
 

1 

 

Regionally optimized fire parameterizations  1 

using feed-forward neural networks  2 

 3 

Yoo-Geun Ham1*, Seung-Ho Nam2, Geun-Hyeong Kang2, and Jin-Soo Kim3*  4 

1 Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National 5 
University, Seoul, South Korea 6 

2 Department of Oceanography, Chonnam National University, Gwangju, 61186, South Korea 7 
3 Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City 8 

University of Hong Kong, Tat Chee Ave, Kowloon Tong, Hong Kong, People’s Republic of China 9 

Correspondence to: Prof. Yoo-Geun Ham (yoogeun@snu.ac.kr), and Prof. Jin-Soo Kim 10 
(jinsoo.kim@cityu.edu.hk)   11 

 12 

The fire weather index (FWI) is a widely used metric for fire danger based on 13 

meteorological observations. However, due to its empirical formulation based on a 14 

specific regional relationship between the meteorological observations and fire 15 

intensity, the ability of the FWI to accurately represent global satellite-derived fire 16 

intensity observations is limited. In this study, we propose a fire parameterization 17 

method using feed-forward neural networks (FFNNs) for individual grids. These 18 

FFNNs for each grid point utilize four daily meteorological variables (2-meter relative 19 

humidity (RH2m), precipitation, 2-meter temperature, and wind speed) as inputs. The 20 

outputs of the FFNNs are satellite-derived fire radiative power (FRP) values. Applying 21 

the proposed FFNNs for fire parameterization during the 2001–2020 period revealed a 22 

marked enhancement in cross-validated skill compared to parameterization solely 23 

based on the FWI. This improvement was particularly notable across East Asia, Russia, 24 

the eastern US, southern South America, and central Africa. The sensitivity 25 

experiments demonstrated that the RH2m is the most critical variable in estimating the 26 

FRP and its regional differences via the FFNNs. Conversely, the FWI-based 27 

estimations were primarily influenced by precipitation. The FFNNs accurately captured 28 

the observed nonlinear RH2m-FRP and precipitation-FRP relationship compared to 29 

that simulated in the FWI-based model. 30 
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1. Introduction 34 

Wildfires are inflicting substantial terrestrial and economic impacts in numerous 35 

regions globally (Bowman et al., 2009). For example, In 2020, the United States 36 

experienced a total of US$16.5 billion in damages due to wildfires, with over 10,000 37 

structures in California alone being damaged or completely destroyed (NOAA, 2021). 38 

The 2019-2020 wildfire season in Australia was exceptionally severe, causing smoke-39 

related health costs of AU$1.95 billion, including an estimated 429 premature deaths 40 

and over 4,700 hospital visits, a cost nearly nine times the median annual cost of 41 

AU$211 million over the previous 19 years (Johnston et al., 2021). Therefore, 42 

monitoring and managing the risk of fire incidents at an early stage poses a significant 43 

challenge for each country in reducing casualties and economic losses (Vitolo et al., 44 

2019).  45 

As fire propagation is mainly determined by dryness after its ignition, spatially 46 

estimating and forecasting dryness enables the monitoring of fire hazards (Bistinas et 47 

al., 2014, Abatzoglou and Williams 2016). Facilitating the implementation of 48 

emergency measures to curb the expansion of uncontrollable large fires (Di Giuseppe 49 

et al., 2016, Bett et al., 2020, Haas et al., 2022). For this reason, in order to prevent fires, 50 

various techniques for quantifying and monitoring dryness have been developed and 51 

are being used. Indeed, the European Centre for Medium-Range Weather Forecasts 52 

(ECMWF) provides the Canadian Forest Fire Weather Index, the Australian McArthur 53 

Forest Fire Danger Index, and the Keetch-Byram Drought Index through the European 54 

Forest Fire Information System (EFFIS). 55 

Among several operational fire danger indices, the Fire Weather Index (FWI) 56 

holds a prominent status as an indicator of potential fire intensity. Developed by the 57 

Canadian Forest Fire Danger Rating System (Van Wagner 1974, 1987), the FWI is 58 

based on four daily meteorological observations: near-surface air temperature, near-59 

surface air relative humidity, wind speed, and precipitation. Fuel moisture codes are 60 

first determined from meteorological data to assign numerical ratings to the moisture 61 

content of the forest floor and other deceased organic matter. Afterward, the moisture 62 

codes are provided as an input of the fire behavior indices, such as the initial spread 63 

index and buildup index, to finally calculate the FWI, providing an estimation of 64 

wildfire intensity under given meteorological conditions (Vitolo et al., 2019).  65 

Although this system has been shown to be globally applicable (Bedia et al., 66 

2015, Abatzoglou et al., 2018), it was originally developed for the characterization of 67 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL080959#grl58345-bib-0003
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evergreen pine stands in forested areas of Canada. Therefore, all links between fire 68 

moisture codes and fire behavior indices are optimized and parameterized for eastern 69 

Canada. However, regional fire dynamics vary significantly depending on its unique 70 

climatological states (Flannigan et al., 2005, Kim et al., 2019). For example, extensive 71 

deforestation fires in the Amazon are attributed to insufficient cumulative precipitation 72 

(Le Page et al., 2010), whereas Arctic fire activity is more sensitive to temperature and 73 

relevant timing of snowmelt (Kim et al., 2020); however, its regional differences would 74 

not be fully considered as the strength of FWI which is originally optimized and derived 75 

for physical characteristics of Canadian fire, while the relationship between the 76 

meteorological conditions and the fire activity varies significantly from regions to 77 

regions. 78 

Artificial neural networks (ANN) have recently received extensive attention and 79 

continue expanding to various application fields, including wildfire research. The 80 

traditional ANN model with shallow neural networks, such as multilayer perceptron, 81 

and convolutional neural networks has been applied to predict the fire probability over 82 

the regional domain (Satir et al., 2016), or parameterize the fire occurrence (Zhang et 83 

al., 2021) from the meteorological variables. Despite previous literature demonstrating 84 

promising accuracy in estimating or predicting fire characteristics, the development of 85 

globally applicable ANN-based parameterization is still in its early stages. This is 86 

primarily due to the regional idiosyncrasies in the relationships between meteorological 87 

variables and fire activity, posing challenges for establishing global implementation. 88 

To understand the varying sensitivities of wildfire activity to the meteorological 89 

variables from different regions, our study optimized fire parameterizations with 90 

satellite-derived fire radiative power (FRP) datasets based on feed-forward neural 91 

networks (FFNNs) in each region with fire activity records. Given that FFNNs follow 92 

the same structure and input variables as the FWI, the parameter values linking 93 

meteorological observations, fuel moisture code, and fire behavior indices are 94 

established for every 1° × 1° resolution grid box via FFNNs, thus foregoing raw 95 

parameterizations in the Canadian FWI. In addition to our novel FFNN-based model, 96 

we also conducted an in-depth examination of the FWI-based model with FRP for 97 

comparative purposes. To quantify the relative contributions of each meteorological 98 

parameter to the fire parameterizations, sensitivity experiments were conducted based 99 

on climatological values of meteorological observations.  100 

 101 

https://www.sciencedirect.com/science/article/pii/S1470160X21004003?via%3Dihub#b0175
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2. Data and Experimental Design  102 

2.1. Data 103 

2.1.1. Fire radiative power (FRP) 104 

Given that the FWI was designed to estimate potential fire intensity, our analyses were 105 

based on satellite-derived FRP, a metric that represents the rate at which a fire emits 106 

energy in the form of thermal radiation. Specifically, daily FRP data was sourced from 107 

the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 dataset 108 

provided by the Fire Information for Resource Management System (FIRMS) 109 

(https://firms.modaps.eosdis.nasa.gov/active_fire/) (Giglio et al., 2016). The period of 110 

the FRP data spans from 2001 to 2020. The dataset featured a spatial resolution of 1°×1° 111 

across the entire globe (0°–360°E, 90°S–90N), with values expressed in megawatts 112 

(106 J s−1; MW). It is important to note that although products were generated for both 113 

land and ocean areas, we exclusively focused on land values, as FRP is directly 114 

associated with fire size and intensity over terrestrial surfaces.  115 

 116 

2.1.2. Meteorological observations  117 

Meteorological observations are required as an input of the FWI and the FFNNs for the 118 

FRP parameterizations. In this study, we used daily-averaged 2 m air temperature 119 

(T2m), 2 m air relative humidity (RH2m), 10 m wind speed (WS10m), and precipitation 120 

(PRCP) from ERA5 reanalysis produced by the European Centre for Medium-Range 121 

Weather Forecasts (ECMWF) from 2001 to 2020 (Hersbach et al., 2020). The original 122 

horizontal resolution was a quarter degree but was interpolated to a 1°×1° resolution 123 

over the entire globe (0°–360°E, 90°S–90N). 124 

 125 

2.2. Models 126 

2.2.1. FWI-based model 127 

A FRP-estimation model based on the FWI was established as a baseline. The FWI is 128 

obtained from the daily averages of T2m, RH2m, WS10m, and PRCP, and the source 129 

code to produce the FWI was obtained from the Canadian Forest Service at 130 

https://cfs.nrcan.gc.ca/publications/download-pdf/36461. To match the systematic 131 

amplitude differences between the FWI and FRP using the different units, a linear 132 

regression coefficient of the FRP with respect to the FWI, which was separately 133 

calculated for each grid point, is multiplied to produce the FWI-based model. Therefore, 134 

https://cfs.nrcan.gc.ca/publications/download-pdf/36461


 

5 

 

the nonlinearity between the meteorological variable and the FRP in the baseline model 135 

is purely originated from the procedure to derive the FWI. A cross-validation strategy 136 

was adopted for the skill assessment. For more details, please refer to section 2.3.  137 

 138 

2.2.2. FFNNs for FRP parameterization 139 

The FFNNs employed for FRP parameterization consist of one input layer, three hidden 140 

layers, and one output layer (Figure 1). The input layer comprises four neurons 141 

corresponding to daily averages of T2m, RH2m, WS10m, and PRCP at a specific grid 142 

point. The output layer, on the other hand, encompasses a single neuron respresening 143 

concurrent FRP estimation at the corresponding grid point. Notably, FFNNs are 144 

configured individually for each grid point. The first, second, and third hidden layers 145 

are composed of 64, 32, and 16 neurons, respectively. Activation functions are 146 

implemented utilizing the ReLU function, which is known to be powerful by 147 

introducing nonlinearity and solving the vanishing gradient issues (Agarap, 2018). 148 

Techniques such as batch normalization to normalize activations in intermediate layers 149 

of deep neural networks (Bjorck et al., 2018), and dropout to prevent an overfitting to 150 

the training data by randonmly drop units (Srivastava et al., 2014) with a dropout rate 151 

of 0.2, are applied to enhance model robustness.  152 

It should be noted that the meteorological observations serving as input for the FFNNs 153 

mirror those employed in the FWI. Thus, any disparities in estimation accuracy between 154 

the FFNNs and the FWI-based model solely stem from  the FRP estimation algorithm. 155 

The loss function of the FFNNs is defined as the root-mean-squared difference 156 

between the observed FRP (y) and the estimated FRP (ŷ) as follows.  157 

Loss = ∑(yn − yn̂)
2

N

n=1

 158 

where N denotes the number of training samples. Total numer of epochs for the 159 

traininng is set to 1,000, and early stopping is applied (Raskutti et al., 2014), once the 160 

validation loss is not decreased for 100 epoches. It is shown that both the training and 161 

validation loss is decreased with the increased epoch (Supplementary Fig. S1), 162 

indicating that the FFNNs to estimate the FRP are successfully formulated. Similar to 163 

the FWI-based model, a cross-validation strategy is adapted for the skill assessment 164 

(see section 2.3 for more details).  165 

 166 
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2.3. Cross-validation strategy for the skill assessment 167 

The performance of both the FFNNs and the FWI-based model was assessed by 168 

adopting a cross-validation strategy. The dataset was partitioned into distinct subsets 169 

for testing, validation, and training purposes. The testing period was defined by 170 

dividing the entire period from 2001 to 2020 into four-year intervals. The validation 171 

dataset is defined as the last two years of each four-year interval, whereas the remaining 172 

data was used for training. For example, for the 1st Jan. 2001–31st Dec. 2004 test period, 173 

the models were trained using a 1st Jan. 2005– 31st Dec. 2018 dataset, whereas the data 174 

from 1st Jan. 2019– 31st Dec. 2020 was used for validation. Additional details on the 175 

selection of periods for training, validation, and testing are provided in Supplementary 176 

Table S1. After aligning all testing results from multiple sets of experiments with 177 

different period for training/validating/testing, the skill in estimating FRP was 178 

estimated using both FFNNs and FWI-based models across the 2001–2020 period. We 179 

note that evaluating the skill of FFNN against FRP data may lead to an overestimation 180 

of its estimation abilities, given that the FFNN is trained using same type of data. 181 

Regrettably, the absence of ground-based observations on fire activity/intensity for the 182 

enough period deprives us of the opportunity to cross-reference FFNN-based FRP 183 

estimations with independent observations. The FRP anomalies, which were calculated 184 

by subtracting the estimated daily climatology during 2001–2020 period, were 185 

compared and assessed for the FRP estimation accuracy.  186 

 187 

3. FRP parameterization using the FFNNs 188 

Figure 2 illustrates the correlation skill and root-mean-squared error (RMSE) between 189 

the observed FRP anomalies from 2001 to 2020 and the FRP anomalies estimated with 190 

FFNNs and the FWI-based model. The correlation skill of the FFNNs exceeded 0.6 191 

over southern China, northern India, southern South America, the eastern US, southern 192 

Africa, western-central Russia, and maritime continents (Figure 2a). In contrast, the 193 

correlation skill of the FWI-based model fell below 0.6, with southern China and central 194 

Africa being the only exceptions (Figure 2b). Therefore, the FFNNs consistently 195 

exhibited superior correlation skills compared to the FWI-based model over most of the 196 

globe (Figure 2c). Notably, the improvement in the correlation skill of the FFNNs was 197 

statistically significant at a 95% confidence level, as determined using the method 198 

outlined by Zou (2007). This significance was particularly pronounced over East Asia, 199 

the entirety of Russia, the eastern US, southern South America, and central Africa.  200 
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The RMSE of the FRP estimations tended to be higher over the regions with high 201 

FRP climatology in both models (Supplementary Fig. S2). A clear distinction in the 202 

RMSE emerges upon comparing FFNNs and the FWI-based model; FFNNs 203 

demonstrate an RMSE below 1.5 MW across most regions (Figure 2d), while the FWI-204 

based model predominantly registers RMSE values ranging between 1.5 and 1.8 MW 205 

(Figure 2e). Consequently, the global depiction of RMSE differences reveals negative 206 

values, illustrating the consistent superiority of FFNNs over the FWI-based model 207 

(Figure 2f).  208 

The systematic improvement in the accuracy of the estimated FRP using the 209 

FFNNs was consistently robust when the skill is evaluated after excluding non-wildfire 210 

events (i.e., skill evaluation only when observed FRP > 0) (Supplementary Fig. S3) or 211 

when considering monthly-averaged FRP anomalies (Supplementary Fig. S4); both 212 

estimation of the fire events in daily scale and its interannual variations of the FRPs 213 

with FFNNs align more closely with the observed FRPs than the corresponding outputs 214 

of the FWI-based model. 215 

To examine the realism of the temporal variation of the estimated FRP in more 216 

detail, Figure 3 shows time-series of the yearly-averaged observed and estimated FRP 217 

over Brazil (Figure 3a), Africa (Figure 3b), Siberia (Figure 3c), and Southern China 218 

(Figure 3d). The correlation skill across the various regions consistently exhibited 219 

higher correlation skill. Interestingly, the daily evolution and its intensity estimation for 220 

the record-breaking wildfire events over the Brazil in 2019 (Brando et al., 2020) (Figure 221 

3e), Africa in 2016 (Verhegghen et al., 2016) (Figure 3f), Siberia in 2003 (Huang et al., 222 

2009) (Figure 3g), and southern China in 2007 (Cao et al., 2017) (Figure 3h) are 223 

consistently better estimated in the FFNNs. These findings highlight the superiority of 224 

FFNNs over the FWI-based model not only in estimating overall variations of the fire 225 

intensity, and its detailed evolution and intensity of record-breaking wildfire event 226 

worldwide by successfully exploring the relationship between the FRP and the 227 

meteorological observations.  228 

To identify the main factors that contributed to the superior accuracy of the 229 

FFNNs, sensitivity experiments were conducted by fixing one of the meteorological 230 

observations to the daily climatological values (Figure 4); for example, in the RH2m 231 

Clim experiment, the prescribed values of RH2m as an input of the FFNN is the daily 232 

climatology during the whole period (i.e., 2001-2020), therefore, its year-to-year 233 

variations in the RH2m is removed. Then, the correlation skill difference between the 234 
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control simulation, that prescribes all input values at the corresponding date, and the 235 

RH2m Clim experiment is calculated to assess the importance of the RH2m in FRP 236 

parameterization. It clearly indicates that the RH2m are the main factors influencing 237 

the accuracy of the FRP estimations in the FFNNs. For example, the correlation skill 238 

difference between the original estimation and the estimation with the climatological 239 

RH2m was close to 0.5 over most of the regions where the original FRP estimations 240 

exhibited high skill (Figure 4a). On the other hand, substituting PRCP with its 241 

climatological value had a negligible impact on the FFNN-based approach (Figure 4b). 242 

Therefore, RH2m was the dominant variable influencing FRP estimations via the 243 

FFNNs method over most of the globe except for a few regions (Figure 4c). The 244 

correlation skill also remained relatively unaffected when daily climatological values 245 

of WS10m, T2m were considered for the FRP estimations using the FFNNs 246 

(Supplementary Fig. S5).  247 

Conversely, when employing the FWI-based model, the alteration in FRP 248 

correlation skill is more pronounced upon substituting PRCP with its daily 249 

climatological values. In regions such as southern China, northern India, southeastern 250 

South America, and the eastern US, the correlation skill decrease is between 0.2 and 251 

0.3 due to this substitution. In contrast, replacing RH2m with its climatology results in 252 

correlation skill differences of less than 0.1 (Figure 4d and 4e). These findings 253 

underscore the importance of PRCP as the meteorological variable with the greatest 254 

influence on FRP estimation using the FWI (Figure 4f). The correlation skill also 255 

remained relatively unaffected when daily climatological values of WS10m, T2m were 256 

considered for the FRP estimations (Supplementary Fig. S6). 257 

To support our arguments that the RH2m is most importance factor in the FFNNs, 258 

we adapted the layer-wise relevance propagation (LRP) technique (Bach et al., 2015; 259 

Barns et al., 2020; Toms et al., 2020), which is widely used for understanding the 260 

relevance of individual features or neurons in neural networks. It provides a so-called 261 

relevance score R for each variable, which linearly decompose the importance of each 262 

input variables as follows by propagating the output value backward toward the input 263 

variables using a chain rule. 264 

𝑓(𝑅𝐻2𝑚, 𝑃𝑅𝐶𝑃, 𝑇2𝑚,𝑊𝑆10𝑚) = 𝑅𝑅𝐻2𝑚 + 𝑅𝑃𝑅𝐶𝑃 + 𝑅𝑇2𝑚 + 𝑅𝑊𝑆10𝑚 265 

where 𝑓 is a nonlinear model (i.e., FFNNs) to derive the FRP, and 𝑅𝑅𝐻2𝑚, 𝑅𝑃𝑅𝐶𝑃, 𝑅𝑇2𝑚, 266 

𝑅𝑊𝑆10𝑚 is a relevance score of RH2m, PRCP, T2m, and WS10m, respectively. The 267 
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relative importance of any particular variable to the estimated FRP can be quantified 268 

by calculating the degree of the similarity between the output value and the relevance 269 

scores. For this purpose, we obtained the relevance score of each variable for each day 270 

during the whole testing period (i.e., 2001-2020) and calculated the correlation with the 271 

estimated FRP in the FFNNs (Figure 5). This analysis supports our previous notion that 272 

the RH2m is the most sensitive factor influencing FRP estimation in FFNNs, with the 273 

contributions of other meteorological parameters being comparatively minor.  274 

The dramatic disparity in the relative contributions of RH2m and PRCP between 275 

the two models indicates that the factors that drive the predictive performance of the 276 

two models were different. Therefore, the relationship between these two key 277 

meteorological observations and the FRP estimations will be further explored in the 278 

next section to gain insights into the factors that determine the superior performance of 279 

the FFNN-based approach. 280 

  281 

4. Physical explanations of the superior performance of FFNNs 282 

To confirm that the superior performance of the FFNNs is associated with the 283 

differences in the relationship between the RH2m and the estimated FRP between the 284 

FFNNs and the FWI-based models, we selected grid points that satisfy the following 285 

three conditions: (1) an FRP correlation skill improvement in FFNNs over FWI-based 286 

models is greater than a threshold value (i.e., 0.05 in this case), (2) RH2m is the most 287 

sensitive variable for FRP estimation in FFNNs (green color in Fig. 2c), and (3) PRCP 288 

is the most sensitive variable in the FWI-based model (blue color in Fig. 2f). A total of 289 

852 grid points were selected based on these criteria, which accounts for approximately 290 

25.1% of total land grid points and 49.7% of total grid points whose correlation skill 291 

improvement in the FFNNs is greater than a threshold value of 0.05. The selected grid 292 

points are located over southern China, Russia, central Africa, the eastern US, and 293 

central-northern South America (Figure 6a). We note that a threshold of 0.1 for 294 

correlation skill improvement would not change the general conclusion, which will be 295 

discussed in the following paragraph. 296 

Figure 6b-g illustrates the averaged FRP for each RH2m bin with a 10% interval. 297 

Our findings indicated that FRP exhibits a decrease when RH2m surpasses 30% (Figure 298 

6b). Therefore, the difference in the FRP values in the higher RH2m bin from that in 299 

the lower RH2m bin exhibited negative values (Figure 6c). This relationship reflects 300 

the well-known impact of relative humidity on combustion (Papagiannaki et al., 2020; 301 
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Ying et al., 2021), as oxygen availability is constrained, resulting in reduced 302 

combustion rate and lowered FRP. Additionally, higher humidity can indicate the 303 

presence of moisture in the fuel, such as plants or other vegetation, thereby impeding 304 

fire propagation and further decreasing the FRP values. 305 

Interestingly, in instances where RH2m falls below 30%, FRP tends to increase 306 

with higher RH2m values. Although this proportional relationship between relative 307 

humidity and fire activity is relatively uncommon, it can be occurred over the fuel-308 

limited landscape, or the regions of following extended periods of drought or low 309 

humidity; Abatzoglou and Kolden (2013) showed that the positive correlation between 310 

the soil moisture and the burned area is enhanced in non-forested regions. This is 311 

similarly found in Xystrakis et al. (2014), which argued that the increased precipitation 312 

is associated with the build-up of the fuel, which eventually contribute to increase the 313 

burned area.  314 

The FFNNs accurately simulated the aforementioned nonlinear relationship 315 

between the RH2m and the FRP (Figure 6d and 6e). In cases where RH2m < 30%, FRP 316 

increases with rising RH2m; for RH2m > 30%, FRP diminishes as RH2m rises. The 317 

consistency between the estimated and observed FRP values at each bin further 318 

supports our previous results, demonstrating the successful application of FFNNs in 319 

FRP parameterization.  320 

In contrast, the FWI-based FRP estimations exhibit a linear inverse relationship 321 

between the RH2m and the FRP. Specifically, FRP decreases continuously with 322 

increasing RH2m (Figures 6f and 6g). This unrealistic representation, particularly in 323 

dry regimes, demonstrates that the observed nonlinear RH2m-FRP relationship was not 324 

faithfully captured in the FWI-based model. Furthermore, the FWI-based estimations 325 

tended to overestimate FRP in low RH2m bins (i.e., RH2m < 30%) and underestimate 326 

it in high RH2m bins (i.e., RH2m > 60%), which underscores the systematic biases in 327 

the FRP estimations in the FWI-based model.  328 

Next, we assessed the relationship between daily-averaged PRCP and the FRP 329 

values (Figure 7). In both the observed FRP values and those estimated using FFNNs 330 

and FWI-based models, PRCP tended to inhibit fire events, causing FRP values to 331 

decrease with rising PRCP (Parks et al., 2014; Chen et al. 2014; Holden et al., 2018). 332 

In the observational data (Figure 7a), FRP reaches its maximum at 1.9 MW within the 333 

lowest PRCP bin (i.e., PRCP < 0.1 mm/day), after which it sharply decreases to 334 

approximately 1 MW in the subsequent bin (i.e., 0.1 mm/day < PRCP < 0.2 mm/day). 335 
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Afterward, it experiences a gradual decrease with increasing PRCP when PRCP is 336 

below 3 mm/day. However, for PRCP values exceeding 3 mm/day, the extent to which 337 

FRP decreases with higher PRCP becomes less pronounced, as higher precipitation 338 

does not proportionally reduce ignition likelihood (Oliveras et al., 2014). This leads to 339 

sustained FRP values above a certain threshold (i.e., 0.5 MW) for PRCP > 3 mm/day. 340 

The spatially averaged FRP distribution in instances where PRCP > 3 mm/day 341 

maintains moderate values, ranging from 1 to 2 MW over regions such as Mexico, 342 

Colombia, central South America, central Africa, central Western Asia, Australia, and 343 

the maritime continent (Figure 7b).  344 

FFNNs accurately simulated the observed relationship between the FRP and the 345 

PRCP, with the estimated FRP in FFNNs exhibiting high values within the smallest 346 

PRCP bins (approximately 1.75 MW), which decreased as PRCP increased when PRCP 347 

was below 3 mm/day (Figure 7c). The spatial distribution of the averaged FRP for the 348 

cases where PRCP > 3 mm/day was also similar to the observed values (Figure 7d). 349 

Conversely, FRP estimation in the FWI-based model tended to be underestimated, 350 

particularly in bins with higher PRCP (Figure 7e). For instance, bins with PRCP < 0.5 351 

mm/day exhibited an underestimation of approximately 0.25 MW, whereas 352 

underestimations of over 0.5 MW, and nearly 0 MW, were evident when PRCP > 3 353 

mm/day. This is further evidenced by the spatially averaged FRP distribution for PRCP 354 

> 3 mm/day, which is almost negligible worldwide (Figure 7f). 355 

As a result, the regression coefficient between the FRP estimation and the PRCP 356 

is systematically greater in the FWI-based model. For observations, the quadratic 357 

coefficient is 0.022 MW/(mm/day)2 (black in Figure 7a), and that for the FFNNs 0.023 358 

MW/(mm/day)2 (black in Figure 7c), denoting similar amplitude. On the other hand, 359 

the FWI-based model is 0.036 MW/(mm/day)2, which is almost twice to that of the 360 

others (black in Figure 7e). This suggests that the FWI-based model is more responsive 361 

to changes in PRCP, resulting in a more pronounced FRP decrease with increasing 362 

PRCP. This excessive sensitivity in the estimated FRP to PRCP changes can contribute 363 

to the excessive influence of PRCP on the FRP estimations in the FWI-based model, as 364 

shown in Figure 4f.  365 

 366 

5. Summary and Discussion 367 

In this study, we developed a parameterization method using FFNNs to estimate 368 

global gridded FRP fields from meteorological variables. In the FFNNs, four daily 369 
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meteorological observations, namely 2 m temperature, 2 m specific humidity, wind 370 

speed, and precipitation, were used as the input to predict the daily FRP output. The 371 

cross-validated FRP parameterization results during 2001–2020 exhibited an improved 372 

skill in estimating the observed FRP compared to the FWI-based model. The 373 

improvement in the parameterization accuracy in terms of the correlation skill and the 374 

RMSE was observed over most of the globe and was particularly prominent over East 375 

Asia, Russia, the eastern US, southern South America, and central Africa. This 376 

indicates that FFNNs can more effectively capture the nonlinear relationship between 377 

meteorological observations and FRP compared to the commonly employed fire index.  378 

To identify the mechanism of the skill improvement in the FFNNs, a series of 379 

sensitivity experiments were performed by replacing each variable with the daily 380 

climatological values, and our findings demonstrated that the 2 m relative humidity 381 

(RH2m) was the most critical variable influencing the outcomes of the FFNNs over 382 

most of the globe. On the other hand, in the FWI-based model, PRCP plays a more 383 

substantial role in FRP estimation. The observed nonlinear relationship between the 384 

RH2m and the FRP is well simulated in the FFNNs; both the observation and the 385 

FFNNs exhibited a negative relationship in the wet regime (i.e., RH2m > 30%), 386 

whereas a positive relationship was observed in the dry regime (i.e., RH2m < 30%). 387 

Likewise, FFNNs accurately simulated the observed impact of PRCP on FRP reduction.  388 

In contrast, the FWI-based model simulated a linear negative relationship 389 

between the FRP and the RH2m, which caused systematic errors in estimating the FRP, 390 

particularly in the dry regime. Moreover, the FWI-based model exaggerates the degree 391 

of FRP reduction with increasing PRCP, which contributes to the stronger contribution 392 

of PRCP to the FRP estimations compared to those obtained with the FFNNs. This 393 

discrepancy underscores the applicability of FFNNs in understanding the intricate 394 

relationship between meteorological observations and FRP, offering insights for 395 

refining the algorithm for global FWI calculations. While process-based fire models are 396 

valuable for estimating fire activity changes due to greenhouse gas warming, their 397 

performance is comparatively less robust compared to empirical models (Rabin et al., 398 

2015; Hantson et al., 2016). Therefore, FFNN parameterizations could enhance 399 

process-based land surface models, yielding reliable fire activity predictions and 400 

insights into their evolution under greenhouse gas warming scenarios. 401 

Current FFNNs solely leverage meteorological observations for FRP 402 

parameterization to ensure equitable comparison with the FWI-based model. However, 403 



 

13 

 

the incorporation of land surface observations such as soil moisture could optimize 404 

FFNNs for simulating fire events more effectively. This provides an opportunity to 405 

reduce the significant uncertainties in predicting fire events in parameterizing fires in 406 

earth system models, ultimately mitigating potential losses from natural hazards.  407 

 408 
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Figure 1. Configuration of the FFNNs.   578 
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 579 

 580 

Figure 2. Correlation skill between the observed daily FRP and the estimated FRP 581 

values in (a) the FFNNs or (b) FWI-based model during 2001–2020.  (c) Difference in 582 

the correlation skill in the FFNNs from that in the FWI-base model. RMSEs between 583 

the observed daily FRP and the estimated FRP values in (d) the FFNNs, or (e) FWI-584 

based model during 2001–2020. (f) Difference in the RMSE in the FFNNs from that in 585 

the FWI-base model. The dots in panels (a) and (b) denote the grid points where the 586 

correlation skill exceeds a 95% confidence level based on the t-test; those in panel (c) 587 

denote the area whose correlation skill difference is above a 95% confidence level 588 

calculated as described by Zou (2007). 589 
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 591 

 592 

Figure 3. Time series of the annually-averaged (left) and daily (right) FRP in the 593 

observation (black), FFNNs (red), and FWI-based model (blue) over (a), (b) Brazil (64–594 

40°W, 21–1°S), (c), (d) southern Africa (14–36°E, 18°S–6°N), (e), (f) Siberia (104–595 

134°E, 48–60°N), and (g), (h) southern China (108–120°E, 22°N–30°N). Correlation 596 

coefficient between the observation and the FFNNs, and FWI-based model is denoted 597 

by the red, and blue in each panel, respectively. 598 
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 600 

 601 

Figure 4. Difference in the correlation skill of the original FRP estimation in the 602 

FFNNs from that by prescribing (a) the RH2m or (b) the PRCP as the daily 603 

climatological values. (c) Spatial distribution of the meteorological variable where the 604 

decrease in correlation is largest by prescribing the climatological value. Panels (d), (e), 605 

(f) are the same as (a), (b), and (c) but for the FWI-based model. In panels (c) and (f), 606 

2 m air temperature, PRCP, 10 m wind speed, and RH2m are indicated in red, yellow, 607 

green, and purple, respectively. 608 
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 610 

 611 

Figure 5. Correlation skill between the relevance score for each variables derived 612 

from layer-wise relevance propagation (LRP) and the estimated FRP in the FFNNs 613 

during the 2001–2020 period. 614 

 615 
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 617 

 618 

Figure 6. (a) Grid points selected for bin-averaged FRP calculation. Case-averaged 619 

FRP with respect to the RH2m with a 10% interval in (b) the observations, (d) FFNNs, 620 

and (f) FWI-based model. The figures illustrate the difference in the case-averaged FRP 621 

at the upper bin from the lower bin in (c) the observations, (e) FFNNs, and (g) FWI-622 

based model.   623 
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 624 

 625 

Figure 7. Case-averaged FRP with respect to the PRCP with 0.1 mm/day interval in 626 

(a) the observations, (c) FFNNs, and (e) FWI-based model. The black line in each panel 627 

quadratic shows the fitted line to the quadratic regression, and number in the upper right 628 

corner denotes the quadratic coefficients. The figures illustrate the spatial distribution 629 

of the case-averaged FRP when the PRCP > 3 mm/day in (b) the observations, (d) 630 

FFNNs, and (f) the FWI-based model. The selected areas for the calculation of the bin-631 

averaged values is given in Figure 6a.  632 
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