Supplements of

Regionally optimized fire parameterizations

using feed-forward neural networks

Yoo-Geun Ham¹*, Seung-Ho Nam², Geun-Hyeong Kang², and Jin-Soo Kim³*

¹ Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, South Korea
² Department of Oceanography, Chonnam National University, Gwangju, 61186, South Korea
³ Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Hong Kong, People’s Republic of China

Correspondence to: Prof. Yoo-Geun Ham (yoogeun@snu.ac.kr), and Prof. Jin-Soo Kim (jinsoo.kim@cityu.edu.hk)
Supplementary Table S1. Periods for the training, validation, and testing of the FFNNs. Note that every period starts from Jan. 1st and end at Dec. 31st.

<table>
<thead>
<tr>
<th></th>
<th>EXP1</th>
<th>EXP2</th>
<th>EXP3</th>
<th>EXP4</th>
<th>EXP5</th>
</tr>
</thead>
</table>
Supplementary Fig. S1. Training (black) and validation loss (red) with respect to the epoch at the grid point in (a) the middle East (centered at 31°N, 47°E), (b) South America (centered at 9°N, 63°W), and (c) Australia (centered at 13°S, 131°E).
Supplementary Fig. S2. The spatial distribution of the FRP climatology during 2001-2020 period.
Supplementary Fig. S3. Same as main Fig. 2, but for cases where the observed FRP > 0.
Supplementary Fig. S4. Same as main Fig. 2, but using monthly-averaged FRP.
Supplementary Fig. S5. Difference in the correlation skill of the original FRP estimation in the FFNNs from that by using (a) the RH2m, (b) PRCP, (c) T2m, and (d) WS10m as the daily climatological values.
Supplementary Fig. S6. Difference in the correlation skill of the original FRP estimation in the FWI-based model from that by using (a) the RH2m, (b) PRCP, (c) T2m, and (d) WS10m as the daily climatological values.