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Abstract. Earth System Models (ESM) represent the time evolution of the biophysical (energy, water cycles) and 10 

biogeochemical (carbon cycle) components of the Earth. When used for near-future projections in the context of the Coupled 

Model Intercomparison Project (CMIP), they use as forcings the evolution of greenhouse gas and other pollutant concentrations 

and land-use changes simulated by an ensemble of Integrated Assessment Models (IAMs) for a combination of socio-economic 

pathways and mitigation targets (SSPs). More precisely, only one IAM output is used as representative of a single SSP. This 

makes the comparison of key ESM diagnostics among SSPs significantly noisy, without the capacity of disentangling SSP-15 

driven and IAM-driven factors. In this paper, we quantify the projected change in land carbon store (CLCS) for the different 

SSPs with an advanced version of a land surface model embedded into IPSL-CM6 ESM. Through a set of land-only factorial 

simulations, we specifically aim at estimating the CLCS dispersions associated with land-use change and nitrogen deposition 

trajectories. We showed that the spread of the simulated change in global land carbon store induced by the uncertainty on land-

use changes is slightly larger than the one associated with the uncertainty on atmospheric CO2. Globally, uncertainty associated 20 

with N depositions is responsible for a spread in CLCS lower by a factor three, than the one driven by atmospheric CO2 or 

land-use changes. Our study calls for making available additional IAM scenarios for each SSP to be used in the next CMIP 

exercise, in order to specifically assess the IAM-related uncertainty impacts on the carbon cycle and the climate system. 

1 Introduction 

In the framework of the Phase 6 of the Coupled Model Intercomparison Project (CMIP6), the ScenarioMIP experiments 25 

(O’Neill et al., 2016) address the near-future evolution (2015-2100) of the Earth System for a combination of socio-economic 

and climate policy scenarios. Five shared socio-economic pathways (SSPs) are explored (Riahi et al., 2017) with contrasted 

assumptions regarding the future evolution of society in terms of population growth, economic development, urbanization and 
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other factors. Driven by these five socio-economic pathways, an ensemble of Integrated Assessment Models (IAMs) simulate 

the evolution of energy and land-use systems and the associated emissions of GHG and other pollutants. In the context of 

ScenarioMIP, a selection of simulations is performed for the five socio-economic pathways with or without mitigation strategy 

(baseline scenario) leading to specific radiative forcings in 2100 (O’Neill et al., 2016). As defined in O’Neill et al. (2016), we 35 

label these eight scenarios as SSPx-y with x the selected SSP and y the 2100 radiative forcing. Here forward, we refer to these 

scenarios as SSPs for simplicity. In order to be used by Earth System Models (ESM), IAMs outputs are harmonized to be 

consistent with the data used for the historical period and downscaled from the IAMs large-region scale to a finer gridded one. 

Harmonization and downscaling are performed for land-use (Hurtt et al., 2020) and for emissions of GHG and other 

atmospheric compounds impacting climate such as ammonia or nitrogen oxides (Feng et al., 2020; Gidden et al., 2019).  40 

Most of the CMIP6 experiments designed to assess the contemporary evolution of the Earth system have been performed in a 

so-called concentration-driven mode. In such configuration, atmospheric CO2 concentration ([CO2]) is imposed, and fossil 

CO2 fuel emissions are computed a-posteriori as the remaining flux compatible with the time evolution of [CO2] and the net 

land-atmosphere and ocean-atmosphere CO2 fluxes. Liddicoat et al. (2021) computed the compatible fossil fuel CO2 emissions 

deduced from the historical and ScenarioMIP experiments of nine ESMs. They showed that the multimodel mean cumulative 45 

compatible fossil fuel CO2 emissions over 1850-2100 were in closed agreement with the estimate based on observation (for 

the historical period) and the IAMs (for the period 2015-2100) for the different SSPs. The absolute relative difference between 

the multimodel mean and the observation/IAM-based estimate ranges from 1% (for SSP3-7.0) to 13% (for SSP1-1.9), proving 

the overall good consistency between ESM and IAM carbon (C) cycle modelling. However, the model spread is large, with an 

intermodel standard deviation ranging from 5% (for SSP5-8.5) to 15% (for SSP4-3.4) of the multimodel mean compatible 50 

fossil fuel CO2 emissions. This large disagreement between ESMs is primarily attributable to the land carbon response, with 

an intermodel standard deviation for the land carbon store between 1850 and 2100 of the order of 67% of the multimodel 

mean, while the one for the ocean carbon store does not exceed 6%.  

In this context, our paper focus on the projected ESM land carbon store for the different SSPs and in particular on an additional 

source of uncertainty related to the IAM forcings. Indeed, five IAMs simulated the evolution of the energy and land-use 55 

systems and associated gas emissions for each SSP but only outputs of a single IAM per SSP have been harmonized and 

downscaled to be further used as ESM inputs. These selected interpretations of SSPs are called “markers” and the other IAM 

scenarios for each SSP “non-markers” (Riahi et al., 2017). While the anthropogenic CO2 emission trajectories simulated by 

the different IAMs for a given SSP are relatively similar (https://tntcat.iiasa.ac.at/SspDb, see also (Bauer et al., 2017) for a 

specific analysis for fossil fuel emissions only), there are large inter-IAM spreads for land-use trajectories (Riahi et al., 2017; 60 

Popp et al., 2017) but also for nitrogen (N) fertilizer usage (Sinha et al., 2019) and pollutant emissions (in particular ammonia, 

https://tntcat.iiasa.ac.at/SspDb).  

This selection of marker IAMs as representatives of a single SSP while the inter-IAM spread is large, makes difficult the 

uncertainty analysis of key ESM diagnostics as a function of SSPs, without the capacity of disentangling SSP-driven and IAM-

driven factors (Sinha et al., 2019; Monier et al., 2018). While this difficulty gets support to the development of coupled human-65 

a supprimé: In the following, and by simplicity, we refer to these 
eight scenarios as SSPs.
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Earth system (CHES) models (Monier et al., 2018; Golaz et al., 2022) to gain in modelling consistency, this option does not 

facilitate the assessment of an IAM-specific uncertainty and of its impact on the ESM diagnostics.  

In this paper, we quantify the projected change in land carbon store (CLCS) for the different SSPs from land-only simulations 70 

of the ORCHIDEE-v3 land surface model (LSM) (Vuichard et al., 2019) driven by climate data from the IPSL-CM6 ESM 

(Boucher et al., 2020). In addition, through a set of crossed multi-factorial simulations, we also aim at estimating the CLCS 

dispersions associated specifically to climate and [CO2] (CCO2), land-use change (LUC) and nitrogen inputs (NIN) 

trajectories. We first present the ORCHIDEE-v3 model, the forcing datasets used as well as the modelling protocol and 

computed metrics used in the study (Section 2). We then present and discuss the CLCS resulting from our set of simulations 75 

and their sources of dispersion, globally and for eight large regions (Section 3). Last, some recommendations are drawn in the 

perspective of the next CMIP exercise (Section 4).  

 

2 Methods 

2.1 The ORCHIDEE-v3 model 80 

ORCHIDEE (Organizing Carbon and Hydrology In Dynamic Ecosystems) is a global process-based terrestrial ecosystem 

model used to quantify energy, water, carbon and nitrogen flows and associated stocks in the soil-vegetation-atmosphere 

continuum (Krinner et al., 2005; Vuichard et al., 2019). For the last CMIP6 exercise (Boucher et al., 2020), ORCHIDEE-v2, 

a carbon-only version of ORCHIDEE has been used as the land component of the Earth System Model of the Institut Pierre 

Simon-Laplace (IPSL-CM6). ORCHIDEE-v3 is an advanced version in which N cycle and the C-N interactions have been 85 

included (Vuichard et al., 2019). ORCHIDEE-v3 needs as input data, information about climate (near-surface air temperature, 

precipitation, short and long-wave incoming radiation, specific air humidity), atmospheric CO2 concentration, land cover, but 

also atmospheric N deposition (NHx and NOy) and N fertilizer rates on managed lands. ORCHIDEE-v3 showed good 

performance at simulating Gross Primary Productivity (GPP) and Leaf Area Index (LAI) both at site and global scales 

(Vuichard et al., 2019). It also ranked with a good score for a set of key land variables in a recent model benchmark study 90 

(Seiler et al., 2022) as well as in the TRENDY model inter-comparison project as part of the land surface models contributing 

to the Global Carbon Budget (Friedlingstein et al., 2022).  

2.2 Model input datasets 

Inputs related to atmospheric CO2 concentration ([CO2]), land-use, wood harvest, N-fertilizer and nitrogen deposition are those 

used for the historical and the different SSP CMIP6-related experiments and stored on input4MIPs nodes (https://esgf-95 

node.llnl.gov/projects/input4mips/). Land-use, wood harvest and N-fertilizer input data are produced by the Land-Use 

Harmonization 2 (LUH2) project (Hurtt et al., 2020). Land use information from LUH2 consists of fractions of grid cell area 

at 0.25° resolution for cropland (five sub-categories), managed pasture, rangeland, urban, primary and secondary forested and 

non-forested land. The procedure needed for translating the original data for land-use into the fifteen land classes of 

a supprimé: (Monier et al., 2018)100 

a supprimé: uncertainties 

a supprimé: uncertainty

a supprimé: (Friedlingstein et al., 2022)



4 
 

ORCHIDEE is described in Lurton et al. (2020). In this procedure, information regarding the cropland and pasture areas from 

LUH2 is preserved while natural land is split into the different unmanaged land classes of ORCHIDEE using data from the 105 

ESA CCI Land cover product for the year 2016 (ESA, 2022). For the period 2015-2100, LUH2 data is based on land use and 

land management information from the eight different marker scenarios generated by IAMs. Nitrogen deposition fields are 

produced by the CAM-Chem climate-chemistry model (Hegglin M. et al., 2016) with emission data from the different marker 

scenarios for the period 2015-2100. Climate data used as inputs of the land-only ORCHIDEE-v3 simulations correspond to 

the IPSL-CM6A-LR model outputs (at a global resolution of 2.5°x1.27° in longitude and latitude) for the historical and the 110 

different SSP CMIP6 experiments. In this study, ORCHIDEE-v3 ran at the same resolution as the climate input data. The 

figure 1 summarises the modelling framework developed for this study with the different input data used.  

2.3 Reference simulations 

In order to get C and N vegetation and soil pools at equilibrium, we ran a spin-up simulation with the boundary conditions of 

year 1850 but recycling climate data for the period 1850-1869 in order to account for an inter-annual variability. From this 115 

equilibrium state, simulations ran for the historical period (1850-2014) and for each of the eight SSP experiments from 2015 

to 2100. 

2.4 Land-use and Nitrogen inputs related sensitivity simulations 

The objective was to investigate the impact on CLCS of the uncertainty associated to land-use and nitrogen inputs (ie., 

atmospheric N deposition and N fertilization) for a given SSP p. Given that all gridded harmonized data for the land-use and 120 

nitrogen inputs of non-marker scenarios of SSP p are not available, we used the gridded data (for land-use and nitrogen inputs) 

from marker scenarios of selected alternative SSPs to assess the sensitivity of the projected land carbon store for SSP p to land-

use and nitrogen inputs uncertainties. In other words, we used the selected SSP markers spread as a proxy for the inter-IAM 

spread regarding the land-use and nitrogen inputs trajectories for any given SSP. This is a strong assumption but supported by 

the comparison between inter-SSP markers and inter-IAM trajectories for the different SSPs. The comparison has been 125 

conducted for the following variables : forested land area (Fig. 2), NHx emissions (Fig. 3), cropland area (Fig. A1), pasture 

land area (Fig. A2) and NOy emissions (Fig. A3). Given that, ultimately, we would like to assess the uncertainty associated to 

land-use and nitrogen inputs from the different IAMs for any SSP, in the following we may use the term “uncertainty” when 

referring to the different inter-SSP markers trajectories although they correspond more to certain trajectories obtained for 

different assumptions in terms of socio-economic development and mitigation level. 130 

Due to computing time resources, we limited our sensitivity study to four SSP markers among the eight available and for each 

of these four SSPs, we used the land-use and nitrogen inputs trajectories of this set of four SSP markers to assess their impacts 

on CLCS. The selected SSPs were SSP1-1.9, SSP3-7.0, SSP4-3.4 and SSP5-8.5. The selected SSP markers were computed by 

the Integrated Assessment Models IMAGE, AIM/CGE, GCAM4 and REMIND-MAGPIE, respectively. IAMs are driven by 

projections of economic growth and population but differ in their representation of socio-economic, energy- and land-related 135 

a supprimé:  (see Figures 1, 2, A1, A2 and A3).
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processes. Information on IAM modelling regarding land-use allocation and nitrogen emissions can be found in Tables A4 

and A5, respectively. We selected these four SSPs because 1/ they encompass a large spread of CO2 level in 2100 ranging 

from 394 to 1135 ppm; and 2/ the inter-IAM spreads for land-use but also N-related input data trajectories from this selection 

are comparable to those from the eight SSPs. 140 

Based on the IAM output data produced for CMIP6 available on the SSP Database (https://tntcat.iiasa.ac.at/SspD), we showed 

that the inter-selected SSP markers spread of the forested global land area in 2100 is narrower than the inter-IAM spread for 

six out of eight SSPs (Fig. 2). Similarly, the inter-selected SSP markers spread of the global NH3 emissions in 2100 is narrower 

than the inter-IAM spread for seven out of the eight SSPs (Fig. 3). However, for some variables simulated by IAMs, the inter-

selected SSP markers spread is significantly larger than the inter-IAM spread for many SSPs. This is particularly the case of 145 

NOy emissions (Fig. A3) for which the inter-selected markers spread is larger than the inter-IAM spread for any of the eight 

SSPs. Thus, depending of the driving variable considered (forested lands, pasture or croplands, NH3 or NOy emissions) and 

of the SSP considered, the use of the selected SSP markers spread as a proxy may translate into an upper or lower estimate of 

the inter-IAM spread. Overall, our assumption of using the land-use and N trajectories of the different SSP markers as a 

surrogate of the trajectories simulated by the different IAMs for each SSP looks reasonable (from the above analysis). The 150 

comparison between inter-SSP markers and inter-IAM trajectories for the different SSPs is presented at global scale, but the 

conclusion that the selected SSP markers spread is comparable to the inter-IAM spread for the different SSPs remains valid at 

regional scale (based on the data available on the SSP Database for five aggregated regions (“Asia”, “Latin America”, 

“Reforming economies”, “Middle East and Africa” and countries from the “Organisation for Economic Co-operation and 

Development”), not shown).   155 

In addition, using alternative SSP scenarios for a given driving variable (for instance LUC or nitrogen atmospheric deposition) 

while keeping the other driving variables from a single SSP may break down the coherency between driving variables, as 

established within each IAM. However, we showed that while NH3 emissions show a good linear relationship with cropland 

area for most of the IAMs, the slope of this relationship is significantly different across IAMs (Fig. A6). This indicates that no 

common and unique relationship exists across IAMs and thus using the marker SSP spread for each variable independently of 160 

the others is a reasonable assumption.  

 

2.5 Metrics assessing the change in land carbon store and its sensitivity to different land-use and nitrogen inputs  

We analysed specifically the projected change in land carbon store (CLCS) for the four selected pathways and its sensitivity 

to the different land-use and N-inputs marker trajectories from these selected SSPs. To perform this analysis, we ran a set of 165 

sixteen sensitivity simulations for each of the four selected reference simulations, where land-use and N-related data from the 

four SSPs is used independently as forcing (four land-use trajectories times four N-inputs trajectories). The trajectories over 

a supprimé: 1
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2015-2100 of input data for forested land area, total atmospheric nitrogen deposition, nitrogen fertilizer application, 

atmospheric [CO2] and near-surface temperature are shown on Figures A7, A8, A9, A10 and A11, respectively. 

We expressed CLCS as a function of climate and atmospheric [CO2] (CCO2), land-use change (LUC) and nitrogen inputs 

(NIN) trajectories (CLCS(CCO2, LUC, NIN)) and quantified the impact of CCO2, LUC and NIN trajectories on CLCS by 175 

computing mean (𝜇) and standard deviation (𝜎) metrics based on the following equations: 

𝑋!"!#,!!%&(𝑗, 𝑘) = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}'()*).,,-*../,0*-.0,1*2.1,       (1) 

𝑋!"!#,"3!(𝑖, 𝑘) = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}4()*).,,-*../,0*-.0,1*2.1 ,       (2) 

𝑋!"!#,565(𝑖, 𝑗) = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}7()*).,,-*../,0*-.0,1*2.1 ,       (3) 

where X stands for 𝜇 or 𝜎; and the indices i, j and k stand for CCO2, LUC and NIN trajectories, respectively, each spanning 180 

the different SSPs. 

From the above generic equations, we can further quantify the mean CLCS and standard deviation associated specifically to 

different land-use (LUC) and different atmospheric N deposition and fertilisation (NIN) trajectories, for each of the four 

selected SSPs (s), 𝑋!"!#,"3!8 	and	𝑋!"!#,5658 ,	defined	as: 

𝑋!"!#,"3!8 = 𝑋!"!#,"3!(𝑖 = 𝑠, 𝑘 = 𝑠)          (4) 185 

and 𝑋!"!#,5658 = 𝑋!"!#,565(𝑖 = 𝑠, 𝑗 = 𝑠)          (5) 

for s = 1-1.9, 3-7.0, 4-3.4 and 5-8.5.  

We also quantified the CLCS and standard deviation associated to land-use plus atmospheric N deposition and fertilisation 

(LUC+NIN), 𝑋!"!#,"3!95658 . It is written as: 

𝑋!"!#,"3!95658 = 𝑋{𝐶𝐿𝐶𝑆(𝑖 = 𝑠, 𝑗, 𝑘)}4,7()*).,,-*../,0*-.0,1*2.1  ,      (6) 190 

 

In order to report on the overall dispersion of CLCS and the contribution from the three drivers (CCO2, LUC and NIN), we 

first computed 𝜇 and 𝜎 accounting for all drivers: 

𝑋!"!#,:%: = 𝑋{𝐶𝐿𝐶𝑆(𝑖, 𝑗, 𝑘)}',4,7()*).,,-*../,0*-.0,1*2.1 ,       (7) 

We then computed the mean standard deviation, 𝜎!"!#,; in order to quantify the impact on CLCS of each of the three drivers 195 

(D being CCO2, LUC or NIN) irrespective of the combinations of the two others: 
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𝜎!"!#,!!%& = 𝜇:𝜎!"!#,!!%&(𝑗, 𝑘);4,7()*).,,-*../,0*-.0,1*2.1,       (8) 

𝜎!"!#,"3! = 𝜇:𝜎!"!#,"3!(𝑖, 𝑘);',7()*).,,-*../,0*-.0,1*2.1,       (9) 

𝜎!"!#,565 = 𝜇:𝜎!"!#,565(𝑖, 𝑗);',4()*).,,-*../,0*-.0,1*2.1,        (10) 

Last, we expressed the relative impact on the CLCS spread of each of the three drivers, 𝑟!"!#,; as:  200 

𝑟!"!#,; =
<!"!#,%

<!"!#,!!&'9<!"!#,"(!9<!"!#,)*)
× 100,        (11) 

for D = CCO2, LUC and NIN 

3 Results and discussion 

3.1 Change in land carbon store (CLCS) over the historical period and for the different SSPs experiments 

The change in land carbon store (CLCS) simulated by ORCHIDEE-v3 over the historical period (1850 – 2014) corresponds 205 

to a small loss of carbon in the land reservoir of 7.7 PgC (table 1 where a negative value corresponds to a source to the 

atmosphere). This results from a C source due to land-use change larger than the land C sink induced by the increasing [CO2] 

and N deposition. Over the period 1850-2100 and depending of the SSP, the CLCS varies between a small source of 5.6 PgC 

(SSP4-3.4) to a land sink of 115.5 PgC (SSP5-8.5). The CLCS simulated by ORCHIDEE-v3 are in the low-end range of the 

values reported by Liddicoat et al. (2021) with an ensemble of nine ESMs (table 1 to be compared to table S3 of Liddicoat et 210 

al., 2021). ORCIHDEE-v3’s CLCS is very similar to the one simulated by UKESM1-0-LL for the historical period and for 

any of the seven SSPs studied by this ESM. The CLCS standard deviation induced by considering different N-related 

trajectories is relatively similar irrespective of the SPP considered with 𝜎!"!#,5658 	values for the period 1850-2100 varying 

between 10.9 and 13.6 PgC depending on the SSP (Table 1 and Figure 4). The effect of considering different LUC-related 

trajectories on the CLCS is more important with a standard deviation (𝜎!"!#,"3!8  for 1850-2100) going from 38.1 PgC (for 215 

SSP1-1.9) to 46.2 PgC (for SSP5-8.5). Accounting for both sources of uncertainty (LUC and NIN) on CLCS leads to a similar 

dispersion than considering LUC uncertainty only with 𝜎!"!#,"3!95658  varying between 37.2 and 45.3 PgC depending on the 

SSP (Table 1). Expressed as a percentage of the mean CLCS from 2015 to 2100, these values correspond to standard deviations 

ranging between 43.8% (for SSP5-8.5) and 114.1% (for SSP1-1.9) of  𝜇!"!#,"3!95658 . For SSP1-1.9 with a relative dispersion 

a supprimé: 3220 

a supprimé: uncertainty 
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higher than 100%, accounting for the spread on LUC and NIN has the capacity of turning CLCS from a gain to a loss of carbon. 

Although important, these CLCS dispersions induced by the LUC and NIN trajectories are a factor 2 to 3 less than those 

associated to the multi ESM ensemble assessed by Liddicoat et al. (2019) for all four studied SSPs except SSP1-1.9. Based on 

the data reported by Liddicoat et al. (2019, table S3), the CLCS standard deviation of the multi ESM ensemble over the period 225 

2015-2100 equals to 39.6 PgC (52% of the multi ESM ensemble mean), 123.5 PgC (63%), 86.9 PgC (381%) and 162.3 PgC 

(58%) for SSP1-1.9, SSP3-7.0, SSP4-3.4 and SSP5-8.5 respectively).   

As shown on Figure 4 (right-side plot of each panel), depending of the LUC and NIN trajectories associated to the marker 

scenarios, the CLCS from 2015 to 2100 estimated for the marker may be in the very low-end range of values for all NIN and 

LUC combinations (SSP4-3.4), in the high-end range (SSP1-1.9) or closed to the mean value 𝜇!"!#,"3!95658  (SSP3-7.0 and to 230 

some extent SSP5-8.5).  

3.2 Spatial and temporal analysis of the CLCS dispersion and its drivers 

When accounting for all combinations of NIN, LUC and CCO2 trajectories, the global CLCS at the end of the 21st century 

ranges from a source of 33 PgC to a sink of 179 PgC (Fig. 5, envelope of the white transparent areas with right y-axis). The 

mean change by 2100 (relatively to 2014) in carbon stored in land (𝝁𝑪𝑳𝑪𝑺,𝑻𝑶𝑻) as well as its standard deviation induced by the 235 

different driver trajectories (𝝈𝑪𝑳𝑪𝑺,𝑻𝑶𝑻) vary significantly spatially with a large contribution from Africa and Tropical Asia (and 

especially tropical forests) to both the mean and standard deviation (Fig. 6). The CLCS spread induced by the different LUC 

trajectories (𝜎!"!#,"3! ) is slightly larger than the one related to the CCO2 trajectory (𝜎!"!#,!!%& ). On average for all 

combinations of NIN, LUC and CCO2, the relative impact of LUC on the CLCS spread (𝑟!"!#,"3!) amounts to 48% globally 

at the end of the 21st century, while 𝑟!"!#,!!%& value is about 38% (Fig. 5, coloured areas with left y-axis). The relative impact 240 

of NIN on the CLCS spread is one third less, with a value of 𝑟!"!#,565 equals to 14%. The relative impacts of the three drivers 

on the CLCS spread at the end of the 21st century show contrasted results at regional scale (Temporal evolution for the eight 

global regions in Fig. 5 and spatial distribution in 2100 in Fig. 7). In Africa and Tropical Asia regions, where the strength of 

the land use change varies significantly from one SSP to another, the relative impact of LUC is far more important than the 

impact of CCO2 (and NIN) with values of 𝑟!"!#,"3! of ~74% for both regions (Fig. 5 and 7). As a consequence, the value of 245 

a supprimé: uncertainty 

a supprimé: uncertainties 

a supprimé: 3

a supprimé: Figures 4, 
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𝑟!"!#,!!%& in these two regions is less than 20% by 2100. They are the only two regions for which CLCS shifts significantly 

from source to sink depending of the LUC trajectories (Fig. 5, envelope of the white semi-transparent area) with regional 

𝜇!"!#,:%: ± 𝜎!"!#,:%: values of -18±27 PgC and 5±14 PgC by 2100, for Africa and Tropical Asia region respectively. Due to 255 

the strong impact of LUC on CLCS (Fig. 5 and 7) and its large area (Fig. A12), Africa is the region that contributes the most 

to the overall dispersion of CLCS globally (𝜎!"!#,:%: of 27 PgC for Africa, to be compared to 𝜎!"!#,:%: of 53 PgC for the 

globe). For the six other regions where the impact of LUC is less important, CCO2 is the factor that drives the most the CLCS 

dispersion with 𝑟!"!#,!!%&  values ranging from 37% (for Europe) to ~57.5% (for “Boreal Asia” and “Australia and New 

Zealand” regions). In these regions, the impact of NIN on the CLCS dispersion varies significantly depending on how the 260 

atmospheric N deposition trajectories are contrasted within a region but also on how the terrestrial ecosystems are N-limited 

regionally. In “South America” and “Australia and New Zealand” regions, the relative impact of NIN is very small with 

𝑟!"!#,565 values less than 10%. In the other four regions, 𝑟!"!#,565 values are larger than 23% and up to 35% for the “Boreal 

Asia” region.  

The time evolution of the relative impacts of the three drivers on the CLCS dispersion is not uniform over the 21st century 265 

(Fig. 5). Globally, 𝑟!"!#,!!%& decreases over the two first decades (2015-2030, from values greater than 50% down to 7%) and 

increases the following decades with a kind of Michaelis-Menten curve shape. Mirroring the time evolution of the relative 

impact of CCO2, 𝑟!"!#,565 and 𝑟!"!#,"3! increase over the first decades of the 21st century and decrease after 2030 and 2040 

for NIN and LUC respectively. These specific temporal dynamics, which result from the combination of specific time evolution 

and time-response on the CLCS of the three studied drivers, are obtained globally but also for most large regions (eg Temperate 270 

Asia, North America, South America). These first-decades dynamics are not analysed in more details here as they correspond 

to periods over which the CLCS overall dispersion remains small (see time evolution of 𝜇!"!#,:%: ± 𝜎!"!#,:%:, envelope of the 

white semi-transparent area on Fig. 5).  

3.3 Change in carbon stored in vegetation and litter and soil pools 

Further analysis showed that vegetation (above- and below-ground) is the reservoir contributing the most to CLCS (compared 275 

to soil and litter carbon reservoirs, Fig. 6). On average for all combinations of NIN, LUC and CCO2, the global change in 
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vegetation carbon store (CVCS) amounts to 47 PgC at the end of the 21st century (Fig. A13, middle of the white semi-

transparent envelope), while the change in soil and litter carbon store (CSCS) amounts to 21 PgC (Fig. A15). The overall 

dispersion of CVCS globally is also much larger than the one of CSCS in 2100 (𝜎!=!#,:%: of 52 PgC, to be compared to 

𝜎!#!#,:%: of 9 PgC, see Fig. A13 and A15 and Fig. 6). Thus, vegetation is also the reservoir which contributes the most to the 

overall dispersion of CLCS (𝜎!"!#,:%: of 53 PgC for the globe). Carbon in vegetation being mostly stored in trees, forested 285 

lands are the main location of CVCS, while grasslands and croplands have only a marginal contribution to CVCS (Fig. A14).  

On average, the relative impacts of CCO2, LUC and NIN on the CVCS spread are comparable to those on the CLCS spread 

with values for 𝑟!=!#,!!%&, 𝑟!=!#,"3! and 𝑟!=!#,565 equal to 45%, 48% and 7% respectively (Figure A13). Note however that 

the relative impact of NIN on the CVCS spread is significantly lower than the one on the CLCS spread, globally (𝑟!=!#,565 of 

7%, to be compared to 𝑟!"!#,565 of 14% for the globe) but also regionally (for instance in the “Europe” or “Boreal Asia” 290 

regions). Compared to the results obtained for the CLCS and CVCS, the relative impacts of CCO2, LUC and NIN on the CSCS 

spread are very different (Fig. A15 and 7). NIN is the driver inducing the largest dispersion of CSCS globally (𝑟!#!#,565 of 

41%) and in several regions (Europe, Boreal Asia, Temperate Asia and North America, see Fig. A15). The relative impacts of 

CCO2 and LUC on the global CSCS dispersion share equally the remaining percentages with values of 29% and 30% for 

𝑟!#!#,!!%& and 𝑟!#!#,"3!, respectively (Fig. A15). The lower relative impact of LUC on the CSCS dispersion compared to the 295 

CVCS dispersion can be explained by the fact that land-use changes impact more significantly the standing biomass than the 

modelled soil organic carbon dynamic. For the effect of CCO2, a deeper analysis (not shown) revealed that CCO2 is driving 

the soil carbon store via two opposite contributions. Soil carbon store increases with atmospheric [CO2] increase while it 

decreases with soil temperature increase due to higher soil organic decomposition rate. The compensating effects of 

atmospheric [CO2] and soil temperature result in limited changes in soil carbon store for the different CCO2 scenarios, in 300 

which soil temperature varies proportionally to atmospheric [CO2]. 

3.4 CLCS as a function of atmospheric CO2, forested land area and atmospheric nitrogen deposition 

The ensemble of sixty-four factorial simulations offers the advantage to isolate and quantify the effect of one specific driver 

among the three considered in this study (CCO2, LUC and NIN) which are otherwise mixed up in the standard reference SSP 
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simulations. We express CLCS in 2100 (i.e., the total change from 2015 to 2100) as a function of one driver (atmospheric 

[CO2] for CCO2, forested lands for LUC or N atmospheric deposition for NIN, in 2100) for the sixteen simulations driven by 

the different combinations of the two other drivers (Fig. 8). The different relationships between CLCS and any of the three 315 

drivers are similar irrespective of the simulations considered meaning that there is no strong co-varying effects across drivers. 

Only the CLCS baseline level differs between simulations. The CLCS response curve to [CO2] shows a saturation effect for 

the highest CO2 level (~1100 ppm) driven by the limitation of C assimilated by photosynthesis at high [CO2]. Based on a 

simple linear regression, the CLCS response to CO2 equals 0.1 PgC ppm-1 (Fig. 8a). Note that this sensitivity cannot be 

compared to the well-studied land carbon–concentration feedback metric (𝛽", PgC ppm-1) (Arora et al., 2020; Friedlingstein, 320 

2015) since in our study the CLCS response to CO2 includes also the indirect effect of [CO2] on land carbon store via climate 

change and in particular temperature change.  

We also highlight a relationship between the forested land area in 2100 and CLCS in 2100 (Fig. 8b). The forested land area in 

2100 is inversely proportional to the deforestation trend (or proportional to the re/afforestation trend) experienced over the 21st 

century in the different SSPs. As a consequence, the higher forested land area, the higher CLCS. The relationship between 325 

CLCS and the forested land area is not strictly linear due to the different regions where the deforestation (or re/afforestation) 

acts in the SSPs, with different ecosystem productivity and vegetation carbon storage (higher storage for tropical ecosystems). 

However, on average, based on a linear regression, the CLCS response to the forested lands equals 13.85 PgC (Mkm2 of 

forested lands)-1 (Fig. 8b). Last, CLCS shows a nearly linear relationship with the global mean atmospheric N deposition rate 

in 2100. The 2100 rate is used here as an indicator of the load of atmospheric N deposited on land over the 21st century and its 330 

fertilising effect on terrestrial ecosystems. This results in a CLCS response to N deposition of 1 PgC (TgN yr-1)-1.  

3.5 Comparison with other studies and path for future research 

To our knowledge, little attention has been paid to the co-effects of atmospheric [CO2], atmospheric nitrogen deposition and 

land-use change on the change in land carbon store in the CMIP6 framework and how these drivers interplay together at global 

and regional scales. A 1pctCO2 experiment was part of the DECK ensemble (Eyring et al., 2016) in order to analyse the effects 335 

of a 1% yr-1 increase in atmospheric [CO2] on the radiative (RAD) and carbon cycle (BGC) components with pre-industrial 

atmospheric N deposition. In addition to the 1pctCO2 experiment, two experiments (namely 1pctCO2Ndep and 1pctCO2Ndep-
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bgc) were planned in the Coupled Climate–Carbon Cycle Model Intercomparison Project (Jones et al., 2016) with time-

increasing atmospheric N deposition, with the objective of quantifying the co-effects of atmospheric CO2 and N deposition 

increases. Unfortunately, only three modelling groups performed these two additional experiments and no study made use of 

them so far. In the Land Use Model Intercomparison Project (Lawrence et al., 2016), the two experiments ssp370-ssp126Lu 345 

and ssp126-ssp370Lu, based on the ScenarioMIP ssp370 and ssp126 experiments but swapping their land-use datasets (Hurtt 

et al., 2020), aim at quantifying the specific contribution from land-use change on the climate and carbon cycle over the 21st 

century. With this set of 2x2 experiments, Ito et al. (2020) quantified the impact of land-use change on the total soil carbon 

stock (cSoil) simulated by seven ESMs. Although limited to only two contrasted land-use trajectories, they reported large 

intermodel spread with change on cSoil in 2100 between pair experiments (which differ only by their land-use trajectories) 350 

varying between -14 and +28 PgC depending on the ESM. The large inter-model spread regarding changes in land carbon 

store has also been reported in many studies such as the one of Liddicoat et al. (2021) based on the CMIP6 historical and SSPs 

experiments or the one of O’Sullivan et al. (O’Sullivan et al., 2022) based on the TRENDY land models ensemble over the 

last six decades. In this latter study, eighteen land surface models were used to assess the changes in carbon stored in vegetation 

and soil due to change in CO2 and Nitrogen deposition, climate, and land use. ORCHIDEE-v3 was one of these models and 355 

showed results very similar to those obtained with the multi model ensemble means which gives confidence on how relevant 

are the results of the present study. Nevertheless, there is a need of performing the multi-sensitivity analysis we proposed in 

this paper with an extended ensemble of models, in order to evaluate the robustness of our conclusions with other models that 

have different representations of the key C-related ecosystem processes.   

4 Summary and conclusions 360 

Our study aimed to quantify the impacts of the land-use- and nitrogen inputs-related IAM uncertainties on the change in land 

carbon store as simulated by the land component of an ESM, forced by climate projections. In the absence of harmonized and 

downscaled gridded information for the IAMs other than the marker one of each SSP, we used the land-use and nitrogen 

trajectories of the different SSP markers as a surrogate of the trajectories simulated by the different IAMs for each SSP.  We 

showed that the spread of the simulated change in global land carbon store induced by the different land-use trajectories across 365 

a supprimé: This limited set of studies thus highlights the need of 
performing the multi-sensitivity analysis we proposed in this paper 
with an extended ensemble of models, in order to evaluate how our 
conclusions can be shared across models with different 
representations of the key C-related ecosystem processes.370 
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SSPs is slightly larger than the one associated with the different atmospheric [CO2] trajectories. Globally, uncertainty 

associated with N inputs (mostly N depositions which originate from the N emissions) is responsible for a spread in the change 

in land carbon store that is lower by a factor three, than the one driven by atmospheric [CO2] or land-use changes. The relative 

impact of these different uncertainties showed contrasted responses regionally. In regions with very contrasted land-use 375 

trajectories across SSPs, such as Africa, the spread in the change in land carbon store is mainly driven by land-use change. In 

contrast, in regions where land-use trajectories are more similar across SSPs, the impact of the nitrogen deposition-related 

uncertainty on the change in land carbon store may be almost as large as the one induced by uncertainty on atmospheric CO2 

and land-use changes. In addition, we separated the change in land carbon store between a change in the vegetation reservoir 

and a change in the soil plus litter C reservoirs, indicating a much larger contribution from the vegetation. Although we showed 380 

that the inter-marker spread and the inter-IAM spread for a given SSP were of the same order for the land-use trajectories but 

also for the N emissions trajectories globally, the two spreads are not strictly similar for each diagnostic variable by the IAMs 

or for each SSP. In this respect, there is a need for delivering harmonized and downscaled information about land-use changes, 

N emissions and N atmospheric deposition trajectories simulated by all IAMs for each SSP and not only by the marker IAMs. 

Performing sensitivity ESM or land-only experiments with these extra datasets is the only way to accurately assess the specific 385 

IAM-related uncertainty impacts on the carbon cycle and the climate system. While many GHG mitigation strategies rely more 

and more on land-based solutions, this calls for facilitating the communication and evaluation between IAM and ESM 

modelling frameworks. Making available additional IAM scenarios to be used in the next CMIP exercise should contribute to 

this objective. In addition, given the large impact of land use change differences between IAMs (for a given SSP) and the 

significant impact (although lower) of N inputs, we also recommend that the IAM community provides more information on 390 

the uncertainties associated to these drivers. For instance, it would be informative to obtain quantitative information on the 

uncertainty associated to these variables, with a high and a low range trajectory for each driver and whether these uncertainties 

stand from structural or parametric IAM uncertainties. Information on the level of correlation between the uncertainty 

associated to each driver (land use and N inputs) would also help to propagate them in the state variables of LSMs and ESMs 

simulations. 395 
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Appendix A 

 

 

Figure A1: Time evolution (2015-2100) of the global cropland area (Mha) projected by (a to h) different Integrated Assessment 400 
Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers used in the 
study. Grey aeras represent the time evolution of the mean ± sigma. Data from https://tntcat.iiasa.ac.at/SspDb 

 

https://tntcat.iiasa.ac.at/SspDb
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Figure A2: Time evolution (2015-2100) of the global pasture land area (Mha) projected by (a to h) different Integrated Assessment 405 
Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers used in the 
study. Grey aeras represent the time evolution of the mean ± sigma. Data from https://tntcat.iiasa.ac.at/SspDb 

 

https://tntcat.iiasa.ac.at/SspDb
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Figure A3: Time evolution (2015-2100) of the global NOy (NO2) emissions (Mt(NO2) yr-1) projected by (a to h) different Integrated 410 
Assessment Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers 
used in the study. Grey aeras represent the time evolution of the mean ± sigma. Data from https://tntcat.iiasa.ac.at/SspDb 

 

  

https://tntcat.iiasa.ac.at/SspDb
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IAM IMAGE AIM/CGE GCAM4 REMIND-MAGPIE 

Used for marker SSP 1-1.9 3-7.0 4-3.4 5-8.5 

IAM category Recursive dynamic partial equilibrium 

model 

Recursive dynamic 

general equilibrium 

model 

Recursive dynamic partial equilibrium 

model 

Intertemporal optimization general equilibrium model 

Reference article van Vuuren et al., 2017 Fujimori et al., 2017 Calvin et al., 2016 Kriegler et al., 2017 

Number 

of 

world 

regions  

for economy 

and energy 

26 17 32 11 

for 

agriculture 

30’x30’  283 10 

Land-use allocation 

description 

(Popp et al., 2017) 

 

 

Demand for bio-energy crops and other 

agricultural products are combined within 

each region to determine future land use. 

Land use is allocated at the grid level based 

on the spatially explicit attainable yields, 

and other suitability considerations. 

Attainable yields are computed by the 

LPJml model as a function of land and 

climate conditions and changes in 

technology.  

Allocation of land by 

sector is formulated as 

a multi-nominal logit 

function (Fujimori et 

al. 2014) to reflect 

differences in 

substitutability across 

land categories with 

land rent. 

Land is allocated based on profit 

maximization with an assumption of non-

linear distributions of profits for each 

competing use. Demand for bioenergy is 

determined by the energy system 

component of GCAM, which is fully 

integrated with the agriculture and land use 

component. GCAM allows for global trade 

in crops, forestry, and bioenergy.   

The objective function of MAgPIE (Model of Agricultural 

Production and its Impacts on the Environment) is the 

fulfilment of agricultural demand for each region at 

minimum global costs under consideration of biophysical 

and socio-economic constraints. For meeting the demand, 

MAgPIE endogenously decides, based on cost-

effectiveness, about intensification of agricultural 

production, cropland expansion and production relocation 

(intra-regionally and inter-regionally through international 

trade)  

 415 
Table A4:  General and land-use related information for the four Integrated Assessment Models specifically used in this study (adapted from Popp et al., 
2017 and Rao et al., 2017) 
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 420 

Table A5:  Information on NOx and NH3 emission modelling for the four Integrated Assessment Models specifically used in this study, with details about 
the categories and subcategories emitting NOx/NH3, the modelling approach used (EF, GE, GM or EX) and the activity data used (adapted from Rao et 
al., 2017). EF, GE, GM and EX stand for “Regional emission factor applied to the specified activity level”, “Grid-specific emission calculated from gridded 
activity level and (regional) emission factor”, “Gridded, model-based emission (statistical or process-based model)” and “Exogenous trajectory developed 
and implemented in model”, respectively425 

Source 
  

IMAGE GCAM4 AIM/CGE  REMIND-MAGPIE 

Activity 
  

Activity 
 

 

 

 

Activity 
 

 
 

Activity 
  

Energy related 
  
End-use energy use (industry, transport, 
residential, services and other)  

Energy consumption   EF   Energy consumption   EF EF Energy consumption   EF    Energy consumption   EF EF 

Energy sector (production of power, 
hydrogen, coal, oil, gas, bioenergy)  

Energy production   EF    Energy production   EF EF Energy production   EF    Energy production   EF  EF 

Other energy conversion  Energy conversion  EF   Energy conversion  EF EF Energy conversion  EF   Energy conversion  EF  EF  

Industry Non combustion 
  
Emissions from industrial process  Industry value added 

(IVA)  
EF    Industry value added 

(IVA)  
EF EF Industry output EF  Exog. (GAINS)Industry value  EX EX 

Cement and Steel  Regional production     Regional production  EF EF Regional production  EF  Exog. (GAINS)Industry value  EX EX 

Agriculture and land-use related  
Animal waste, all animal categories  Number of animals  GE   GE   Production of live stock 

products 
  EF Production of live 

stock products 
EF EF Nr. of animals, feed, exog. assumptions 

on changes in animal waste management 
EF EF 

Landfills  
 

              Population, GDP, exogenous EX   

Deforestation  Carbon burnt  GE   GE   Size of forest OR change 
in size of forest 

EF EF Forestry otuput EF EF Land-use change GE GE 

Agricultural waste burning  Carbon burnt  GE   GE   Agricultural production EF  EF agricultural  output EF EF Crop residues burnt  GE GE 

Traditional biomass burning  Carbon burnt  GE   GE   Traditional biomass 
consumption 

EF  EF agricultural  output   EF EF   Carbon burnt  EF EF 

Savannah burning  Carbon burnt  GE   GE Grassland area EF  EF Carbon burnt  EF EF Pasture area EF EF 

Domestic sewage treatment  
  

         EX   

Crops  Fertilizser and manure 
inputs 

GM  GM Crop production EF  EF crop production  EF EF Fertilizer , manure, other nitrogen inputs  EF EF 

Managed grassland  N fertiliser and manure 
input, crop type 

GM GM     pasture land EF EF N manure input EF EF 

Indirect emissions  
  

           N crops, fertiliser, manure input and 
animal waste management 

EF EF 

Other activities  
International Shipping 

 
EF    EF 

 
Energy consumption   EF   EX EX 

International Aviation  EF         EX EX 

N
O

x 

N
H

3 

N
O

x 
 N

H
3 

N
O

x 
 N

H
3 

N
O

x 
 N

H
3 
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Figure A6: NH3 emissions (Mt(NH3) yr-1)  as a function of global cropland area (millions of ha) projected by different Integrated 
Assessment Models (IAM) for different Shared Socio-economic Pathways. Data from https://tntcat.iiasa.ac.at/SspDb 

  430 
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Figure A7: Forested land area projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing of the ORCHIDEE-
v3 model used in this study. Data from LUH2 project (Hurtt et al., 2020) 435 
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 440 
Figure A8: Total atmospheric nitrogen deposition projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing 
of the ORCHIDEE-v3 model used in this study. Data from Hegglin et al. (2016) 
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Figure A9: Nitrogen fertilizer application projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing of the 
ORCHIDEE-v3 model used in this study. Data from LUH2 project (Hurtt et al., 2020) 
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Figure A10: Atmospheric CO2 concentrations projected for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 2015-2100 and used as forcing of 
the ORCHIDEE-v3 model used in this study 
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Figure A11: Near-surface temperature projected by the IPSL-CM6 Earth System Model for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5 over 
2015-2100 and used as forcing of the ORCHIDEE-v3 model used in this study. Data from IPSL-CM6 (Boucher et al., 2020) 
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Figure A12: Spatial distribution and size area of the eight regions used in the study. 

  465 
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Figure A13: Time evolution (2015-2100) of the change in vegetation carbon store (CVCS)  accounting for different atmospheric 
[CO2] and associated climate (CCO2), land-use change (LUC) and atmospheric N deposition and fertilisation (NIN) trajectories 
(with the white semi-transparent area representing 	𝝁𝑪𝑽𝑪𝑺,𝑻𝑶𝑻 ± 𝝈𝑪𝑽𝑪𝑺,𝑻𝑶𝑻  and the white transparent area representing the 470 
[min;max] of the ensemble of CVCS trajectories, in PgC, right y-axis) and the relative impact on the CVCS dispersion of the three 
drivers (𝒓𝑪𝑽𝑪𝑺,𝑫, in percentage, left y-axis, with D being CCO2 (in blue), LUC (in orange) or NIN (in green)). 

  

a supprimé: 1

a supprimé: uncertainty on475 

a supprimé: S



27 
 

Figure A14: Time evolution (2015-2100) of the global change in vegetation carbon store (CVCS) for tree, grass and crop cover 
accounting for different atmospheric [CO2] and associated climate (CCO2), land-use change (LUC) and atmospheric N deposition 
and fertilisation (NIN) trajectories (with the white semi-transparent area representing 	𝝁𝑪𝑽𝑪𝑺,𝑻𝑶𝑻 ± 𝝈𝑪𝑽𝑪𝑺,𝑻𝑶𝑻  and the white 480 
transparent area representing the [min;max] of the ensemble of CVCS trajectories, in PgC, right y-axis) and the relative impact on 
the CVCS dispersion of the three drivers (𝒓𝑪𝑽𝑪𝑺,𝑫, in percentage, left y-axis, with D being CCO2 (in blue), LUC (in orange) or NIN 
(in green)). 
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 485 

Figure A15: Time evolution (2015-2100) of the change in litter and soil carbon store (CSCS)  accounting for uncertainty on 
atmospheric [CO2] and associated climate (CCO2), land-use change (LUC) and atmospheric N deposition and fertilisation (NIN) 
trajectories (with the white semi-transparent area representing	𝝁𝑪𝑺𝑪𝑺,𝑻𝑶𝑻 ± 𝝈𝑪𝑺𝑪𝑺,𝑻𝑶𝑻 and the white transparent area representing 
the [min;max] of the ensemble of CSCS trajectories, in PgC, right y-axis) and the relative impact on the CSCS dispersion of the 
three drivers (𝒓𝑪𝑺𝑪𝑺,𝑫, in percentage, left y-axis, with D being CCO2 (in blue), LUC (in orange) or NIN (in green)). 490 
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The source code of the ORCHIDEE-v3 model used in in this study is freely available online (DOI: 10.14768/9af22472-c438-

41d7-815e-09d629e55cf8) 

Author contributions 495 

NV designed the study; JARS performed the simulations, processed the data and created the visualizations; all authors 

contributed to the analysis; NV drafted the manuscript with contributions from JARS and PP; all authors reviewed and edited 

the manuscript.  

 

a supprimé: 2500 



29 
 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant 

Agreement N° 101003536 (ESM2025 – Earth System Models for the Future). This work was granted access to the HPC 505 

resources of GENCI-TGCC under the allocation A0130106328. JARS acknowledges for support from the Commissariat à 

l'Energie Atomique et aux Energies Alternatives (CFR grant). 

References 

Arora, V., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., 

Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, A. R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, 510 

M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, 

R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon-concentration and carbon-climate feedbacks in 

CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-

2020, 2020. 
Bauer, N., Calvin, K., Emmerling, J., Fricko, O., Fujimori, S., Hilaire, J., Eom, J., Krey, V., Kriegler, E., Mouratiadou, I., 515 

Sytze de Boer, H., van den Berg, M., Carrara, S., Daioglou, V., Drouet, L., Edmonds, J. E., Gernaat, D., Havlik, P., Johnson, 

N., Klein, D., Kyle, P., Marangoni, G., Masui, T., Pietzcker, R. C., Strubegger, M., Wise, M., Riahi, K., and van Vuuren, D. 

P.: Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives, Global Environmental Change, 42, 

316–330, https://doi.org/10.1016/j.gloenvcha.2016.07.006, 2017. 

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, 520 

L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., Davini, 

P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J. L., Dupont, E., Éthé, C., Fairhead, L., 

Falletti, L., Flavoni, S., Foujols, M. A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J. Y., Guenet, B., Guez, L. E., 

Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., 

Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J. B., 525 

Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., 

Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., 

Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL-CM6A-LR 

Climate Model, J Adv Model Earth Syst, 12, 1–52, https://doi.org/10.1029/2019MS002010, 2020. 



30 
 

Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., Mcjeon, 530 

H., Patel, P., Smith, S., Waldhoff, S., and Wise, M.: The SSP4: A World of Deepening Inequality, 2016. 

ESA: ESA CCI Land cover website, https://www.esa-landcover-cci.org/ (last access: 11 March 2022).  

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled 

Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci Model Dev, 9, 1937–1958, 

https://doi.org/10.5194/gmd-9-1937-2016, 2016. 535 

Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., Van Marle, M., Van Den Berg, M., and 

Van Der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci Model Dev, 13, 461–482, 

https://doi.org/10.5194/gmd-13-461-2020, 2020. 

Friedlingstein, P.: Carbon cycle feedbacks and future climate change, https://doi.org/10.1098/rsta.2014.0421, 13 November 

2015. 540 

Friedlingstein, P., Jones, M. W., Sullivan, M. O., Andrew, R. M., Bakker, D. C. E., Hauck, J., Quéré, C. Le, Peters, G. P., and 

Peters, W.: Global Carbon Budget 2021, 1917–2005, 2022. 

Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai, H., Hijioka, Y., and Kainuma, M.: SSP3: AIM 

implementation of Shared Socioeconomic Pathways, Global Environmental Change, 42, 268–283, 

https://doi.org/10.1016/j.gloenvcha.2016.06.009, 2017. 545 

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., Van Vuuren, D. P., Van Den Berg, M., Feng, L., 

Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., 

Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for 

use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century, Geosci Model Dev, 12, 1443–

1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019. 550 

Golaz, J. C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, M. E., 

Forsyth, R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M., Wang, H., Turner, A. K., Singh, B., Richter, J. H., Qin, 

Y., Petersen, M. R., Mametjanov, A., Ma, P. L., Larson, V. E., Krishna, J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, W. 

M., Guba, O., Griffin, B. M., Feng, Y., Engwirda, D., Di Vittorio, A. V., Dang, C., Conlon, L. A. M., Chen, C. C. J., Brunke, 

M. A., Bisht, G., Benedict, J. J., Asay-Davis, X. S., Zhang, Y., Zhang, M., Zeng, X., Xie, S., Wolfram, P. J., Vo, T., Veneziani, 555 

M., Tesfa, T. K., Sreepathi, S., Salinger, A. G., Reeves Eyre, J. E. J., Prather, M. J., Mahajan, S., Li, Q., Jones, P. W., Jacob, 

R. L., Huebler, G. W., Huang, X., Hillman, B. R., Harrop, B. E., Foucar, J. G., Fang, Y., Comeau, D. S., Caldwell, P. M., 

Bartoletti, T., Balaguru, K., Taylor, M. A., McCoy, R. B., Leung, L. R., and Bader, D. C.: The DOE E3SM Model Version 2: 

Overview of the Physical Model and Initial Model Evaluation, J Adv Model Earth Syst, 14, 

https://doi.org/10.1029/2022MS003156, 2022. 560 

Hegglin M., Kinnison D., and Lamarque J-F: CCMI nitrogen surface fluxes in support of CMIP6 - version 2.0, 2016. 

Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Goldewijk, 

K. K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., 



31 
 

Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., 

Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management 565 

for the period 850-2100 (LUH2) for CMIP6, 5425–5464 pp., https://doi.org/10.5194/gmd-13-5425-2020, 2020. 

Ito, A., Hajima, T., Lawrence, D. M., Brovkin, V., Delire, C., Jones, C. D., Malyshev, S., Materia, S., and Mcdermid, S. P.: 

Soil carbon sequestration simulated in CMIP6-LUMIP models : implications for climatic mitigation OPEN ACCESS Soil 

carbon sequestration simulated in CMIP6-LUMIP models : implications for climatic mitigation, 2020. 

Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G., 570 

Jung, M., and Kawamiya, M.: C4MIP – The Coupled Climate – Carbon Cycle Model Intercomparison Project : experimental 

protocol for CMIP6, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, 2016. 

Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., 

Klein, D., Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J. P., Luderer, G., Pehl, M., Pietzcker, R., Piontek, F., Lotze-

Campen, H., Biewald, A., Bonsch, M., Giannousakis, A., Kreidenweis, U., Müller, C., Rolinski, S., Schultes, A., Schwanitz, 575 

J., Stevanovic, M., Calvin, K., Emmerling, J., Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5): An energy 

and resource intensive scenario for the 21st century, Global Environmental Change, 42, 297–315, 

https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017. 

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. 

C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem Cycles, 580 

19, 1–33, https://doi.org/10.1029/2003GB002199, 2005. 

Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., Noblet-

Ducoudré, N. De, Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison Project (LUMIP) 

contribution to CMIP6: Rationale and experimental design, Geosci Model Dev, 9, 2973–2998, https://doi.org/10.5194/gmd-9-

2973-2016, 2016. 585 

Liddicoat, S. K., Wiltshire, A. J., Jones, C. D., Arora, V. K., Brovkin, V., Cadule, P., Hajima, T., Lawrence, D. M., Pongratz, 

J., Schwinger, J., Séférian, R., Tjiputra, J. F., and Ziehn, T.: Compatible fossil fuel CO2 emissions in the CMIP6 earth system 

models’ historical and shared socioeconomic pathway experiments of the twenty-first century, J Clim, 34, 2853–2875, 

https://doi.org/10.1175/JCLI-D-19-0991.1, 2021. 

Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Contoux, C., Cozic, 590 

A., Cugnet, D., Dufresne, J. L., Éthé, C., Foujols, M. A., Ghattas, J., Hauglustaine, D., Hu, R. M., Kageyama, M., Khodri, M., 

Lebas, N., Levavasseur, G., Marchand, M., Ottlé, C., Peylin, P., Sima, A., Szopa, S., Thiéblemont, R., Vuichard, N., and 

Boucher, O.: Implementation of the CMIP6 Forcing Data in the IPSL-CM6A-LR Model, J Adv Model Earth Syst, 12, 

https://doi.org/10.1029/2019MS001940, 2020. 

Monier, E., Paltsev, S., Sokolov, A., Chen, Y. H., Gao, X., Ejaz, Q., Couzo, E., Schlosser, C. A., Dutkiewicz, S., Fant, C., 595 

Scott, J., Kicklighter, D., Morris, J., Jacoby, H., Prinn, R., and Haigh, M.: multi-sectoral climate impacts, Nat Commun, 1–8, 

https://doi.org/10.1038/s41467-018-02984-9, 2018. 



32 
 

O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. 

F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project 

(ScenarioMIP) for CMIP6, Geosci Model Dev, 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. 600 

O’Sullivan, M., Friedlingstein, P., Sitch, S., Anthoni, P., Arneth, A., Arora, V. K., Bastrikov, V., Delire, C., Goll, D. S., Jain, 

A., Kato, E., Kennedy, D., Knauer, J., Lienert, S., Lombardozzi, D., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, 

J., Poulter, B., Séférian, R., Tian, H., Vuichard, N., Walker, A. P., Yuan, W., Yue, X., and Zaehle, S.: Process-oriented analysis 

of dominant sources of uncertainty in the land carbon sink, Nat Commun, 13, https://doi.org/10.1038/s41467-022-32416-8, 

2022. 605 

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., 

Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin, H., Waldhoff, S., Weindl, I., Wise, M., 

Kriegler, E., Lotze-Campen, H., Fricko, O., Riahi, K., and Vuuren, D. P. van: Land-use futures in the shared socio-economic 

pathways, Global Environmental Change, 42, 331–345, https://doi.org/10.1016/j.gloenvcha.2016.10.002, 2017. 

Rao, S., Klimont, Z., Smith, S. J., Van Dingenen, R., Dentener, F., Bouwman, L., Riahi, K., Amann, M., Bodirsky, B. L., van 610 

Vuuren, D. P., Aleluia Reis, L., Calvin, K., Drouet, L., Fricko, O., Fujimori, S., Gernaat, D., Havlik, P., Harmsen, M., 

Hasegawa, T., Heyes, C., Hilaire, J., Luderer, G., Masui, T., Stehfest, E., Strefler, J., van der Sluis, S., and Tavoni, M.: Future 

air pollution in the Shared Socio-economic Pathways, Global Environmental Change, 42, 346–358, 

https://doi.org/10.1016/j.gloenvcha.2016.05.012, 2017. 

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, 615 

O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, 

T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, 

J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., 

Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic 

Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environmental Change, 620 

42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. 

Seiler, C., Melton, J. R., Arora, V. K., Sitch, S., Friedlingstein, P., Anthoni, P., Goll, D., Jain, A. K., Joetzjer, E., Lienert, S., 

Lombardozzi, D., Luyssaert, S., Nabel, J. E. M. S., Tian, H., Vuichard, N., Walker, A. P., Yuan, W., and Zaehle, S.: Are 

Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?, J Adv Model Earth Syst, 14, 

https://doi.org/10.1029/2021MS002946, 2022. 625 

Sinha, E., Michalak, A. M., Calvin, K. V., and Lawrence, P. J.: Societal decisions about climate mitigation will have dramatic 

impacts on eutrophication in the 21 st century, Nat Commun, 10, https://doi.org/10.1038/s41467-019-08884-w, 2019. 

Vuichard, N., Messina, P., Luyssaert, S., Guenet, B., Zaehle, S., Ghattas, J., Bastrikov, V., and Peylin, P.: Accounting for 

carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale 

evaluation of gross primary production, Geosci Model Dev, 12, 4751–4779, https://doi.org/10.5194/gmd-12-4751-2019, 2019. 630 



33 
 

van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, 

L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van 

Ruijven, B. J., van der Sluis, S., and Tabeau, A.: Energy, land-use and greenhouse gas emissions trajectories under a green 

growth paradigm, Global Environmental Change, 42, 237–250, https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017. 

  635 

  

a supprimé: Arora, V., Katavouta, A., Williams, R. G., Jones, C. 710 
D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, 
O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., 
Fisher, A. R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., 
Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, 
A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., 715 
Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon-
concentration and carbon-climate feedbacks in CMIP6 models and 
their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, 
https://doi.org/10.5194/bg-17-4173-2020, 2020.¶
Bauer, N., Calvin, K., Emmerling, J., Fricko, O., Fujimori, S., 720 
Hilaire, J., Eom, J., Krey, V., Kriegler, E., Mouratiadou, I., Sytze de 
Boer, H., van den Berg, M., Carrara, S., Daioglou, V., Drouet, L., 
Edmonds, J. E., Gernaat, D., Havlik, P., Johnson, N., Klein, D., Kyle, 
P., Marangoni, G., Masui, T., Pietzcker, R. C., Strubegger, M., Wise, 
M., Riahi, K., and van Vuuren, D. P.: Shared Socio-Economic 725 
Pathways of the Energy Sector – Quantifying the Narratives, Global 
Environmental Change, 42, 316–330, 
https://doi.org/10.1016/j.gloenvcha.2016.07.006, 2017.¶
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, 
Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., 730 
Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., 
Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., Davini, P., de 
Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., 
Dufresne, J. L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., 
Flavoni, S., Foujols, M. A., Gardoll, S., Gastineau, G., Ghattas, J., 735 
Grandpeix, J. Y., Guenet, B., Guez, L. E., Guilyardi, E., 
Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., 
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., 
Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., 
Madec, G., Madeleine, J. B., Maignan, F., Marchand, M., Marti, O., 740 
Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., 
Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, 
P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., 
Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: 
Presentation and Evaluation of the IPSL-CM6A-LR Climate Model, J 745 
Adv Model Earth Syst, 12, 1–52, 
https://doi.org/10.1029/2019MS002010, 2020.¶
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., 
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) experimental design and 750 
organization, Geosci Model Dev, 9, 1937–1958, 
https://doi.org/10.5194/gmd-9-1937-2016, 2016.¶
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, 
R., Klimont, Z., Van Marle, M., Van Den Berg, M., and Van Der 
Werf, G. R.: The generation of gridded emissions data for CMIP6, 755 
Geosci Model Dev, 13, 461–482, https://doi.org/10.5194/gmd-13-
461-2020, 2020.¶
Friedlingstein, P.: Carbon cycle feedbacks and future climate change, 
https://doi.org/10.1098/rsta.2014.0421, 13 November 2015.¶
Friedlingstein, P., Jones, M. W., Sullivan, M. O., Andrew, R. M., 760 
Bakker, D. C. E., Hauck, J., Quéré, C. Le, Peters, G. P., and Peters, 
W.: Global Carbon Budget 2021, 1917–2005, 2022.¶
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., 
Kriegler, E., Van Vuuren, D. P., Van Den Berg, M., Feng, L., Klein, 
D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., 765 
Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., 
Stehfest, E., and Takahashi, K.: Global emissions pathways under 
different socioeconomic scenarios for use in CMIP6: A dataset of 
harmonized emissions trajectories through the end of the century, 
Geosci Model Dev, 12, 1443–1475, https://doi.org/10.5194/gmd-12-770 
1443-2019, 2019.¶ ... [1]



34 
 

 

Simulation 

SSP 

Hist 1-1.9 1-2.6 2-4.5 3-7.0 4-3.4 4-6.0 5-3.4os 5-8.5 

Marker -7.7 58.6 83.1 103.8 86.9 -5.6 71.0 75.8 115.5 

NIN sensitivity / 74.1±12.2 / / 70.7±13.6 -1.1±10.9 / / 111.1±13.5 

LUC sensitivity / 11.66±38.1 / / 70.4±44.5 30.0±40.3 / / 78.9±46.2 

LUC + NIN 

sensitivity 
/ 24.9±37.2 / / 86.5±43.6 47.1±39.3 / / 95.7±45.3 

 

Table 1: Change in land carbon store (PgC) for the historical period from 1850 to 2015 (Hist) and for the SSPs from 1850 to 2100 
by using the marker simulation (Marker) or an ensemble of simulations with different nitrogen deposition trajectories and 775 
fertilisation (NIN sensitivity, 𝝁𝑪𝑳𝑪𝑺,𝑵𝑰𝑵

𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑵𝑰𝑵𝒔 , eq. 5), different land-use change trajectories (LUC sensitivity, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪
𝒔 ±

𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪𝒔 , eq. 4) or different LUC and NIN trajectories (LUC + NIN sensitivity, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵
𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵𝒔 , eq. 6). Positive 

values indicate a gain of carbon in the land reservoir. 
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Figure 1: Flow chart of the modelling framework highlighting the different input data (rectangles), the land surface model (ellipsoid) 
used in this study and the main output data produced (parallelogram)   
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Figure 2: Time evolution (2015-2100) of the global forested land area (Mha) projected by (a to h) different Integrated Assessment 785 
Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers used in the 
study. Grey aeras represent the time evolution of the mean ± sigma. 
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Figure 3: Time evolution (2015-2100) of the global NHx (NH3) emissions (Mt(NH3) yr-1) projected by (a to h) different Integrated 
Assessment Models (IAM) for different Shared Socio-economic Pathways, (i) all IAM markers and (j) the selected IAM markers 
used in the study. Grey aeras represent the time evolution of the mean ± sigma. 
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Figure 4: Time evolution over 2015-2100 (left-side plot of each subpanel) of the global change in land carbon store (CLCS, PgC) 
driven by the four atmospheric [CO2] and associated climate trajectories of the selected SSPs (subpanels SSP1-1.9, SSP3-7.0, SSP4-800 
3.4 and SSP5-8.5) and by different trajectories for land-use change (LUC sensitivity; blue, red, green and yellow lines for SSP 1-1.9, 
3-7.0, 4-3.4 and 5-8.5, respectively) and nitrogen deposition and fertilisation (NIN sensitivity; solid, dashed, dash-dotted and dotted 
lines for SSP 1-1.9, 3-7.0, 4-3.4 and 5-8.5, respectively). Right-side plot of each subpanel represents CLCS in 2100 by using the 
marker simulation (Marker), or an ensemble of simulations with different nitrogen deposition and fertilisation trajectories (NIN, 
𝝁𝑪𝑳𝑪𝑺,𝑵𝑰𝑵
𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑵𝑰𝑵𝒔 , eq. 5), different land-use change trajectories (LUC, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪

𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪𝒔 , eq. 4) and different LUC and 805 
NIN trajectories (LUC + NIN, 𝝁𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵

𝒔 ± 𝝈𝑪𝑳𝑪𝑺,𝑳𝑼𝑪+𝑵𝑰𝑵𝒔 , eq. 6) 
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Figure 5: Time evolution (2015-2100) of the change in land carbon store accounting for different atmospheric [CO2] and associated 810 
climate (CCO2), land-use change (LUC) and atmospheric N deposition and fertilisation (NIN) trajectories (with the white semi-
transparent area representing	𝝁𝑪𝑳𝑪𝑺,𝑻𝑶𝑻 ± 𝝈𝑪𝑳𝑪𝑺,𝑻𝑶𝑻  (eq. 7) and the white transparent area representing the [min;max] of the 
ensemble of CLCS trajectories, in PgC, right y-axis) and the relative impact on the CLCS dispersion of the three drivers (𝒓𝑪𝑳𝑪𝑺,𝑫 
(eq. 11), in percentage, left y-axis, with D being CCO2 (in blue), LUC (in orange) or NIN (in green)). 
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Figure 6: Mean (𝝁𝑪𝑳𝑪𝑺,𝑻𝑶𝑻) and standard deviation (𝝈𝑪𝑳𝑪𝑺,𝑻𝑶𝑻) of the change by 2100 (relatively to 2014) in carbon stored in land 
(CLCS), vegetation (CVCS) and litter+soil (CSCS) accounting for all the different trajectories regarding atmospheric [CO2] and 820 
associated climate (CCO2), land-use change (LUC) and atmospheric N deposition and fertilisation (NIN) 
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Figure 7: Relative impact (𝒓𝑪𝑳𝑪𝑺,𝑫 (eq. 11)) of the different trajectories regarding atmospheric [CO2] and associated climate (CCO2), 
land-use change (LUC) and atmospheric N deposition on the change by 2100 (relatively to 2014) in carbon stored in land (CLCS), 825 
vegetation (CVCS) and litter+soil (CSCS) 
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Figure 8: CLCS in 2100 as a function of one of the studied drivers (i.e., a) atmospheric CO2 level for CCO2, b) Forested lands for 
LUC and c) Atmospheric N deposition for NIN in 2100) for an ensemble of sixteen simulations driven by the different combinations 830 
of the two other drivers. 
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