝑗, 𝑘);4,7()*).,,-*../,0*-.0,1*2.1,       (8) 

𝜎!"!#,"3! = 𝜇:𝜎!"!#,"3!(𝑖, 𝑘);',7()*).,,-*../,0*-.0,1*2.1,       (9) 

𝜎!"!#,565 = 𝜇:𝜎!"!#,565(𝑖, 𝑗);',4()*).,,-*../,0*-.0,1*2.1,        (10) 

Last, we expressed the relative impact on the CLCS spread of each of the three drivers, 𝑟!"!#,; as:  

𝑟!"!#,; =
<!"!#,%

<!"!#,!!&'9<!"!#,"(!9<!"!#,)*)
× 100,        (11) 170 

for D = CCO2, LUC and NIN 

3 Results and discussion 

The change in land carbon store (CLCS) simulated by ORCHIDEE-v3 over the historical period (1850 – 2014) corresponds 

to a small loss of carbon in the land reservoir of 7.7 PgC (table 1 where a negative value corresponds to a source to the 

atmosphere). This results from a C source due to land-use change larger than the land C sink induced by the increasing [CO2] 175 

and N deposition. Over the period 1850-2100 and depending of the SSP, the CLCS varies between a small source of 5.6 PgC 
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(SSP4-3.4) to a land sink of 115.5 PgC (SSP5-8.5). The CLCS simulated by ORCHIDEE-v3 are in the low-end range of the 

values reported by Liddicoat et al. (2021) with an ensemble of nine ESMs (table 1 to be compared to table S3 of Liddicoat et 

al., 2021). ORCIHDEE-v3’s CLCS is very similar to the one simulated by UKESM1-0-LL for the historical period and for 

any of the seven SSPs studied by this ESM. The CLCS standard deviation induced by considering different N-related 180 

trajectories is relatively similar irrespective of the SPP considered with 𝜎!"!#,5658 	values for the period 1850-2100 varying 

between 10.9 and 13.6 PgC depending on the SSP (Table 1 and Figure 3). The effect of considering different LUC-related 

trajectories on the CLCS is more important with a standard deviation (𝜎!"!#,"3!8  for 1850-2100) going from 38.1 PgC (for 

SSP1-1.9) to 46.2 PgC (for SSP5-8.5). Accounting for both sources of uncertainty (LUC and NIN) on CLCS leads to a similar 

dispersion than considering LUC uncertainty only with 𝜎!"!#,"3!95658  varying between 37.2 and 45.3 PgC depending on the 185 

SSP (Table 1). Expressed as a percentage of the mean CLCS from 2015 to 2100, these values correspond to standard deviations 

ranging between 43.8% (for SSP5-8.5) and 114.1% (for SSP1-1.9) of  𝜇!"!#,"3!95658 . For SSP1-1.9 with a relative uncertainty 

higher than 100%, accounting for the uncertainty on LUC and NIN has the capacity of turning CLCS from a gain to a loss of 

carbon. Although important, these uncertainties induced by the LUC and NIN trajectories are a factor 2 to 3 less than those 

associated to the multi ESM ensemble assessed by Liddicoat et al. (2019) for all four studied SSPs except SSP1-1.9. Based on 190 

the data reported by Liddicoat et al. (2019, table S3), the CLCS standard deviation of the multi ESM ensemble over the period 

2015-2100 equals to 39.6 PgC (52% of the multi ESM ensemble mean), 123.5 PgC (63%), 86.9 PgC (381%) and 162.3 PgC 

(58%) for SSP1-1.9, SSP3-7.0, SSP4-3.4 and SSP5-8.5 respectively).   

As shown on Figure 3 (right-side plot of each panel), depending of the LUC and NIN trajectories associated to the marker 

scenarios, the CLCS from 2015 to 2100 estimated for the marker may be in the very low-end range of values for all NIN and 195 

LUC combinations (SSP4-3.4), in the high-end range (SSP1-1.9) or closed to the mean value 𝜇!"!#,"3!95658  (SSP3-7.0 and to 

some extent SSP5-8.5).  

When accounting for all combinations of NIN, LUC and CCO2 trajectories, the global CLCS at the end of the 21st century 

ranges from a source of 33 PgC to a sink of 179 PgC (Figures 4, envelope of the white transparent areas with right y-axis). 

The CLCS spread induced by the uncertainty on LUC (𝜎!"!#,"3!) is slightly larger than the one related to the CCO2 trajectory 200 

(𝜎!"!#,!!%&). On average for all combinations of NIN, LUC and CCO2, the relative impact of LUC on the CLCS spread 

https://doi.org/10.5194/esd-2023-31
Preprint. Discussion started: 6 November 2023
c© Author(s) 2023. CC BY 4.0 License.



8 
 

(𝑟!"!#,"3!) amounts to 48% globally at the end of the 21st century, while 𝑟!"!#,!!%& value is about 38% (Figure 4, coloured 

areas with left y-axis). The relative impact of NIN on the CLCS spread is one third less, with a value of 𝑟!"!#,565 equals to 

14%. The relative impacts of the three drivers on the CLCS spread at the end of the 21st century show contrasted results at 

regional scale. In Africa and Tropical Asia regions, where the strength of the land use change varies significantly from one 205 

SSP to another, the relative impact of LUC is far more important than the impact of CCO2 (and NIN) with values of 𝑟!"!#,"3! 

of ~74% for both regions. As a consequence, the value of 𝑟!"!#,!!%& in these two regions is less than 20% by 2100. They are 

the only two regions for which CLCS shifts significantly from source to sink depending of the LUC trajectories (Fig. 4, 

envelope of the white semi-transparent area) with regional 𝜇!"!#,:%: ± 𝜎!"!#,:%: values of -18±27 PgC and 5±14 PgC by 2100, 

for Africa and Tropical Asia region respectively. Due to the strong impact of LUC on CLCS and its large area (Fig. A10), 210 

Africa is the region that contributes the most to the overall dispersion of CLCS globally (𝜎!"!#,:%: of 27 PgC for Africa, to be 

compared to 𝜎!"!#,:%: of 53 PgC for the globe). For the six other regions where the impact of LUC is less important, CCO2 is 

the factor that drives the most the CLCS dispersion with 𝑟!"!#,!!%& values ranging from 37% (for Europe) to ~57.5% (for 

“Boreal Asia” and “Australia and New Zealand” regions). In these regions, the impact of NIN on the CLCS dispersion varies 

significantly depending on how the atmospheric N deposition trajectories are contrasted within a region but also on how the 215 

terrestrial ecosystems are N-limited regionally. In “South America” and “Australia and New Zealand” regions, the relative 

impact of NIN is very small with 𝑟!"!#,565 values less than 10%. In the other four regions, 𝑟!"!#,565 values are larger than 23% 

and up to 35% for the “Boreal Asia” region.  

The time evolution of the relative impacts of the three drivers on the CLCS dispersion is not uniform over the 21st century 

(Fig. 4). Globally, 𝑟!"!#,!!%& decreases over the two first decades (2015-2030, from values greater than 50% down to 7%) and 220 

increases the following decades with a kind of Michaelis-Menten curve shape. Mirroring the time evolution of the relative 

impact of CCO2, 𝑟!"!#,565 and 𝑟!"!#,"3! increase over the first decades of the 21st century and decrease after 2030 and 2040 

for NIN and LUC respectively. These specific temporal dynamics, which result from the combination of specific time evolution 

and time-response on the CLCS of the three studied drivers, are obtained globally but also for most large regions (eg Temperate 

Asia, North America, South America). These first-decades dynamics are not analysed in more details here as they correspond 225 
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to periods over which the CLCS overall dispersion remains small (see time evolution of 𝜇!"!#,:%: ± 𝜎!"!#,:%:, envelope of the 

white semi-transparent area on Fig. 4).  

Further analysis showed that vegetation (above- and below-ground) is the reservoir contributing the most to CLCS (compared 

to soil and litter carbon reservoirs). On average for all combinations of NIN, LUC and CCO2, the global change in vegetation 

carbon store (CVCS) amounts to 47 PgC at the end of the 21st century (Fig. A11, middle of the white semi-transparent 230 

envelope), while the change in soil and litter carbon store (CSCS) amounts to 21 PgC (Fig. A12). The overall dispersion of 

CVCS globally is also much larger than the one of CSCS in 2100 (𝜎!=!#,:%: of 52 PgC, to be compared to 𝜎!#!#,:%: of 9 PgC, 

see Fig. A11 and A12). Thus, vegetation is also the reservoir which contributes the most to the overall dispersion of CLCS 

(𝜎!"!#,:%:  of 53 PgC for the globe). On average, the relative impacts of CCO2, LUC and NIN on the CVCS spread are 

comparable to those on the CLCS spread with values for 𝑟!=!#,!!%& , 𝑟!=!#,"3!  and 𝑟!=!#,565  equal to 45%, 48% and 7% 235 

respectively (Figure A11). Note however that the relative impact of NIN on the CVCS spread is significantly lower than the 

one on the CLCS spread, globally (𝑟!=!#,565 of 7%, to be compared to 𝑟!"!#,565 of 14% for the globe) but also regionally (for 

instance in the “Europe” or “Boreal Asia” regions). Compared to the results obtained for the CLCS and CVCS, the relative 

impacts of CCO2, LUC and NIN on the CSCS spread are very different (Fig. A12). NIN is the driver inducing the largest 

dispersion of CSCS globally (𝑟!#!#,565  of 41%) and in several regions (Europe, Boreal Asia, Temperate Asia and North 240 

America, see Fig. A12). The relative impacts of CCO2 and LUC on the global CSCS dispersion share equally the remaining 

percentages with values of 29% and 30% for 𝑟!#!#,!!%& and 𝑟!#!#,"3!, respectively (Fig. A12). The lower relative impact of 

LUC on the CSCS dispersion compared to the CVCS dispersion can be explained by the fact that land-use changes impact 

more significantly the standing biomass than the modelled soil organic carbon dynamic. For the effect of CCO2, a deeper 

analysis (not shown) revealed that CCO2 is driving the soil carbon store via two opposite contributions. Soil carbon store 245 

increases with atmospheric [CO2] increase while it decreases with soil temperature increase due to higher soil organic 

decomposition rate. The compensating effects of atmospheric [CO2] and soil temperature result in limited changes in soil 

carbon store for the different CCO2 scenarios, in which soil temperature varies proportionally to atmospheric [CO2]. 

The ensemble of sixty-four factorial simulations offers the advantage to isolate and quantify the effect of one specific driver 

among the three considered in this study (CCO2, LUC and NIN) which are otherwise mixed up in the standard reference SSP 250 
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simulations. We express CLCS in 2100 (i.e., the total change from 2015 to 2100) as a function of one driver (atmospheric 

[CO2] for CCO2, Forested lands for LUC or N atmospheric deposition for NIN, in 2100) for the sixteen simulations driven by 

the different combinations of the two other drivers (Fig. 5). The different relationships between CLCS and any of the three 

drivers are similar irrespective of the simulations considered meaning that there is no strong co-varying effects across drivers. 

Only the CLCS baseline level differs between simulations. The CLCS response curve to [CO2] shows a saturation effect for 255 

the highest CO2 level (~1100 ppm) driven by the limitation of C assimilated by photosynthesis at high [CO2]. Based on a 

simple linear regression, the CLCS response to CO2 equals 0.1 PgC ppm-1 (Fig. 5a). Note that this sensitivity cannot be 

compared to the well-studied land carbon–concentration feedback metric (𝛽", PgC ppm-1) (Arora et al., 2020; Friedlingstein, 

2015) since in our study the CLCS response to CO2 includes also the indirect effect of [CO2] on land carbon store via climate 

change and in particular temperature change.  260 

We also highlight a relationship between the forested land area in 2100 and CLCS in 2100 (Fig. 5b). The forested land area in 

2100 is inversely proportional to the deforestation trend (or proportional to the re/afforestation trend) experienced over the 21st 

century in the different SSPs. As a consequence, the higher forested land area, the higher CLCS. The relationship between 

CLCS and the forested land area is not strictly linear due to the different regions where the deforestation (or re/afforestation) 

acts in the SSPs, with different ecosystem productivity and vegetation carbon storage (higher storage for tropical ecosystems). 265 

However, on average, based on a linear regression, the CLCS response to the forested lands equals 13.85 PgC (Mkm2 of 

forested lands)-1 (Fig. 5b). Last, CLCS shows a nearly linear relationship with the global mean atmospheric N deposition rate 

in 2100. The 2100 rate is used here as an indicator of the load of atmospheric N deposited on land over the 21st century and its 

fertilising effect on terrestrial ecosystems. This results in a CLCS response to N deposition of 1 PgC (TgN yr-1)-1.  

To our knowledge, little attention has been paid to the co-effects of atmospheric [CO2], atmospheric nitrogen deposition and 270 

land-use change on the change in land carbon store in the CMIP6 framework and how these drivers interplay together at global 

and regional scales. A 1pctCO2 experiment was part of the DECK ensemble (Eyring et al., 2016) in order to analyse the effects 

of a 1% yr-1 increase in atmospheric [CO2] on the radiative (RAD) and carbon cycle (BGC) components with pre-industrial 

atmospheric N deposition. In addition to the 1pctCO2 experiment, two experiments (namely 1pctCO2Ndep and 1pctCO2Ndep-

bgc) were planned in the Coupled Climate–Carbon Cycle Model Intercomparison Project (Jones et al., 2016) with time-275 
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increasing atmospheric N deposition, with the objective of quantifying the co-effects of atmospheric CO2 and N deposition 

increases. Unfortunately, only three modelling groups performed these two additional experiments and no study made use of 

them so far. In the Land Use Model Intercomparison Project (Lawrence et al., 2016), the two experiments ssp370-ssp126Lu 

and ssp126-ssp370Lu, based on the ScenarioMIP ssp370 and ssp126 experiments but swapping their land-use datasets (Hurtt 

et al., 2020), aim at quantifying the specific contribution from land-use change on the climate and carbon cycle over the 21st 280 

century. With this set of 2x2 experiments, Ito et al. (2020) quantified the impact of land-use change on the total soil carbon 

stock (cSoil) simulated by seven ESMs. Although limited to only two contrasted land-use trajectories, they reported large 

intermodel spread with change on cSoil in 2100 between pair experiments (which differ only by their land-use trajectories) 

varying between -14 and +28 PgC depending on the ESM. This limited set of studies thus highlights the need of performing 

the multi-sensitivity analysis we proposed in this paper with an extended ensemble of models, in order to evaluate how our 285 

conclusions can be shared across models with different representations of the key C-related ecosystem processes.   

4 Summary and conclusions 

Our study aimed to quantify the impacts of the land-use- and nitrogen inputs-related IAM uncertainties on the change in land 

carbon store as simulated by the land component of an ESM, forced by climate projections. In the absence of harmonized and 

downscaled gridded information for the IAMs other than the marker one of each SSP, we used the land-use and nitrogen 290 

trajectories of the different SSP markers as a surrogate of the trajectories simulated by the different IAMs for each SSP.  We 

showed that the spread of the simulated change in global land carbon store induced by the uncertainty on land-use across SSPs 

is slightly larger than the one associated with the uncertainty on atmospheric [CO2]. Globally, uncertainty associated with N 

inputs (mostly N depositions which originate from the N emissions) for a spread in the change in land carbon store that is 

lower by a factor three, than the one driven by atmospheric [CO2] or land-use changes. The relative impact of these different 295 

uncertainties showed contrasted responses regionally. In regions with very contrasted land-use trajectories across SSPs, such 

as Africa, the spread in the change in land carbon store is mainly driven by land-use change. In contrast, in regions where land-

use trajectories are more similar across SSPs, the impact of the nitrogen deposition-related uncertainty on the change in land 

carbon store may be almost as large as the one induced by uncertainty on atmospheric CO2 and land-use changes. In addition, 
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we separated the change in land carbon store between a change in the vegetation reservoir and a change in the soil plus litter 300 

C reservoirs, indicating a much larger contribution from the vegetation. Although we showed that the inter-marker spread and 

the inter-IAM spread for a given SSP were of the same order for the land-use trajectories but also for the N emissions 

trajectories globally, the two spreads are not strictly similar for each diagnostic variable by the IAMs or for each SSP. In this 

respect, there is a need for delivering harmonized and downscaled information about land-use changes, N emissions and N 

atmospheric deposition trajectories simulated by all IAMs for each SSP and not only by the marker IAMs. Performing 305 

sensitivity ESM or land-only experiments with these extra datasets is the only way to accurately assess the specific IAM-

related uncertainty impacts on the carbon cycle and the climate system. While many GHG mitigation strategies rely more and 

more on land-based solutions, this calls for facilitating the communication and evaluation between IAM and ESM modelling 

frameworks. Making available additional IAM scenarios to be used in the next CMIP exercise should contribute to this 

objective.  310 

Appendix A 
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Figure A1: Time evolution (2015-2100) of the global cropland area (Mha) projected by (a to h) different Integrated Assessment 
Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers used in the 315 
study. Grey aeras represent the time evolution of the mean ± sigma. Data from https://tntcat.iiasa.ac.at/SspDb 
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Figure A2: Time evolution (2015-2100) of the global pasture land area (Mha) projected by (a to h) different Integrated Assessment 
Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers used in the 320 
study. Grey aeras represent the time evolution of the mean ± sigma. Data from https://tntcat.iiasa.ac.at/SspDb 

 

https://doi.org/10.5194/esd-2023-31
Preprint. Discussion started: 6 November 2023
c© Author(s) 2023. CC BY 4.0 License.



15 
 

 

Figure A3: Time evolution (2015-2100) of the global NOy (NO2) emissions (Mt(NO2) yr-1) projected by (a to h) different Integrated 
Assessment Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers 325 
used in the study. Grey aeras represent the time evolution of the mean ± sigma. Data from https://tntcat.iiasa.ac.at/SspDb 
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Figure A4: NH3 emissions (Mt(NH3) yr-1)  as a function of global cropland area (millions of ha) projected by different Integrated 330 
Assessment Models (IAM) for different Shared Socio-economic Pathways. Data from https://tntcat.iiasa.ac.at/SspDb 
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Figure A5: Atmospheric CO2 concentrations projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing of 
the ORCHIDEE-v3 model used in this study  335 
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Figure A6: Near-surface temperature projected by the IPSL-CM6 Earth System Model for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 
2015-2100 and used as forcing of the ORCHIDEE-v3 model used in this study. Data from IPSL-CM6 (Boucher et al., 2020)
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 340 
Figure A7: Forested land area projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing of the ORCHIDEE-
v3 model used in this study. Data from LUH2 project (Hurtt et al., 2020) 
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 345 
Figure A8: Total atmospheric nitrogen deposition projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing 
of the ORCHIDEE-v3 model used in this study. Data from Hegglin et al. (2016) 
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Figure A9: Nitrogen fertilizer application projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing of the 350 
ORCHIDEE-v3 model used in this study. Data from LUH2 project (Hurtt et al., 2020) 
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 355 

 
Figure A10: Spatial distribution and size area of the eight regions used in the study. 
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Figure A11: Time evolution (2015-2100) of the change in vegetation carbon store (CVCS)  accounting for uncertainty on atmospheric 360 
[CO2] and associated climate (CCO2), land-use change (LUC) and atmospheric N deposition and fertilisation (NIN) trajectories 
(with the white semi-transparent area representing 	𝝁𝑪𝑽𝑪𝑺,𝑻𝑶𝑻 ± 𝝈𝑪𝑽𝑪𝑺,𝑻𝑶𝑻  and the white transparent area representing the 
[min;max] of the ensemble of CVCS trajectories, in PgC, right y-axis) and the relative impact on the CSCS dispersion of the three 
drivers (𝒓𝑪𝑽𝑪𝑺,𝑫, in percentage, left y-axis, with D being CCO2 (in blue), LUC (in orange) or NIN (in green)). 

 365 
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Figure A12: Time evolution (2015-2100) of the change in litter and soil carbon store (CSCS)  accounting for uncertainty on 
atmospheric [CO2] and associated climate (CCO2), land-use change (LUC) and atmospheric N deposition and fertilisation (NIN) 
trajectories (with the white semi-transparent area representing	𝝁𝑪𝑺𝑪𝑺,𝑻𝑶𝑻 ± 𝝈𝑪𝑺𝑪𝑺,𝑻𝑶𝑻 and the white transparent area representing 370 
the [min;max] of the ensemble of CSCS trajectories, in PgC, right y-axis) and the relative impact on the CSCS dispersion of the 
three drivers (𝒓𝑪𝑺𝑪𝑺,𝑫, in percentage, left y-axis, with D being CCO2 (in blue), LUC (in orange) or NIN (in green)). 
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Simulation 

SSP 

Hist 1-1.9 1-2.6 2-4.5 3-7.0 4-3.4 4-6.0 5-3.4os 5-8.5 

Marker -7.7 58.6 83.1 103.8 86.9 -5.6 71.0 75.8 115.5 

NIN sensitivity / 74.1±12.2 / / 70.7±13.6 -1.1±10.9 / / 111.1±13.5 

LUC sensitivity / 11.66±38.1 / / 70.4±44.5 30.0±40.3 / / 78.9±46.2 

LUC + NIN 

sensitivity 
/ 24.9±37.2 / / 86.5±43.6 47.1±39.3 / / 95.7±45.3 

 

Table 1: Change in land carbon store (PgC) for the historical period from 1850 to 2015 (Hist) and for the SSPs from 1850 to 2100 
by using the marker simulation (Marker) or an ensemble of simulations with different nitrogen deposition trajectories and 485 
fertilisation (NIN sensitivity, 𝝁𝑪𝑳𝑪𝑺,𝑵𝑰𝑵

𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑵𝑰𝑵𝒔 , eq. 5), different land-use change trajectories (LUC sensitivity, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪
𝒔 ±

𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪𝒔 , eq. 4) or different LUC and NIN trajectories (LUC + NIN sensitivity, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵
𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵𝒔 , eq. 6). Positive 

values indicate a gain of carbon in the land reservoir. 
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Figure 1: Time evolution (2015-2100) of the global forested land area (Mha) projected by (a to h) different Integrated Assessment 
Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers used in the 
study. Grey aeras represent the time evolution of the mean ± sigma. 

 495 

 

https://doi.org/10.5194/esd-2023-31
Preprint. Discussion started: 6 November 2023
c© Author(s) 2023. CC BY 4.0 License.



31 
 

 
Figure 2: Time evolution (2015-2100) of the global NHx (NH3) emissions (Mt(NH3) yr-1) projected by (a to h) different Integrated 
Assessment Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers 
used in the study. Grey aeras represent the time evolution of the mean ± sigma. 500 

 

 

https://doi.org/10.5194/esd-2023-31
Preprint. Discussion started: 6 November 2023
c© Author(s) 2023. CC BY 4.0 License.



32 
 

 

Figure 3: Time evolution over 2015-2100 (left-side plot of each subpanel) of the global change in land carbon store (CLCS, PgC) 
driven by the four atmospheric [CO2] and associated climate trajectories of the selected SSPs (subpanels SSP1-1.9, SSP3-7.0, SSP4-505 
3.4 and SSP5-8.5) and by different trajectories for land-use change (LUC sensitivity; blue, red, green and yellow lines for SSP 1-1.9, 
3-7.0, 4-3.4 and 5-8.5, respectively) and nitrogen deposition and fertilisation (NIN sensitivity; solid, dashed, dash-dotted and dotted 
lines for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5, respectively). Right-side plot of each subpanel represents CLCS in 2100 by using the 
marker simulation (Marker), or an ensemble of simulations with different nitrogen deposition and fertilisation trajectories (NIN, 
𝝁𝑪𝑳𝑪𝑺,𝑵𝑰𝑵
𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑵𝑰𝑵𝒔 , eq. 5), different land-use change trajectories (LUC, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪

𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪𝒔 , eq. 4) and different LUC and 510 
NIN trajectories (LUC + NIN, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵

𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵𝒔 , eq. 6) 
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Figure 4: Time evolution (2015-2100) of the change in land carbon store accounting for uncertainty on atmospheric [CO2] and 
associated climate (CCO2), land-use change (LUC) and atmospheric N deposition and fertilisation (NIN) trajectories (with the white 515 
semi-transparent area representing	𝝁𝑪𝑳𝑪𝑺,𝑻𝑶𝑻 ± 𝝈𝑪𝑳𝑪𝑺,𝑻𝑶𝑻 (eq. 7) and the white transparent area representing the [min;max] of the 
ensemble of CLCS trajectories, in PgC, right y-axis) and the relative impact on the CLCS dispersion of the three drivers (𝒓𝑪𝑳𝑪𝑺,𝑫 
(eq. 11), in percentage, left y-axis, with D being CCO2 (in blue), LUC (in orange) or NIN (in green)). 
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Figure 5: CLCS in 2100 as a function of one of the studied drivers (i.e., a) atmospheric CO2 level for CCO2, b) Forested lands for 520 
LUC and c) Atmospheric N deposition for NIN in 2100) for an ensemble of sixteen simulations driven by the different combinations 
of the two other drivers. 
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