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Abstract. The standard trend model for measuring climate warming assumes error terms are mean-reverting and stationary. 

But the climate econometrics literature has argued that if anthropogenic forcing is a dominant driver of climate, temperature 

trends must have nonstationary (unit root) error terms, which may be considered a “fingerprint” for anthropogenic forcing. 10 

Herein we explain this paradox and apply some tools from time series econometrics to resolve it.  We formalize a previously 

proposed hypothesis for why past results have been unclear, namely that temperatures contain both a nonstationary forcing 

component and a stationary “weather noise” component that may bias unit root tests towards over-rejection. Our analysis 

yields a diagnostic method for assessing whether this problem matters in practice. We apply unit root tests to observed and 

modeled temperature series at surface and tropospheric layers. We find observed temperatures are stationary around a trend 15 

after allowing for a single structural break in trend, with no evidence of testing bias due to weather noise. Unit root tests 

applied to model-generated temperatures also indicate trend stationarity however we find evidence of testing bias due to 

weather noise. This implies that time series models for climate attribution need to deal carefully with the requirements for 

establishing cointegration. We discuss the implications for understanding the relationship between greenhouse gas forcing 

and atmospheric temperatures over time. 20 
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Short Summary: The climate econometrics field has shown that attribution of warming to anthropogenic forcings requires 

temperature data to have a property called “nonstationarity” whereas trend detection assumes the data are stationary. 25 

Detailed testing shows temperatures are best described as stationary deviations around a linear trend. This is not consistent 

with anthropogenic forcings being the dominant driver of observed trends over time in the empirical framework commonly 

used in climate econometrics.  
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1 Introduction 

It is common in climate analysis to estimate trends and confidence intervals using a linear model with a first-order 30 

autoregressive (AR(1)) error structure: 

 

𝑦(𝑡) = 𝛼0 + 𝛼1𝑡 + 𝑒(𝑡), 

 𝑒(𝑡) = 𝜌𝑒(𝑡 − 1) + 𝜖(𝑡),  (1) 

 35 

where 𝑦(𝑡) is temperature at time t, 𝑒(𝑡) is the random component around the trend, 𝜌 is the AR1 coefficient, and 𝜖(𝑡) is a 

zero-mean error term that is typically assumed to be Gaussian. The 𝛼′𝑠 are trend coefficients usually estimated, along with 𝜌, 

using a maximum likelihood estimation (MLE) method.  The random component 𝑒(𝑡) is covariance stationary when |𝜌| < 1. 

This is the model used, for example, by the Intergovernmental Panel on Climate Change (IPCC) in its Sixth Assessment 

Report (Gulev et al. 2021 Table 2.4). Identical calculations are shown in Table 2.4 of the IPCC Fifth Assessment Report, 40 

Table 3.2 in the IPCC Fourth Assessment Report etc. Meanwhile, there is a longstanding consensus in the climate 

econometrics literature that since anthropogenic forcings due to greenhouse gases are nonstationary whereas natural forcings 

are stationary, global average temperatures must have a random component that is a nonstationary unit root process 

(stochastic trend) in which case  𝜌 = 1 in equation (1) (Cummins et al. 2022, Dergiades et al. 2016, Beenstock et al. 2016, 

Kaufmann et al. 2010, Mills 2009). Nonstationary of the error terms in equation (1) is thus a “fingerprint” for the dominance  45 

of anthropogenic forcings. If true, then the maximum likelihood estimators of the 𝛼′𝑠 and 𝜌 have nonstandard sampling 

distributions which invalidate standard MLE inference and the corresponding confidence intervals for estimated trends as 

used by the IPCC and others. In contrast, if |𝜌| < 1 , then IPCC trend confidence intervals may be valid but the attribution 

arguments used by, for example, Dergiades et al. (2016) and Cummins et al. (2022) that attempt to establish that 

anthropogenic forcings are the primary drivers of global warming are invalid because they use tools from cointegration 50 

analysis which require that 𝑒(𝑡) be a unit root process (𝜌 = 1). 

 

Putting it more simply, two active strands of the empirical climate literature invoke contradictory assumptions about the 

nature of temperature data. Methods for detecting significance of trends require temperature data to be covariance-stationary 

around a linear trend (|𝜌| < 1) whereas attribution of the trend to anthropogenic forcing requires the data to be nonstationary  55 

(𝜌 = 1). Interestingly each side can point to empirical literatures supporting its preferred assumptions about 𝜌. In part 

because of the barriers of technical language these contradictory strands of literature have developed in isolation from each 

other for at least the past decade without resolution.  

 

This paper makes two contributions. We first explain why the value of 𝜌 matters and why conflicting results can be found in 60 

the literature, which we do by formalizing an intuitive explanation that has previously been proposed, namely that 
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temperatures are composed of a nonstationary forcing component and stationary “weather noise” which biases the unit root 

test result toward non-detection of the stochastic trend. We will show that this hypothesis can account for conflicting test 

results and also implies a testing strategy that can identify whether the bias is likely present. We then apply the testing 

strategy to modeled and observed temperature series from the surface and the lower and mid-troposphere (herein LT and 65 

MT, respectively). The climate econometrics literature has thus far exclusively focused on the surface record despite it being 

in some respects unsuitable for identifying the time series properties of climate processes. 

 

Before summarizing our empirical findings we should clarify some terminology. Following standard practice, a random 

component with a unit root is labeled an I(1) process which is short-hand for “integrated of order 1”. This label follows from 70 

the fact that when  𝜌 = 1 , 𝑒(𝑡)  becomes covariance stationary upon first-differencing. A covariance stationary random 

component does not need to be differenced to induce stationarity and is labeled an I(0) process. The term ‘trend stationary’ 

refers to a trending series with a stationary (I(0)) random component. There is no established label for a trending series with 

an I(1) random component, so we adopt the label ‘trend nonstationary-random-component’ or the more compact label ‘trend 

nonstationary’ for such a process. Some readers may ask why we are not using the label ‘stochastic trend’ for a  trending-I(1) 75 

series. The reason is that in the time series literature the label ‘stochastic trend’ only refers to the random component because 

a mean zero I(1) component can sometimes generate observed series that ‘appear’ to be trending up or down. The label 

‘stochastic trend’ says nothing about whether or not the series has a deterministic trend component. We will avoid the 

potentially confusing label of ‘stochastic trend’ and use the less confusing label ‘trend nonstationary’.  

 80 

In our empirical analysis we find statistical evidence that observed globally-averaged temperature series at the surface are, 

for the most part, trend stationary especially when we allow the deterministic trend component to have one potential 

structural break at an unknown date. The evidence in support of trend stationarity is stronger for the troposphere series LT 

and MT. The tropospheric temperature record provides a useful point of comparison especially given that results are less 

clear cut in the surface record. The composite weather noise-plus-climate forcing model that we sketch implies that ensemble 85 

averaging and de-noising methods should result in stronger statistical evidence of trend nonstationarity.  We clearly see this 

pattern with model-generated temperature data but, interestingly, the opposite occurs with observational data. We also 

discuss implications for the analysis of cointegration between temperatures and anthropogenic forcings where, again, 

conflicting evidence exists in the literature.  

 90 

Throughout this paper we use language from time series analysis, specifically nonstationarity, trend stationarity, 

cointegration, unit roots and orders of integration. For readers who are unfamiliar with these terms Appendix A provides 

basic definitions. The next section outlines the specific analytical questions to be explored and explains our testing 

framework. Section 3 presents results of unit root tests and Section 4 presents the cointegration analysis. Section 5 provides 

discussion and conclusions. 95 
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2 Summary of the issues 

2.1 Temperatures and Nonstationarity 

If average observed temperatures 𝑦(𝑡) are trend stationary, then estimating deterministic trend coefficients using a model 

like equation (1) or a variant that allows for more general autocorrelation processes (e.g. McKitrick and Vogelsang 2014) is 

straightforward. Autocorrelation-robust testing of hypotheses about the trend slope coefficients is well established (e.g. 100 

Vogelsang (1998) and Bunzel and Vogelsang (2005). As indicated by the above references to IPCC reports, trend 

stationarity is an unstated working assumption for much of applied climatology in the sense that it is routine to report 

estimated trends and confidence intervals and to draw inferences about trend magnitudes without first testing for 

nonstationarity in the random component (testing for a unit root). While not the focus of this paper, trend stationarity is also 

an unstated working assumption in the detection of changes in extreme events since comparing a recent temperature 105 

deviation to historical deviations from trend is only meaningful if the variation around the trend is constant over time. A 

trend nonstationary series has a random component with a variance that is increasing with time making deviations far from 

the trend more likely as time evolves. 

 

Because the trend stationary (I(0)) assumption is so ubiquitous and essential in practice, it is remarkable to note, as observed 110 

by Dergiades et al. (2016), that “the literature contains considerable evidence that the temperature time series is I(1).” 

Anthropogenic forcings, herein denoted 𝐹𝐴(𝑡), have additionally been found to be either I(1) or I(2) around the trend but 

never I(0), whereas natural forcings, herein denoted 𝐹𝑁(𝑡), are typically found to be I(0) around the trend (Kaufmann et al. 

2013, Beenstock et al. 2013). Forcings are all measured in a common unit (Watts per square meter) and the standard IPCC 

modeling framework assumes that the combined effect is given by the sum of the individual components (Myhre et al. 115 

2013). The “signal detection” framework for making causal attribution connecting climate change to greenhouse gases 

assumes 𝑦(𝑡) can be represented as a linear function of the summed forcings (Cummins et al. 2022), but if the forcings add 

up to a trend nonstationary series and 𝑦(𝑡) is trend stationary the coefficients on the forcings must be zero (see section 2.2 

below). Consequently, attribution in a time series context depends on the random component of 𝑦(𝑡) sharing the same order 

of integration as the random components of the summed forcings, and on the series cointegrating to yield a stationary 120 

residual.   

 

A practical challenge for assessing whether a series is trend stationary or trend nonstationary is that there are many unit root 

tests and results can be sensitive to the selection of the autoregressive lag used by many unit root tests. Recall the AR(1) 

model for 𝑒(𝑡)  given by equation (1) can be written 𝑒(𝑡) = 𝜌𝑒(𝑡 − 1) + 𝜖(𝑡)  where |𝜌| < 1  is required for 𝑒(𝑡)  to be 125 

stationary. By subtracting 𝑒(𝑡 − 1) from both sides and defining 𝜋 = 𝜌 − 1 we see that unit root tests can be built around a 

regression of the first differences of a series (denoted with Δ) on its own lagged values, for example  
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Δ𝑒(𝑡) = 𝜋𝑒(𝑡 − 1) + 𝜖(𝑡).  (2a) 

 130 

Estimating π by ordinary least squares (OLS) and testing the null hypothesis π=0 (equivalently ρ=1) with a t-statistic yields 

the so-called Dickey-Fuller test (Dickey and Fuller 1979). This is typically called a test of a unit root.  Under the unit root 

null hypothesis this t-statistic has a non-standard distribution so the usual standard normal table cannot be used. Instead, the 

critical values are taken from tables of the Dickey-Fuller distribution. Because 𝑒(𝑡) is unobserved, the trend component must 

first be estimated and removed with 𝑒(𝑡) in (2a) replaced with residuals �̂�(𝑡). Alternatively, an autoregressive model for 135 

𝑦(𝑡) can be specified in the same form as (2a) but with an intercept and time trend included: 

 

Δ𝑦(𝑡) = α0
∗  + 𝛼1

∗𝑡 + 𝜋𝑦(𝑡 − 1) + 𝜖(𝑡). (2b) 

 

If the nonstationary I(1) null is rejected, the alternative implied by either equations (2a) or (2b) is that y(t) is a trend 140 

stationary I(0) process. Many variations on this basic test need to be considered in order to arrive at robust conclusions, 

including the following.  

 

• The error term 𝜖(𝑡) may have additional autocorrelation which can be handled by adding lagged values of 

Δ�̂�(𝑡) or Δ𝑦(𝑡), giving the so-called Augmented Dickey-Fuller (ADF) regression and corresponding ADF unit 145 

root t-statistic. The number of lagged first differences must be chosen by the researcher ideally based on some 

statistical information about the autocorrelation structure of 𝜖(𝑡). In practice the value of the ADF unit root t-

statistic can be highly sensitive to lag selection. 

• The specification of the deterministic trend function is very important. Suppose 𝛼1 ≠ 0 but the time trend 

regressor, t, is left out of (1) or (2a). Then it is well known (Perron, 1988) that the ADF unit root test will suffer 150 

from systematically low power (biased toward non-rejection when the series is trend stationary).  

• This lack of power holds in general when the deterministic component is under specified. Suppose that 𝑦(𝑡) is 

trend stationary but the trend undergoes a structural break (slope shift and/or level shift) at a known or 

unknown date. Failure to allow for this will cripple power and bias the test towards over-reporting unit roots. 

When allowing for a structural break in the trend, the researcher must either impose the date based on 155 

exogenous information or use a data-dependent method for detecting the date of the break. Zivot and Andrews 

(1992) pointed out that choosing a break date and treating it as known after looking a plots of the data can bias 
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the test towards over-reporting stationarity (I(0)) and they recommended a procedure for endogenous 

determination of the break date based on minimizing the value of the ADF t-statistic (maximizing the chance of 

rejecting the unit root null).  Vogelsang and Perron (1998) extended this approach and developed an additional 160 

method for estimating a break date based on maximizing the value of an F test of the no-break null. We will 

discuss these approaches in Section 3. If allowing a structural break in the trend changes an I(1) result to an I(0) 

result, then a unit root is rejected in favor of trend stationarity.1 

• While under-specification of the deterministic trend substantially reduces power of a unit root test, over-

specification also reduces power but to a much lesser extent. If a break is allowed in the trend of series when it 165 

is not needed, this will use up two degrees of freedom, but the test will still have power to detect stationarity of 

the random component. Rejection of the null, in such cases, indicates loss of power is not an issue. 

• The method used to estimate the deterministic trend component matters for the power of unit root tests. The 

ADF approach uses OLS estimators of the trend parameters. Under the null hypothesis of a unit root the trend 

parameters can be estimated more precisely using generalized least squares (GLS). These issues combine: 170 

allowing a break point still requires choice of lag length to control for serial correlation. Elliott et al. (1996) 

proposed a variant of the ADF approach using a GLS step that estimates the trend coefficients separately then 

carries out the ADF regression using the GLS detrended data. Deterministic regressors are not included in the 

ADF regression. This method, known as ADF-GLS, can have higher power to detect stationarity when ρ is 

relatively close to one (but is less than one). 175 

 

What happens if different unit root tests yield conflicting results? Because results can depend on the choice of lag length, 

best practice is to use an objective sequential method in which high order statistically insignificant lags are dropped from the 

ADF approach until a statistically significant coefficient on a lag is found. See Vogelsang and Perron (1998, page 1078) for 

details. Also the deterministic trend component should have a flexible functional form that is rich enough to encompass the 180 

trending features of temperature series. Given that the temperature series we analyze are increasing over time, the base-line 

 
1 The limit to this principle, though, is that as more breaks are permitted and more lags are included, degrees of 

freedom are used up and a unit root test can lose power, thereby failing to detect stationary random components. 

https://doi.org/10.5194/esd-2023-11
Preprint. Discussion started: 8 June 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

deterministic trend is linear as in equation (1).  To improve power we also implement unit root tests allowing a single 

structural break in the trend at an unknown data. This step is also reasonable on physical grounds with regard to long 

temperature series in a system subject to changes in internal modes of oscillation that can induce periodic changes in global 

trends (e.g. Kravtsov et al. 2018). We use data dependent methods to choose the break date and the impact of the data 185 

dependent method on the unit root test is reflected in the critical value of the ADF or ADF-GLS t-statistics.  

 

The same issues of interpretation discussed hitherto arise with model-simulated temperatures, which we denote 𝑥𝑖(𝑡) for 

models 𝑖 = 1, … , 𝑁. Some of the issues can be clarified using the framework of Cummins et al. (2022, herein C22) which 

explored the link between cointegration and attribution by considering the following system of equations: 190 

 

𝑦(𝑡) = Φ(𝐵)𝐹(𝑡) + 𝑒(𝑡) (3) 

𝑥𝑖(𝑡) = Φ′(𝐵)𝐹(𝑡) + 𝑒𝑖(𝑡)  (4) 

𝑥𝑖
𝐴(𝑡) = Φ′(𝐵)𝐹𝐴(𝑡) + 𝑒𝑖

𝐴(𝑡)  (5) 

 195 

where Φ(𝐵) and Φ′(𝐵) are rational functions of the backshift operator, 𝐹(𝑡) is the time series of the sum of all historical 

forcings (GHG’s, solar, aerosols, etc.), 𝑥𝑖
𝐴(𝑡)  is the hindcast model temperature series based only on the sum of 

anthropogenic forcings 𝐹𝐴(𝑡), and the e’s are stationary I(0) error terms.2 The necessary assumptions applying to equations 

(3—5) are not clearly stated in C22 but are as follows:  

 200 

Assumption A1: 𝑦(𝑡) is I(1); 

Assumption A2: 𝑥𝑖(𝑡) and 𝑥𝑖
𝐴(𝑡) are both I(1); 

Assumption A3: The forcings 𝐹(𝑡) and 𝐹𝐴(𝑡) are I(1); 

Assumption A4: observed and model-generated temperatures cointegrate with the associated summed forcings so 

that the error terms in equations (3)—(5) are all I(0).  205 

 

C22 present a lemma which is an adaptation of the Beveridge-Nelson decomposition to establish a theorem which says that 

if Assumptions A1-A4 hold for equations (3—5), a non-zero vector of cointegrating coefficients can be found that yields a 

stationary linear combination, 𝑟(𝑡), of the y’s and x’s, and the coefficients from a regression of 𝑦(𝑡) on 𝑥𝑖(𝑡) and 𝑥𝑖
𝐴(𝑡) are 

therefore consistent estimators of signal coefficients 𝛽 which, in turn, can be used to reveal the magnitude of the effects of 210 

the forcings on the observed climate. Details on this regression are given in Section 3.5. 

 

 
2 C22 allow p separate forcings but the reduced version shown here does not lose generality. 
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Rather than proving the general consistency of the signal detection regression framework, the C22 theorem makes clear how 

strong the underlying assumptions need to be for attribution regressions to be meaningful. It follows from their theorem that 

if Assumption A1 does not hold, namely if 𝑦(𝑡) is I(0) but the other assumptions hold, then it must be the case that Φ(𝐵) in 215 

equation (3) equals zero and since that implies the 𝛽’s are also zero, 𝑦(𝑡) cannot be a function of the forcings. Their theorem 

also assumes the error terms in equations (3)—(5) are I(0) which in turn requires cointegration between all temperatures 

(observed and modeled) and the forcings. Having imposed that assumption, the signal detection regression can be interpreted 

as using the model temperatures as linear proxies of the forcings which were already assumed to drive them and 𝑦(𝑡) jointly. 

The causality interpretation rules out a priori the possibility of other variables driving 𝑦(𝑡) or of 𝑦(𝑡) being an explanatory 220 

variable for 𝑥𝑖(𝑡) which could arise through climate model tuning.  

 

C22 make the stronger claim that the existence of a cointegrating vector among 𝑦(𝑡), 𝑥𝑖(𝑡) and 𝑥𝑖
𝐴(𝑡) is both necessary and 

sufficient for the system of equations (3—5) to yield consistent signal detection coefficients. Sufficiency indeed follows 

from their theorem but not necessity. 𝑟(𝑡) could be I(0) if all of 𝑦(𝑡), 𝑥𝑖(𝑡) and 𝑥𝑖
𝐴(𝑡) are I(0), in which case equations (3—225 

5) are misspecified. Alternatively if 𝑦(𝑡) is I(0) and the simple sum of the forcings 𝐹(𝑡) is I(1) but the signals 𝑥𝑖(𝑡) and 

𝑥𝑖
𝐴(𝑡) cointegrate with each other, then a cointegrating vector can be found even though Φ(𝐵) = 0 and 𝑦(𝑡) is not a function 

of 𝐹(𝑡), thus making any non-zero finding of signal detection spurious. We will encounter this case below.  

 

It is interesting to note that C22 do not provide empirical evidence for whether Assumption A1 holds in their observational 230 

sample. Given the importance of this assumption to their cointegration analysis, it is an unfortunate omission. This is 

particularly true given our empirical results in Section 3 indicating that the observed temperature series used by C22 are 

trend stationary (I(0) around trend) invalidating Assumption A1. 

2.2 Unit Roots and Weather Noise in Temperature Data 

While temperature data since the late 1800s can appear to be trend nonstationary it does not make sense, in principle, to 235 

assume that the climate system itself is driven by random walks (unit root processes), because this would imply that 

contemporary weather conditions reflect the influence of, say, El Niño events during the last interglacial era as much as ones 

that occurred recently. It is intuitively appealing, therefore, to suppose that the climate is composed of a stationary 

component with an additive I(1) forced component. As the latter increases its signal magnitude under rising greenhouse 

gases, it would then come to dominate later portions of long temperature series. This hypothesis was proposed on an intuitive 240 

basis by Kaufmann et al. (2013), who argued that the presence of I(0) weather noise overlaid on an I(1) signal will bias unit 

root tests to over-reject the I(1) null, which they supported with simulation evidence.  
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 Dergiades et al. (2016) provided empirical evidence for this hypothesis by applying unit root tests to a moving window 

along a 600-year paleoclimate reconstruction, showing that the series shifts from I(0) to I(1) in the late 1800s. Unfortunately 245 

these results are weakened by their use of the Wahl and Amman (2007) paleoclimate reconstruction which is a replication of 

the Mann et al. (1998) paleoclimate reconstruction, which is heavily dependent on a small set of bristlecone pine tree ring 

records from the Great Basin region of the US, with the weighting in the reconstruction artificially inflated by an error in the 

method of calculating principal components (North et al. 2006 pp. 106-107, McIntyre and McKitrick 2005). The bristlecone 

series in question is not recommended for use in temperature reconstructions because their ring widths are particularly 250 

sensitive to rising atmospheric carbon dioxide levels, implying they are mainly a proxy for forcings rather than temperature 

(North et al. 2006, p. 50, Graybill and Idso 1993). The transition from I(0) to I(1) behaviour in the Wahl and Amman (2007) 

chart may thus be an artifact of the climate proxy choice.  

 

We can formalize the additive component hypothesis in the following stylized time series model. Suppose a temperature 255 

series is denoted 𝑧𝑡 and is the sum of three components: a deterministic trend 𝜇𝑡, a unit root process 𝜏𝑡 and an independently 

and identically distributed (iid) random error 𝜔𝑡: 

 

𝑧𝑡 = 𝜇𝑡 + 𝜏𝑡 + 𝜔𝑡   (6) 

 260 

where 𝜔𝑡~𝑖𝑖𝑑(0, 𝜎𝜔
2 ), 𝜏𝑡 = 𝜏𝑡−1 + 𝜈𝑡 and 𝜈𝑡~𝑖𝑖𝑑(0, 𝜎𝜈

2). In this example 𝜇𝑡 may stand for any low-frequency change that 

imparts a trend over the sample period, 𝜏𝑡 is the influence of anthropogenic forcing (which is I(1)) which is assumed to be 

global in scale and common to all temperature series, and 𝜔𝑡 is trendless weather noise. 𝜎𝑣
2 then measures the step sizes of 

the unit root (forcing) component and 𝜎𝜔
2  measures the size of the shocks associated with the weather noise component.  

 265 

In Appendix B we derive a method for detecting if rejection of an I(1) null is due to noise-induced bias. If a de-noising 

treatment can be applied to an I(0) series that reduces the weather noise component, such as ensemble averaging, and if as a 

result the unit root test on the averaged series moves towards the I(1) region compared to the average of the individual series 

test scores, this provides evidence that the data series may be of the type described by equation (6) and has an underlying 

unit root component. If no such change occurs, or if the unit root test score on the averaged and de-noised series moves even 270 

farther into the rejection region, there is no reason to suppose the I(0) result is due to test bias. Ensemble averaging makes 

sense as a de-noising method in the modeling context because multiple runs contain weather-related processes such as 

simulated El Niño cycles that differ in their timing but not magnitude and therefore cancel out under averaging. By contrast, 

even when there are multiple observational series, while they will have idiosyncratic measurement errors due to different 

construction methods that may average out, they all share the same timing of major climatic system oscillation events and 275 

these will not average out. Therefore, in addition to averaging across data products we will look at the effect of filtering out 

the weather noise attributable to the El Niño Southern Oscillation and Pacific Decadal Oscillation indexes.   
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Use of data from the LT and MT troposphere layers provides a further check on the results from the surface. Because our 

data set is confined to the post-1958 period, during which anthropogenic forcings underwent their modern upward trends, 280 

results using the LT and MT series should reveal the relationship to the forcings even more clearly than the longer surface 

record. Also, the climate econometrics literature has focused almost exclusively on global surface temperature records, but 

trends in these data are dominated by the land record, which in many regions reflects significant influences of urbanization 

and land use change in addition to greenhouse forcing (e.g. Quereda et al. 2016, Ren and Zhou 2014, McKitrick and Tole 

2012). These influences attenuate with altitude so if the tendency to finding I(1) components in surface temperatures 285 

genuinely represents greenhouse forcing, the tendency should be stronger in the LT and MT layers. Finally, as noted by 

Bruns et al. (2020), it can be difficult to distinguish low sensitivity to GHG’s and minimal ocean heat storage versus high 

sensitivity and moderate ocean heat uptake. But since, unlike at the surface, temperatures in the troposphere adjust very 

rapidly to changes in greenhouse forcing (IPCC AR4 pp. 764-765), mixing of surface ocean heat into deep layers is not a 

confounding influence.  290 

3 Data and Methods 

3.1 Data Sets 

 

Surface temperatures 

We now turn to empirical analysis of some important data sets to illustrate the above issues. The first is taken from C22 and 295 

is denoted herein as the Surface data. It consists of five global annually-averaged surface temperature anomaly series 

covering the period 1880-2014 along with climate model-generated analogues from 13 models in the CMIP6 archive. From 

each model is obtained an ensemble mean showing the simulated hindcast under all observed forcings. Also available is 

another simulation under anthropogenic-only forcings which we will use in the cointegration analysis later. The number of 

ensembles per model range from 1 to 65. Table 1 reports the OLS decadal trends in C/decade from regressions of the 300 

observed and all-forcings historical simulation temperature series on an intercept and linear time trend. Figure 1 shows the 

time series of the averaged observed and model-simulated series. The observational data products are listed under their 

familiar names, but see C22 for the specific sources.   
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 305 

Figure 1. The averages of five observed (blue) and 13 modeled (red) temperature series 1880-2014. 

 

 

 

 

Surface 

Trend 

Berkeley 0.080 

Cowtan 0.067 

Gistemp 0.068 

Hadcrut 0.074 

NOAA 0.069 

ACCESS.ESM1.5 0.046 

BCC.CSM2.MR 0.066 

CanESM5 0.097 

CESM2 0.061 

CNRM.CM6.1 0.054 

FGOALS.g3 0.082 

GFDL.ESM4 0.047 

GISS.E2.1.G 0.053 

HadGEM3.GC31.LL 0.050 

IPSL.CM6A.LR 0.084 

MIROC6 0.047 

MRI.ESM2.0 0.053 

NorESM2.LM 0.026 
Table 1. Top 5 rows: observational data series. Remaining rows: model-generated series. Trend shown is in °C/decade. For details 310 
on sources see C22. 
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Tropospheric temperatures 

The second data set is referred to as the Tropospheric data set and was constructed as follows. We use data spanning 1959 to 

2021. Observations of layer temperatures are derived from balloon-borne radiosonde records, in which data collected at 315 

specific levels, generally up to 30 hPa (~23 km altitude), are proportionately combined to generate broad, layer-average 

Lower-Tropospheric (LT) and Mid-Tropospheric (MT) temperatures corresponding to those that have been monitored by 

satellite microwave receivers since late 1978. LT (MT) represents a weighted average from the surface to ~10 km (~18 km) 

altitude, often referred to as the temperature of the bulk lower (mid-) troposphere. We use five data products for the 

observational record. Two are homogenized data series from the University of Wien (Vienna), the RAdiosonde Observation 320 

Correction using Reanalyses (RAOBCORE v1.7) and Radiosonde Innovation Composite Homogenization (RICH v1.7, 

Haimberger et al. 2012). The third is from the U.S. National Oceanic and Atmospheric Administration, the Radiosonde 

Atmospheric Temperature Products for Assessing Climate (RATPAC-A v2, Durre and Yin, 2011). The fourth is produced 

by the University of New South Wales (UNSW, Sherwood and Nishant 2015).  The fifth is the JRA-55 data set from 

Kobayashi et al. (2015). It provides globally-gridded, observationally-constrained pressure-level temperatures from which 325 

the layer-temperatures utilized here may be calculated. The observations employed include radiosonde, satellite soundings, 

aircraft, ship and traditional surface temperature measurements which are synthesized into a gridded product through a data-

assimilation process (Kobayashi et al. 2015). 

 

All tropospheric data sets begin in 1959 and go to 2021. We use annual averages as this is the finest time resolution available 330 

from RATPAC for the pressure-level quantities we require. The UNSW series is unavailable after 2016 so that series was 

regressed on the other four observational series and the predicted values were taken for the 2017—2021 period. 

 

While polar-orbiting satellites systematically sample the globe twice per day, radiosondes are released only where stations 

exist and thus are not evenly distributed.  However, for analyses such as ours (annual averages) the spatial coherence of the 335 

temperature field is strong, mostly due to the ubiquitous tropospheric winds that continually horizontally mix the air.  This 

produces, in the annual average, large spatial scales of anomalies.  Thus, relatively few radiosondes are needed to describe 

the temperature anomaly on an annual basis which is useful for sparsely covered regions such as the southern oceans 

(Hurrell et al. 2000).  Correlation values of annual anomalies of global TMT between radiosondes and satellites exceed 

+0.95 (Christy et al. 2018).   340 

 

We also obtained model runs from 39 CMIP6 models which archived simulation outputs covering the entire time span from 

the Lawrence Livermore National Laboratory archive https://pcmdi.llnl.gov/CMIP6/. Models were run using historically-

observed forcings up to 2015 and using RCP4.5 from 2015 to 2021. Table 2 lists the 42 model runs and the 4 observational 
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series, showing for each the decadal trend in C/decade. In cases in which the model yielded more than one run we used the 345 

first run submitted. The model runs are sorted in descending order by LT trend. Figure 2 summarizes the general 

Tropospheric data patterns. The panels show global MT and LT temperature showing in each case the model ensemble 

means (red line) and the mean of the observational series (blue line) over the 1959-2021 interval.  

 

 350 

 

 
Figure 2. Averages of five observed (blue) and 39 modeled (red) tropospheric temperature series from 1959 to 2021. All series 

positioned to start at zero in 1959.  

 355 

 

 Model Full Name Run Name 

LT 

Global 

Trend 

MT 

Global 

Trend 

RAOBCORE17   0.163 0.107 

RICH17   0.186 0.133 

RATPAC   0.191 0.118 

UNSW   0.187 0.114 

JRA55   0.179 0.117 
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Can5OE CanESM5-CanOE r1i1p2f1_gn 0.352 0.303 

Can5 CanESM5 r1i1p1f1_gn 0.334 0.295 

UK10LL UKESM1-0-LL r1i1p1f2_gn 0.281 0.193 

HadGEM HadGEM3-GC31-LL r1i1p1f3_gn 0.273 0.220 

KACE KACE-1-0-G r1i1p1f1_gr 0.259 0.207 

KIOST KIOST-ESM r1i1p1f1_gr1 0.257 0.210 

EC_E3V EC-Earth3-Veg r1i1p1f1_gr 0.251 0.198 

ACCESS_E ACCESS-ESM1-5 r1i1p1f1_gn 0.247 0.189 

CE2_WAC CESM2-WACCM r1i1p1f1_gn 0.246 0.201 

MCM_UA MCM-UA-1-0 r1i1p1f2_gn 0.236 0.200 

GFDL-CM4 GFDL-CM4 r1i1p1f1_gr1 0.235 0.193 

FIO FIO-ESM-2-0 r1i1p1f1_gn 0.234 0.199 

AWI AWI-CM-1-1-MR r1i1p1f1_gn 0.226 0.176 

CMCC CMCC-CM2-SR5 r1i1p1f1_gn 0.221 0.177 

NESM NESM3 r1i1p1f1_gn 0.220 0.171 

CE2r3 CESM2 r3i1p1f1_gn 0.217 0.174 

FGOALS_f3 FGOALS-f3-L r1i1p1f1_gr 0.217 0.176 

CNRM_E2 CNRM-ESM2-1 r5i1p1f2_gr 0.214 0.148 

IPSL6A IPSL-CM6A-LR r1i1p1f1_gr 0.214 0.182 

ACCESS ACCESS-CM2 r1i1p1f1_gn 0.213 0.172 

NOR_LM NorESM2-LM r1i1p1f1_gn 0.212 0.166 

CIESMa CIESMa r1i1p1f1_gr 0.211 0.175 

FGOALS_g3 FGOALS-g3 r1i1p1f1_gn 0.209 0.167 

NOR_MM NorESM2-MM r1i1p1f1_gn 0.203 0.161 

GFDL-ESM4 GFDL-ESM4 r1i1p1f1_gr1 0.201 0.157 

MPI_L MPI-ESM1-2-LR r1i1p1f1_gn 0.196 0.151 

MRI_E2 MRI-ESM2-0 r1i1p1f1_gn 0.193 0.155 

CNRM_C61r5 CNRM-CM6-1 r5i1p1f2_gr 0.188 0.132 

BCC BCC-CSM2-MR r1i1p1f1_gn 0.184 0.133 

EC_E3 EC-Earth3 r24i1p1f1_gr 0.178 0.139 

MIROC_2L MIROC-ES2L r1i1p1f2_gn 0.177 0.137 

IITM IITM r1i1p1f1_gn 0.177 0.148 

MPI_H MPI-ESM1-2-HR r1i1p1f1_gn 0.172 0.128 

GISSE21G GISS-E2-1-G r1i1p3f1_gn 0.169 0.130 

CNRM_HR CNRM_CM6-1-HR r1i1p1f2_gr 0.169 0.125 

CAMS CAMS-CSM1-0 r1i1p1f1_gn 0.163 0.137 

INM48 INM-CM4-8 r1i1p1f1_gr1 0.162 0.128 

INM50 INM-CM5-0 r1i1p1f1_gr1 0.155 0.111 

MIROC MIROC6 r1i1p1f1_gn 0.151 0.115 
Table 2. Top 5 rows: Observational Tropospheric series trends. Remaining rows: model-generated runs ranked by global LT 

temperature trend (K/decade). 
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The 39 climate model simulations utilized here are from among those accepted for analysis in CMIP6 for which the models 360 

are executed in standardized simulations using prescribed forcings so they may be intercompared properly. The LT and MT 

series for models and observations alike are formed by averaging 13 layer-specific series from the surface to 20 hPa. When 

considering annual anomalies of global tropospheric temperature, the horizontal sampling by radiosondes is sufficient to 

reproduce global anomalies with greater than 90 percent variance explained. To generate the brightness temperature as 

observed by satellite from a radiosonde, the vertical profile of radiosonde temperatures at standard pressure levels is 365 

convolved with a function, each level of which has an appropriate weighting to generate a satellite-like temperature. The use 

of standard pressure levels as the input from radiosondes has been demonstrated to produce highly consistent annual 

anomalies of temperature as would be seen from a satellite (Spencer and Christy, 1992). 

 

 370 

 
Figure 3. Forcing series (Watts per square meter) centered on zero means 1959 to 2021. TSI stands for total solar irradiance, 

VOLC for volcanic aerosols.  

 

Forcings 375 

The CMIP6 process prescribes inputs such as atmospheric carbon dioxide and aerosol levels, solar irradiance etc., then 

models generate forcing series internally. Consequently there isn’t a single prescribed forcing series comparable to those 

generated for CMIP5 as listed in IPCC Fifth Assessment Report (AR5, 2013) Annex II Table 1.2. We used the latter for this 
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study, taking them to be representative forcing series that have historically been considered canonical, recognizing however 

that internally-generated forcings in CMIP6 models may differ. We confine attention to the post-1958 forcing series in order 380 

to avoid the criticism in Pretis and Hendry (2013) from combining proxy-based and observed historical forcing series 

constructed with changing methodologies. The AR5 series report effective radiative forcing anomalies relative to 1750 in 

watts per square meter up to 2011, and we also employ extensions to 2017 by Lewis and Curry (2018) (see also their 

discussion of minor adjustments to some pre-2011 IPCC estimates). Extensions covering the 2018-2021 interval were done 

by using the information in IPCC (2021) Chapter 7 which provides best estimates for forcing changes over 2011-2021. The 385 

change in forcing for the “other greenhouse gas” category was taken to be the sum of methane and nitrous oxide. Forcing 

series were converted to “anomalies” or deviations from the mean by centering on zero. The forcings were grouped into 

ANTH (the sum of carbon dioxide, other greenhouse gases, tropospheric ozone and land use change) AERO (total aerosols) 

and NAT (solar plus volcanic). Figure 3 shows the forcing series.  

 390 

Climatic Oscillations 

We used the NINO3.4 index to measure the El Niño Southern Oscillation (ESOI) with the data retrieved from the website of 

the National Oceanic and Atmospheric Administration (https://psl.noaa.gov/data/correlation/nina34.data) and, for pre-1948 

records, from Brian McNoldy’s website at the University of Miami 

(https://bmcnoldy.rsmas.miami.edu/tropics/oni/ONI_NINO34_1854-2022.txt). We obtained historical reconstructions of the 395 

Pacific Decadal Oscillation (PDO) index from the website of the US National Oceanic and Atmospheric Administration 

(https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat).  

3.2 Testing Methods 

A simple and intuitive way to assess the time series properties of a variable is to estimate its AR(1) coefficient, ρ, after 

controlling for trending behavior. If ρ is close to 1, I(1) behaviour is possible. Formally testing that a time series is I(1) 400 

cannot be based on the simple test that the AR(1) parameter is 1 for two reasons. First, if the serial correlation is more 

complicated than AR(1), then that correlation needs to be accounted for. Second, as noted previously, the distribution theory 

for t-statistics that test the I(1) null hypothesis are nonstandard and depend on the specification of the underlying 

deterministic trend function. 

 405 

We employ unit root tests recommended by Vogelsang and Perron (1998) which allow for a single break at an unknown 

point with the date of the break determined endogenously by the data. Possible break dates are selected in three ways. The 

“maxF-ADF” criterion chooses a break date that maximizes the F test value for testing that the intercept and slope change 

parameters are jointly zero in a deterministic trend regression. Using that break date, the unit root hypothesis is tested using 
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the augmented ADF test. The “minADF” criterion chooses the break date that minimizes the unit root t-statistic which is the 410 

same as choosing the break date to maximize the chances of rejecting the unit root null. The “minADF-GLS” criterion is the 

same as minADF except that it based on the ADF-GLS unit root test procedure. In all three cases critical values of the unit 

root t-statistics depend on the method used to choose the break date so that the significance levels of the tests are correct. 

 

Both the ADF-GLS and ADF unit root tests require the choice of a lag length that accounts for additional serial correlation in 415 

the fluctuations around the trend. We follow Vogelsang and Perron (1998) and use a general to specific lag approach 

whereby we begin with five lag terms and test the last included lag coefficient for statistical significance using a standard 

two-tail t-test at the 10% significance level. The number of lags is reduced one at a time until a statistically significant lag is 

found or the AR(1) specification is obtained.  

 420 

For the maxF-ADF test the 10% and 5% left-tail critical values are -4.31 and -4.61 respectively. For the minADF test the 

10% and 5% left-tail critical values are -5.08 and -4.82 respectively. For the minADF-GLS test the 10% and 5% left-tail 

critical values are -3.91 and -3.62 respectively. Because all the unit root tests are left-tail tests, large (in magnitude) negative 

t-statistics indicate evidence of I(0) fluctuations around the trend against the null of I(1) fluctuations around the trend. 

Tests of cointegration are done using the classic Engle-Granger method (Wooldridge 2020), which relies on an ADF test of 425 

the residuals from a cointegrating regression.  

 

 

 
Figure 4: AR(1) Coefficients for surface data series 430 

 

https://doi.org/10.5194/esd-2023-11
Preprint. Discussion started: 8 June 2023
c© Author(s) 2023. CC BY 4.0 License.



18 

 

3.3 AR(1) Coefficients 

Figure 4 shows the AR(1) coefficients (after removing a linear trend) for the Surface data set and Figure 5 shows the same 

for the Tropospheric data set. Observed data are in blue and models are in red. There is a clear pattern in which observations 

have lower AR(1) coefficients than do models, which implies models exhibit greater persistence than the observed climate. 435 

The AR(1) coefficients for forcings are in Figure 6, and reveals a similar contrast with anthropogenic forcings exhibiting 

very high values compared to natural forcings.  

 

 
Figure 5: AR(1) Coefficients for tropospheric data series 440 
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Figure 6: AR(1) Coefficients for forcings 

 445 

 

3.4 Unit root tests 

Figures 4 and 5 reveal slight differences in autocorrelation properties between models and observations, and more 

pronounced differences between anthropogenic and natural forcings. We now turn to series-specific unit root testing and we 

note that tests we employ are robust to the form of serial correlation so the results we report herein do not depend on the 450 

difference in AR(1) values. In Section 3.5 we will combine modelled and observed series in a cointegrating regression, at 

which point differences in persistence properties between the two data types need to be formally considered.  

 

 Levels 1st diffs 2nd diffs 

CO2 -2.828 -2.363 -4.915** 

AERO -4.048 -3.241 -7.230** 

ANTH -2.762 -2.295 -4.672** 

NAT -5.570** -7.155** -6.150** 

5% cv -4.610 -3.610 -3.610 

Coint: ANTH/AERO No Yes  
Table 3: Unit root tests (maxF-ADF) for forcings and their first and second difference series. The levels case has a linear trend 

with one structural break. The 1st and 2nd differences cases have a constant with one structural break (level shift). Last row: p-455 
value of test of no cointegration of ANTH (CO2+ozone+land use) and AERO forcings.  ** denotes significant at 5%.  

 

 

Forcings 
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Table 3 presents unit root tests for forcings in levels, first differences and second differences. We report the maxF-ADF test, 460 

which permits a trend break at an unknown point although the results are not affected by choice of unit root test. The 

individual anthropogenic forcings are I(2) and the natural forcings are I(0).  

 

We can also ask if the anthropogenic forcings cointegrate down to the I(1) level. The bottom row of Table 3 reports the p-

value of a test of whether ANTH and AERO cointegrate. The null hypothesis is no cointegration. In the levels case the p-465 

value exceeds 0.1, indicating no cointegration. In the first differences case the p-value is below 0.01 indicating cointegration, 

in other words the forcings combine to an I(1) level, but not by summation since the OLS slope coefficient between them is 

very small (0.021). Neither the sum ANTH+AERO nor the sum of their first differences is I(0) which means the total 

anthropogenic forcing is I(2).  

 470 

Surface and Tropospheric Temperatures 

“De-noising” of observed data herein refers to filtering the series by averaging over model ensembles or observational data 

products (which for simplicity we call ensemble averages in both cases) and, in the case of observations, using the residuals 

from a regression of temperatures on the ESOI and PDO indexes. We employ three unit root tests denoted maxF-ADF, 

minADF and minADF-GLS, in each case allowing objective, data-dependent lag and break date identification. The 475 

Supplement contains figures showing, for each series, six test scores: the three unit root tests, with and without ESOI/PDO 

filtering of observations. Also shown in the tables is the result of testing the ensemble average series and the implied 

integration order d for each series.  

 

Figure 7 summarizes the results of the testing procedures by comparing the averages of the series-specific test scores with 480 

the tests of the ensemble averages. The top panel shows the MT results, the middle panel shows the LT results, and the 

bottom panel shows the Surface data results. The maxF-ADF scores are the leftmost column, min-ADF are in the middle and 

min-ADF-GLS (denoted min-ADFg in the Figure) are in the rightmost column. Each column consists of a pair of results: 

observations (left) and models (right). Critical values are shown as the dashed lines. In all cases a result below the dashed 

line indicates rejection of the I(1) null, implying trend stationarity. The blue dots show the average of observational series 485 

unit root scores and the gray open circle shows the unit root score of the de-noised (filtered and averaged) series. The red 

dots show the average of the model-generated series unit root scores and the orange circle shows the unit root test score of 

the ensemble mean (note that model-generated data are not filtered to remove ESOI and PDO since those processes are not 

synchronized across model runs).  
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 490 
Figure 7. Summary of unit root test score results. Red: models. Blue: Observed. Horizontal dashed lines show 5% critical value, 

where a value below the line implies rejection of the unit root null. Open circle: after de-noising.  

 

Looking first at the observational data, at the surface layer, in two out of three cases the mean test score is below the critical 

value, indicating the data are I(0). The min-ADF-GLS test places the average right on the rejection threshold. De-noising 495 

does not move the test score towards non-rejection in two cases but does by a small amount in the min-ADF-GLS case. 

Although the break years are not listed, inspection of the test results shows that the maxF-ADF and min-ADF test scores 

always place the break in the early 1960s, whereas the min-ADF-GLS test places it in the late 1970s or early 1980s. In the 

LT and MT layers de-noising always moves the test score on observations farther away from the I(1) region. In five of the 

six cases the average test score is already in the I(0) region. In the MT layer the pattern is clearest: all forms of testing 500 

indicate temperatures are I(0) and de-noising moves the test score further into the I(0) region. 

 

The opposite patterns are found using model-generated data. Looking at the MT layer, while the majority of individual series 

are I(0) trend stationary (see Section 7), ensemble averaging increases the test score and moves it towards the non-rejection 

https://doi.org/10.5194/esd-2023-11
Preprint. Discussion started: 8 June 2023
c© Author(s) 2023. CC BY 4.0 License.



22 

 

region, consistent with the conjecture in Section 2.3. Indeed the same pattern holds in the LT and at the surface, although in 505 

those cases the difference between the average of unit root scores and the unit root score of the average is smaller. The 

maxF-ADF score places the surface ensemble average at the critical value, but for all other tests the test results are well 

within the rejection region.  

 

In sum we find that observed temperatures, especially in the tropospheric layers, are trend stationary around a trend with a 510 

potential structural break and do not exhibit behaviour suggesting that an underlying additive I(1) process is dominated by an 

I(0) additive component. Model-generated temperatures, by contrast, also appear to be I(0) but do exhibit behaviour 

consistent with the additive component hypothesis and testing bias due to weather noise. Anthropogenic forcings, both 

individually and summed, appear to be I(2), thus differing from observed temperatures by two orders of integration. Using 

the composite model (equation 6), this does not rule out the possibility that an anthropogenic forcing-driven unit root exists 515 

in the temperature data but it is small enough compared to natural variability and a deterministic low-frequency trend 

component that it does not drive the outcome of unit root testing, especially in the LT and MT layers.  

 

Results similar to ours were reported in Razzak (2022) who concluded temperatures are trend stationary while anthropogenic 

forcings are trend nonstationary, based on application of a large group of unit root tests including those allowing a trend-520 

plus-break, with lag selection determined using information criteria methods. Likewise Storelvmo et al. (2016, Table S1) 

reported trend stationarity of temperatures and nonstationarity of anthropogenic forcing.  

3.5 Cointegration Analysis 

C22 estimated the following regression: 

 525 

𝑦(𝑡) = 𝛽0 + 𝛽1𝑥1(𝑡) + 𝛽2𝑥2(𝑡) + 𝜖(𝑡)  

 

where 𝑦(𝑡) is the HadCRUT5 surface temperature series, 𝑥1(𝑡) is a model-generated temperature series using historical 

anthropogenic and natural forcings, and 𝑥2(𝑡) is a model-generated temperature series using only greenhouse gas forcing.3  

Using 13 climate models they tested for cointegration by regressing the first difference of the residuals on the lagged 530 

residuals and rejected the null of no cointegration in each case. But C22 did not test whether the forcing signals 𝑥1(𝑡) and 

𝑥2(𝑡) are cointegrated with each other. Across all 13 models, using an ADF test we found the residuals of a regression of 

𝑥2(𝑡) on 𝑥1(𝑡)  are I(0), implying cointegration. But 𝐹(𝑡)  in equation (3) is, according to IPCC modeling practice, the 

 
3 This assignment of variable names is based on the C22 code. C22 say in the text of their paper that 𝛽1 measures non-GHG 

forcings (the “OAN” series in the Jones et al. 2016 notation) which implies a different interpretation of the estimated 

coefficients. This conflicting notation does not affect the computations discussed here.   
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unweighted sum of forcings and in each case it is I(1). Consequently at least one I(0) linear combination of 𝑦(𝑡), 𝑥1(𝑡) and 

𝑥2(𝑡) exists but Assumptions A1 and A4 do not hold and the regression equation (3) is spurious.  535 

 

Cointegration of 𝑥1(𝑡)  and 𝑥2(𝑡)  but not with temperatures matches findings in Phillips et al. (2020). They used as 

explanatory variables the log of the carbon dioxide concentration, which is a measure of anthropogenic forcing, and 

instrumental readings of total downward infrared radiation at the Earth’s surface, which measures all forcings together. They 

found temperatures were not cointegrated with the log of carbon dioxide or with downwelling radiation, but all three 540 

exhibited cointegration, which could arise because the two forcings were cointegrated with each other, a test which 

unfortunately they did not report.  

 

Balcombe et al. (2019) applied classical and Bayesian structural time series analysis and found mixed evidence for 

cointegration between forcings and temperature. In a model that did not allow for a trending alternative they could not reject 545 

a null of cointegration. But other specifications, including one with a trending alternative and models with lags selected 

based on information criteria, strongly rejected cointegration and yielded an insignificant coefficient between forcings and 

temperature. They concluded “previous findings of cointegration between forcing measures and temperatures should be 

treated tentatively,” and proposed that while standard theories of human influence on the climate can be considered 

directionally valid, time series analysis raises new questions about the actual strength of the connection, a finding confirmed 550 

by our analysis.  

4 Discussion and Conclusion 

Two inconsistent views of temperature data coexist in the climate literature. The most familiar one, exemplified by routine 

tabulations in IPCC reports inter alia, is that temperatures are trend stationary and can be described using conventional 

deterministic trend regressions. An implication of this view however is that signal detection regressions using I(1) forcings 555 

are spurious. The other is that temperatures are I(1) which implies methods often used in the climate literature to estimate 

and generate confidence intervals for trend slopes are invalid, but signal detection regressions are potentially valid if 

cointegration is found between temperatures and forcings.  

 

Unit root tests results can be found to validate either view, so care must be taken in formulating and applying tests to get 560 

robust and objective conclusions. We find that both surface and tropospheric temperature averages appear to be I(0) around a 

linear trend-with-break model. We applied a battery of unit root tests which treat the break date as endogenous and allow for 

general serial correlation (beyond the simplistic AR(1) specification) and we find that the predominant inference rejects I(1) 

behaviour. This is true for both the global surface data and in the LT and MT layers of the troposphere. In the latter case the 

sample size is smaller, but the rejections are as strong or stronger implying power is not an issue.  565 
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We also examined the additive component hypothesis, which posits that temperatures are a composite of stationary and unit 

root process and the presence of weather noise “tricks” the unit root test into over-rejecting a true null. We formalized the 

intuition behind this approach and showed that it implies a ranking of results when comparing the average of individual 

series’ unit root scores versus the unit root score of an averaged and de-noised series. The comparison supports the view that 570 

climate models contain both I(0) and I(1) components in model generated temperatures and the unit root test may be biased 

towards over-rejection of the I(1) null, although even under averaging we do not observe I(1) results. The unit root test 

results for observed temperatures do not support the additive component hypothesis: an I(1) forcing component, if present, is 

simply too small to be detected.   

 575 

If the decision between trend stationarity versus nonstationarity depends on allowing a break in the trend, it is legitimate to 

ask whether this a justifiable modeling decision. It is important to remember that the estimation method does not impose a 

break, it only allows one as a possibility and does not impose the timing a priori. Since the linear trend model is a restricted 

version of the trend-plus-break specification it makes more sense to ask if the restriction is justified. There are both statistical 

and physical reasons for preferring a model with greater generality. On statistical grounds, the tradeoff is between obtaining 580 

increased power to reject a false null and losing power due to the addition of two model parameters. If the break is not 

needed to describe the trend but the test moves into the rejection region, then there was a net gain in power. On physical 

grounds it is not reasonable to suppose that the global climate system over a long interval lacks any internal dynamics. 

Without taking a position on the validity of specific theories regarding such dynamics we merely note that they typically 

imply trends which can change in sign and size over multidecadal intervals. Restricting a trend model so it lacks a break term 585 

is therefore a less general specification.  

 

We also examined the cointegration approach to attribution. The framework proposed by C22 reveals that strong 

assumptions are needed for time series signal detection regressions to be valid within a cointegration framework. If 

temperatures are I(0) then they cannot be driven by the I(1) components of forcings, including anthropogenic greenhouse 590 

gases. Balcombe et al. (2019) and Phillips et al. (2020) found evidence against direct cointegration between anthropogenic 

forcings and temperatures. The forcings used by C22 are cointegrated with each other but the sum is not cointegrated with 

temperatures. Neither Balcombe (2022) nor C22 provided test results on whether the observed temperature series used in 

their analysis are trend nonstationary as required by their assumptions. Our results strongly suggest those series are in fact 

trend stationary, implying that the true value of the coefficient on the total forcings is zero.   595 

 

 Thus in the context of the existing literature we find support for some previous findings and not for others. Dergiades et al. 

(2016) report that many previous authors have found temperatures are I(1). We would have made similar findings if we used 

unit root tests that model the deterministic component as either a constant or a linear trend, but when allowing for a structural 
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break in the trend and controlling for serial correlation, we find temperatures to be trend-plus-break stationary, which 600 

suggests the linear trend alternative yields results biased towards the unit root null. We also depart from the climate 

econometric literature’s sole focus on surface temperatures by extending our analysis to include lower- and mid-troposphere 

layer temperatures. These series are in some respects better suited for the purpose of ascertaining the underlying stationarity 

properties of the climate. Results for both the LT and MT layers support trend-plus break stationarity (I(0) random 

component).  605 

 

On the one hand, our results imply that conventional trend calculations using temperature data are valid, assuming an 

adequate correction for serial correlation is applied. On the other hand, our results raise afresh problem that have now been 

raised by numerous other authors (e.g. Beenstock et al. 2012, Dergiades et al. 2016, Balcombe et al 2019, Razzak 2022) that 

if temperatures and greenhouse forcings differ by one or more orders of integration, they are empirically independent and 610 

attribution regressions yield potentially spurious causal inferences. The additive component hypothesis points to a potential 

resolution, namely that an I(1) anthropogenic forcing component is present in temperature data but is too weak to be reliably 

detected in the context of weather noise and deterministic low-frequency variability. 

 

 615 

Appendix A: Time Series Terminology 

We use the term stationarity throughout but we are specifically interested in covariance stationarity, which we investigate 

using the time series concept of integration order. For a given time index {𝑡 = 1,2, … }  a variable 𝑥(𝑡)  is covariance 

stationary if it has a time constant expected value 𝐸(𝑥), a time constant and finite variance 𝜎𝑥
2 (or, equivalently, second 

moment 𝐸(𝑥2)), and covariances between any pair of values 𝑥(𝑡) and 𝑥(𝑡 − ℎ) where ℎ ≥ 1 depends only on h and not t 620 

(Wooldridge 2020). For brevity we drop the “covariance” term in our analysis.  

 

Denote the values 𝑥(1), 𝑥(2), 𝑥(3), …  etc. as “levels” of the series. If 𝑥(𝑡) is nonstationary in levels but its first differences, 

denoted Δ𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 1), are covariance stationary then 𝑥(𝑡) is said to be integrated of order one, or I(1). The “1” 

indicates the number of times the series must be differenced to obtain a stationary series. The term “integration” refers to the 625 

process by which  𝑥(𝑡)  can be formed as a cumulative  sum of stationary disturbances: 𝑥(𝑡) = 𝑥(𝑡 − 1) + Δ𝑥(𝑡) . A 

stationary variable is integrated of order zero, i.e. I(0), meaning it needs zero first-differencing to yield a stationary variable. 

The notation I(d), where d is a non-negative integer, indicates that a series must be differenced d times to become stationary.  

The following terms are used interchangeably: I(1), unit root, and stochastic trend. The label “random walk” is used for an 

I(1) process in the special case of an AR(1) model.  If 𝑥(𝑡) = 𝑥(𝑡 − 1) + 𝑒(𝑡), then the variable 𝑥(𝑡) is said to “have”, 630 

“follow”, “contain” or “possess” a unit root, “be” I(1) and “follow” a stochastic trend; these terms all amount to the same 
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thing. In general the stochastic trend terminology is the least intuitive and is potentially confusing because it says nothing 

about whether or not the series has a deterministic trend. We avoid this label.  

 

The importance of the distinction between I(0) and I(1) series can be seen by considering the simple first-order 635 

autoregressive process 𝑢(𝑡) = 𝜌𝑢(𝑡 − 1) + 𝑒(𝑡) where 𝑒(𝑡) is an error term that is uncorrelated over time and has mean 

zero and constant variance 𝜎𝑒
2 . If −1 < 𝜌 < 1, then 𝑢(𝑡) is stationary or I(0) and it is straightforward to show that its 

variance is 𝜎𝑒
2/(1 − 𝜌2). After an innovation 𝑒(𝑡) at time t, 𝑢(𝑡)  reverts to a mean of zero with the adjustment time 

controlled by the autoregressive parameter 𝜌. In contrast, if 𝜌 = 1, this implies a qualitatively different process: innovations 

are permanent, 𝑢(𝑡) is no longer mean-reverting and its variance is 𝑡𝜎𝑒
2. When 𝜌 = 1, 𝑢(𝑡) is labeled a unit root process and 640 

is I(1) because it is a cumulative sum of the stationary time series 𝑒(𝑡) via the process 𝑢(𝑡) = 𝑢(𝑡 − 1) + 𝑒(𝑡). 

 

A series that is I(0) around its trend is called trend stationary. There is an important qualitative distinction between a trend 

series and a unit root series. Even though a trend makes a series nonstationary because its mean depends on time, the change 

in the mean across time is predictable and deterministic. Also, departures from the trend are mean-reverting. The change 645 

over time in a unit root process is unpredictable and does not have a mean-reverting property. It is also important to keep in 

mind that a trending series can have I(0) fluctuations around the trend and it can also have I(1) fluctuations around the trend. 

Departures from the trend for a trend stationary series revert back to trend whereas departures from the trend for a trend 

nonstationary series do not. 

 650 

The phenomenon of spurious regression arises when two independent I(1) variables are regressed on one another and the 

conventional t-statistic frequently exceeds 1.96, implying a significant relationship even though the data are unrelated. This 

well-known fact is easily demonstrated using simulation methods. The underlying problem is that the ordinary least squares 

estimator of the regression coefficient is inconsistent and the t-statistic diverges to infinity (is systematically large). 

 655 

An exception to the spurious I(1) regression arises under cointegration, the case where a group of I(1) variables are related in 

such a way that a linear combination of them is I(0). This might happen, for example, if the price of a specific commodity is 

I(1) but is constrained by market forces to remain close to the price of a related commodity which is also I(1). In this case 

while each price is I(1), the difference in prices is I(0). In other cases there may be a more general linear combination that 

yields an I(0) variable. The phenomenon is referred to as cointegration. If a linear combination of a group of I(1) variables, 660 

i.e.  𝜆1𝑥1(𝑡) + 𝜆2 𝑥2(𝑡) + 𝜆3 𝑥3(𝑡) etc. can be found which yields an I(0) variable then the x’s are said to cointegrate and the 

𝜆’s define a cointegrating vector. The implication is that the I(1) variables are related in a long run equilibrium sense: 

however randomly they move individually over time, they are constrained to return to the equilibrium defined by the 

cointegrating vector. Authors in the climate econometrics literature have pointed out that cointegration provides a useful 

framework for estimating Energy Balance Models (Pretis 2020) and signal detection models (Cummins et al. 2022), but for 665 
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this interpretation to be valid, the temperature and forcing series must all be I(1). Alternatively, if temperatures are I(1) and 

some forcings are I(2) but they cointegrate together to yield an I(1) variable, then the cointegrating framework can still be 

meaningful.  

 

Appendix B: Derivation of Test Bias Diagnostic 670 

Denote the deviations of 𝑧𝑡 around its trend as �̃�𝑡, i.e. �̃�𝑡 = 𝑧𝑡 − 𝜇𝑡. From Ng and Perron (2002, herein denoted NP02) we 

can rewrite �̃�𝑡 as a unit root process with an MA error term:  �̃�𝑡 = �̃�𝑡−1 + 𝑢𝑡 where 𝑢𝑡 = 𝑒𝑡 + 𝜃𝑒𝑡−1 where 𝑒𝑡~𝑖𝑖𝑑(0, 𝜎𝑒
2) 

and  

 

𝜃

1+𝜃2 =
−𝜎𝜔

2

𝜎𝜈
2+2𝜎𝜔

2    675 

 

For a given 𝜎𝜈
2, as 𝜎𝜔

2 → ∞, i.e. weather noise becomes large relative to the size of the steps in the forcing signal, we will 

have 
𝜃

1+𝜃2 → −
1

2
 which implies 𝜃 → −1. The process thus approaches  

 

�̃�𝑡 − �̃�𝑡−1 = 𝑒𝑡 − 𝑒𝑡−1   680 

 

in which �̃�𝑡 becomes an iid process because the MA component has a unit root that cancels the autoregressive unit root. 

When 𝜎𝜔
2  is large but finite relative to 𝜎𝜈

2 the MA parameter 𝜃 will tend to be close to (but not equal to) -1 in which case, 

while a unit root test applied to �̃�𝑡 should not reject, it is generally known in the time series econometrics literature that such 

tests have a tendency to over-reject the unit root null.  685 

 

It may be more realistic to allow for autocorrelation in the weather noise, which we do following NP02. As before 𝑧𝑡 is the 

sum of three components but this time we replace the iid term 𝜔𝑡  with 𝜆𝑡  where 𝜆𝑡 = 𝜙𝜆𝑡−1 + 𝜔𝑡 , |𝜙| < 1  and 

𝑐𝑜𝑣(𝜔𝑡 , 𝜈𝑡) = 𝜎𝜔𝜈
2 . Then from equation (6) of NP02 we can write the first differences of the deviation term �̃�𝑡 as 

 690 

Δ�̃�𝑡 = 𝜙Δ�̃�𝑡−1 + 𝑢𝑡  

 

where 𝑢𝑡 = 𝑒𝑡 + 𝜃𝑒𝑡−1, 𝑒𝑡~𝑖𝑖𝑑(0, 𝜎𝑒
2), and  

 

𝜃

1+𝜃2 =
−𝜙𝜎𝜈

2−𝜎𝜔
2 −(1+𝜙)𝜎𝜔𝜈

2

(1+𝜙2)𝜎𝜈
2+2𝜎𝜔

2 +2(1+𝜙)𝜎𝜔𝜈
2 .  695 
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Again for a given 𝜎𝜈
2 and 𝜎𝜔𝜈

2 , as 𝜎𝜔
2 → ∞, 

𝜃

1+𝜃2 → −
1

2
⟹ 𝜃 → −1. Consequently, the same outcome emerges when weather 

noise is autocorrelated, namely that as weather noise dominates there will be a tendency to reject the unit root null 

hypothesis even though a unit root is known to be present via the 𝜏𝑡 component.  

 700 

Now suppose there is an ensemble of models denoted 𝑖 = 1, … , 𝑁, which share common forcings 𝜏𝑡 but embed different 

weather processes 𝜔𝑖𝑡 . Unit root tests applied to individual models will all exhibit the potential bias towards false rejection, 

and the average of such individual test scores will share the same bias. However, a unit root test applied to the ensemble 

average will not. To show this, assume the weather processes are autocorrelated and that all models have the same 

autocorrelation parameter 𝜙. Then �̃�𝑖𝑡 = 𝜏𝑡 + 𝜆𝑖𝑡  where 𝜆𝑖𝑡 = 𝜙𝜆𝑖𝑡−1 + 𝜔𝑖𝑡 . The detrended series for the model ensemble 705 

mean is 

 

�̃��̅� =
1

𝑁
 Σ𝑖=1

𝑁 �̃�𝑖𝑡 = 𝜏𝑡 + 𝜆̅
𝑡  

 

where 𝜆̅
𝑡 =

1

𝑁
Σ𝑖=1

𝑁 𝜆𝑖𝑡 = 𝜙𝜆̅
𝑡−1 + �̅�𝑡 and �̅�𝑡 =

1

𝑁
Σ𝑖=1

𝑁 𝜔𝑖𝑡. If model weather has the same variance across models and is also 710 

uncorrelated across models, then 𝑣𝑎𝑟(�̅�𝑡) ≡ 𝜎�̅�
2 =

1

𝑁
𝜎𝜔

2 . For the covariance term we obtain 𝑐𝑜𝑣(𝜈𝑡 , �̅�𝑡) ≡ 𝜎�̅�𝜈
2 =

𝑐𝑜𝑣 (𝜈𝑡 ,
1

𝑁
Σ𝑖=1

𝑁 𝜔𝑖𝑡) =
1

𝑁
Σ𝑖=1

𝑁 𝑐𝑜𝑣(𝜈𝑡 , 𝜔𝑖𝑡) =
1

𝑁
𝑛𝜎𝜔𝜈

2 = 𝜎𝜔𝜈
2  which is the same as in the individual series cases. Now using the 

result in NP02 as before we can write Δ�̃��̅� = 𝜙Δ𝑧̅̃
𝑡−1 + 𝑢𝑡 where 𝑢𝑡 = 𝑒𝑡 + 𝜃𝑒𝑡−1 and  

 

𝜃

1+𝜃2 =
−𝜙𝜎𝜈

2−𝜎�̅�
2 −(1+𝜙)𝜎�̅�𝜈

2

(1+𝜙2)𝜎𝜈
2+2𝜎�̅�

2 +2(1+𝜙)𝜎�̅�𝜈
2   715 

=
−𝜙𝜎𝜈

2−
1

𝑁
𝜎𝜔

2 −(1+𝜙)𝜎𝜔𝜈
2

(1+𝜙2)𝜎𝜈
2+

2

𝑁
𝜎𝜔

2 +2(1+𝜙)𝜎𝜔𝜈
2

  

 

The contribution of the variance of weather noise is now 
1

𝑁
𝜎𝜔

2  instead of 𝜎𝜔
2  while all other terms are the same. Thus for the 

same magnitude of weather noise, 𝜃 will start farther away from -1 and the convergence to -1 will be slower. The tendency 

of unit root tests to over-reject the unit root null is reduced because of averaging across model series. 720 
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