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Abstract. Complex network theory has been applied to reveal the transport patterns and cooperative regions of fine (<2.5 µm) 

particulate matter (PM2.5) in the whole of China over a long-term record. The results show the degrees, weighted degrees, and 

edge lengths of PM2.5 cities follow power-law distributions. Cities in the Beijing-Tianjin-Hebei-Henan-Shandong (BTHHS) 

region have a strong ability to import PM2.5 pollution to other cities. By analyzing the transport routes, we show that a mass 15 

of links extends southward from the BTHHS to the Yangtze River Delta (YRD) regions with one- or two-day time lags. 

Hence, we conclude that earlier emission reduction in BTHHS and early-warning measures in YRD will help to improve air 

quality in both regions. Moreover, significant links are concentrated in wintertime, suggesting the impact of the winter 

monsoon. In addition, cities have been divided into nine clusters according to their synchronicity characteristics. Cities in the 

same clusters should be regarded as a whole to control the level of air pollution. The results are derived by an economic 20 

approach of complex network theory, which avoids the time-consuming of traditional model simulation approach and 

suggests a highly efficient approach to the studies of transport and cluster of PM2.5. This approach, beyond doubt, is certainly 

also applicable to the studies of other air pollutants such as ozone, NOx, and so on. 

1 Introduction 

The Earth behaves as a complex self-regulating system comprised of atmosphere, hydrosphere, cryosphere, lithosphere and 25 

biosphere, with highly nonlinear interactions and feedbacks between the component parts (Steffen et al 2015). With the 

increasing understanding of interactions between physical, chemical, biological and human processes, a new ‘science of the 

Earth’–Earth System Science (ESS) has been initiated (Steffen et al 2020). Facilitated by its various tools and approaches, ESS 

has introduced some new concepts and theories, the most important of which is the concept of Anthropocene (Malm and 

Hornborg, 2015). In the Anthropocene era, haze events have occurred frequently in China, and the problem of air pollution 30 

has received wide attention from the government, scholars and the public (Huang et al 2014, Sheehan et al 2014).  

Atmospheric fine particulate matter (PM2.5) is the primary cause of haze pollution (Ding et al 2016, Cai et al 2017). It has 

adverse influences on human health, atmospheric visibility and global climate change (Liang et al 2016, Liao et al 2017). 

PM2.5 pollution is generated from both anthropogenic and natural sources, including primary aerosols as well as secondary 

aerosols that are produced in the atmosphere through the chemistry of precursor gases (Squizzato et al 2012). In recent years, 35 
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it has also been increasingly recognized that air pollution in a given area is influenced not only by the air pollutant emissions 

there but also by the transport of air pollutants from other regions. Based on trajectory clustering methods, Li et al (2015) 

concluded that regional PM2.5 transmission has become the key factor driving severe haze in Beijing. By using the positive 

matrix factorization approach, Khuzestani et al (2017) revealed that remote transmission accounted for approximately 77% of 

the PM2.5 concentration in the Ordos region. Furthermore, PM2.5 transmissions are also examined using model simulations. 40 

For example, Wang et al (2014) quantified the regional contribution of PM2.5 in southern Hebei by using Mesoscale Modeling 

System Generation 5(MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system; Zhang et al 

(2017) investigated the effect of regional pollution transport based on the GEOS-Chem chemical transport model and its adjoint. 

These studies suggest that curbing air pollution has not been a local issue, and the regional coordinate could be an effective 

approach to improve the air quality of the regional atmospheric environment. In 2012, The 12th Five-Year Plan on Air Pollution 45 

Prevention and Control in Key Regions approved proposed to divide China into three key regions to jointly prevent air pollution, 

which is named as the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and the Pearl River Delta (PRD), and major 

urban agglomerations such as Lanzhou-Xining, Wuhan and surrounding areas, Shaanxi and Guanzhong city (MEP, 2012). 

However, this kind of region division ignores the nonlinear transport characteristics of PM2.5 concentrations; furthermore, 

considerable discrepancies exist in the above studies of PM2.5 transmission in different cities/regions during different air 50 

pollution periods. Hence, the PM2.5 transports in the whole of China over a long-time period have not been fully understood; 

furthermore, the traditional approaches adopted in the above studies dis not fully consider the nonlinear transport processes 

between cities. 

During the last two decades, complex network theory has been applied to reveal the statistical and dynamic topological 

features in complex systems (Fountalis et al 2014, Feldhoff et al 2015). In complex networks, geographical locations are 55 

considered to be nodes. Links represent communications between time series of nodes, and their strength is measured by the 

cross-correlation between records (Castrejon-Pita and Read 2010). The network-theory based approach has been used to study 

teleconnection patterns (Zhou et al 2015, Boers et al 2019, Ying et al 2019), El Niño events (Yamasaki et al 2008, Ludescher 

et al 2013, 2014), North Atlantic Oscillation (Guez et al 2012), Atlantic Multidecadal Oscillation (Wyatt et al 2012) and 

Rossby waves (Wang et al 2013, Ying et al 2020). This approach is also useful in the studies of atmosphere environment 60 

systems, especially enabling us to investigate the nonlinear spatiotemporal dynamics between air pollution agents. Such 

nonlinear relationships are critical for assessing the intrinsic dynamics of atmospheric pollution systems, but traditional 

statistical or model simulation methods are difficult to reveal. The network-theory based approach has been used to uncover 

the correlation pattern of PM2.5 concentrations (Zhang et al 2018), to analyze the PM2.5 spillover routes in BTH cities (Li et al 

2019), to discriminate between urban and rural tropospheric ozone (Rafael et al 2019), and to quantify the interaction between 65 

upper air conditions and surface PM2.5 concentrations (Zhang et al 2019). It is obvious that complex network methods are 

valuable tools for depicting and quantifying air pollution transmission and cluster among cities. 
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In the present study, we attempt to explore the transport and cluster of PM2.5 based on complex networks, and in the next 

section, we introduce the data and methods. The patterns of PM2.5 concentrations and their transport features and demarcation 

regions are presented in section 3. Finally, the summary and discussion are detailed in Section 4. 70 

2 Data and methods 

2.1 Data 

The PM2.5 concentrations data for 336 cities of China with a daily average from 1 January 2015 to 31 December 2019 are 

used in this study. These raw data were acquired from the China National Environmental Monitoring Centre (CNEMC). Then 

we pre-processed these data according to the needs of the Ambient Air Quality Standard on the validity of air pollutant 75 

concentration data. Specifically, the missing values in the PM2.5 data are excluded; then the negative values and those larger 

than 900 mg/m3 on a given day for a given year are removed and for these years we deleted the data corresponding to those 

days.  As a result, we obtained data for 360 valid days per year (data on January 9, April 1, July 6, September 5, and November 

29 are removed) and the total length is 5 × 360 (1800 days).  

The anomalies records of PM2.5 are adopted, where the anomalies are obtained by subtracting the daily averages and dividing 80 

them by the corresponding standard deviations and the function of the denominator is used to eliminate the effects of 

autocorrelations in the records. 

2.2 Methods 

The network construction includes three steps. First, we calculate the weight of the edges between nodes. Second, we apply 

a shuffled procedure to identify a certain threshold.  Third, we calculate network typological metrics to determine the 85 

interaction strength between two nodes. Below, we detail each step. 

Step 1. The calculation of the weight links between nodes 

The anomalous PM2.5 time series of each node i is represented as ( )iS t , where i is the node index. Similar to earlier studies 

(Gozolchiani et al 2011, Ying et al 2020), we define 
, ( )i jX   as the time-delayed cross-correlation function for PM2.5 node (i 

and j), ( )iS t and ( )jS t . For τ＞0, 90 
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                                                                                              (1) 

where τ denotes the time lag, which is in the range between −30 and +30 days. 
, ,( ) ( )i j j iX X = − . The bracket is the average 

over the time period of our concerned. We quantify the strength of the correlations as follows (Gozolchiani et al 2011, Guez 

et al 2014): 
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In this approach, max() , mean() , min() , and ()std  denote the maximum, minimum, mean, and standard deviation of 

the cross-correlation function 
, ( )i jX  , respectively. The deviations in the link identification caused by persistence or 

autocorrelation in the records are reduced through dividing the std(Xi,j). We defined the maximum and minimum of
,i jX  as 

,

pos

i jP  and 
,

neg

i jP , respectively; 
,

pos

i j  and 
,

neg

i j  represent the maximum and minimum values of 
, ( )i jX  , respectively; and the sign 100 

of 
,

pos

i j  (or 
,

neg

i j ) represent the direction of each positive (or negative) link. When
,

pos

i j  >0, the link is regarded as from node i 

pointing to node j. When 
,

pos

i j   <0, the link is regarded as pointing away from node j to node i. The direction is undefined when 

,

pos

i j   =0. The definitions are similar for the negative weighted links.  

The adjacency matrix is defined as: 

, , ,(1 ) ( )
i j

pos pos

i j i jA H W Q= − −                                                                                                                                (4) 105 

where 
,i j is the Kronecker delta introduced to avoid self-loops in the network and H(x) is the Heaviside step function (H(x > 

0) = 1 and H(x < 0) = 0). Q denotes a certain threshold value. The definitions are similar for the negative weighted links. We 

constructed networks by pruning the links for which the statistical significance was below a certain threshold (Guez et al. 

2014). The threshold is determined according to the shuffle method, which is explained in detail in the next section. 

Step 2. The identification of the critical threshold 110 

In the shuffled case, the order of years is permutated and the order of days within each year is maintained for each pair of 

nodes (Ying et al 2020).  For each link, we selected one of two nodes randomly, then shuffled this time series by persisting 

the order of days in each year and changing the permutation of years several times. We then calculated the cross-correlation 

function and weight links for the shuffled datasets. The shuffling procedure represents the properties of statistical quantities 

and the autocorrelations of the original records, which may introduce unrealistic links. We only considered the link weights in 115 

the original network that are significantly higher than values in the shuffled case as a real link; otherwise, they are classed as 

spurious links. According to the principles mentioned above, figure 1 depicts a description of the research process and 

integration of analytical tools. 

Step 3. The determination of network typological metrics 

The degree is the most common application for measuring complex networks. A link that points toward a node is referred 120 

to as an in-degree link, and a link that points away from a node is considered as an out-degree link. The in- (or out-) weights 
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degrees of node i is denoted as In( )iw  and Out( )iw , representing the total in-coming (or out-going) weighted links, 

respectively 

, ,In( )i j i j ij
w A W=

                                                                                                                                             (5)

, ,Out( )i i j i jj
w A W=                                                                                                                                          (6) 125 

The In and Out fields represent a node’s dependence on its surrounding nodes, and the influence of the node on the 

surroundings nodes, respectively. Nodes with higher values in the network indicate a larger amount of connection with other 

nodes, whereas lower values indicate that the node is isolated.  

The Girvan Newman algorithm is used to explore regional division in the networks. In binary networks, the quality of 

community structure is typically measured by the modularity (Q) function (Newman, 2006). A high value of Q suggests a 130 

strong division of a network into clusters. Nodes in the same community may have the same properties. The Q in networks is 

defined as follows: 

,

,

1
[( ) ( , )]

2 2

i j

i j i j

i j

k k
Q A

M M
  = −                                                                                                                 (7) 

where ki, kj is the weight if node i and j, ,i jA is the adjacency matrix, is the membership function and M is the number of 

edges.  135 

 
 

Figure 1. The flow chart of the method with complex network analysis. 
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3. Results 140 

3.1 Characteristics of the PM2.5 network 

 
 

Figure 2. Positive link weights as a function of geographical distances Di,j  for (a) 𝑊i,j

pos
 and (b) Pi,j

pos
  for rea (blue)and shuffled 

(red) data. (c), (d) Same as (a), (b) but for negative links. 145 

 

The function of positive link weightsWi,j
pos

 and geographical distances Di,j for the original and the shuffled networks are 

shown in figures 2(a). Wi,j
pos

 values in the original network are greater than those in the shuffled network, indicating that the 

stronger positive links are the result of information transport of PM2.5 concentrations. For the relation between the largest 

cross-correlation Pi,j
pos

versus Di,j, we observe that the values in the shuffled case are smaller than those in the original case 150 

(figures 2(b)), which is in agreement with the pattern of Wi,j
pos

. In the negative case (figures 2 (c) and (d)), there is no distinct 

difference between the original network and the shuffled network. 

Figure 3 shows the probability density function (PDF) of links in the original network and the shuffled network. The PDF 

of positive links weights has a long tail in the original data, which is not presented in the link weights of the shuffled networks. 
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The PDF of negative link weights is a signature of random behavior, which continues to indicate that the many significant 155 

positive links are not likely to occur by chance. As a result, we consider links that are separated from the shuffled links. Both 

𝑊i,j

pos
 and Pi,j

pos
 can be used as a measure of the strength of links. In our analysis, positive link weights of 4.2 are the threshold, 

and accordingly, gain the adjacency matrix of the network.  

In the network, 284 cities are connected by PM2.5 concentrations with 3930 links among cities. The clustering coefficient, 

which indicates the degree of connection of the network, is 0.46. We also analyze the shuffled network with the same number 160 

of edges. 337 cities are connected and the value in the shuffled network is 0.07, suggesting PM2.5 cities are more connected to 

each other. The density of networks is 0.05 in the original network, while the value is 0.03 in the shuffled network. It reflects 

the degree of completeness of the network, and high values mean strong connections between cities. The average path length 

is 4.61 and 3.15 for the original and shuffled network, indicating that cities transport the PM2.5 concentrations to other cities 

crossed almost three other cities. PM2.5 cities have a higher clustering coefficient and lower average path length, compared 165 

with the shuffled network, demonstrating cities with higher PM2.5 concentrations can quickly affect their surrounding cities. 

 
 

Figure 3. PDF of positive (a) and negative (b) link weights for original data and shuffled data. The blue lines represent the 

original data and the red dash lines denote the shuffled cases. 170 

 

The degree of a node is one of the most important statistical properties in networks. The weighted degree characterizes the 

total strength of correlation of the node with surrounding cities. The PDF of degrees, weighted degrees, and edge lengths of 

the nodes are shown in figure 4. It is found that the degrees, weighted degrees, and edge lengths conform to power-law 

distributions. The power-law exponents are 1.3, 1.2, and 1.5, with R-squared values 0.71, 0.70, and 0.63, respectively. These 175 

links are heterogeneous, with few nodes possessing the majority of links in the network. Most of the PM2.5 concentration links 

remain confined to a handful of cities. Moreover, these links are mainly short distances (≤1000 km), whereas long distances 

(>1000 km) show few connections. 
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 180 

Figure 4. (a) the PDF of degree (red dots) and the power law fit curve (black line); (b) PDF of weighted degrees (red dots) 

and the power law fit curve (black line). (c) PDF of edge lengths (km) (red dots) and the power law fit curve (black line). 

 

Figure 5. Distribution of in- weighted degree (a) and out- weighted degree (b) in the network of each node for positive cases. 

 185 

To examine a node’s dependence or influencing role on the other nodes, we analyze the patterns of in- and out-weighted 

degrees. The direction of links is determined by the sign of the time delay, which quantifies the incoming or outgoing nodes. 

Links with zero-time delay represent bidirectional links. The in-weighted degree of each node measures incoming links 

towards the target city and high values indicate a stronger export effect from source cities to the target city. Out-weighted 

degrees denote the strength of outgoing links to other cities, and higher values suggest that more cities transfer their PM2.5 190 

concentrations to the target city. Figure 6 presents the spatial distribution of in- and out-weighted degrees for the whole years. 

Different colors represent the ability to transmission. Regions in BTHHS, YRD, and northwest China show significant 

synchronicity with the rest of the provinces in terms of PM2.5 mass concentrations. These regions correspond to regions with 

high mean PM2.5 concentrations. Furthermore, we observe that the distribution of the in-weighted degree is similar to that of 

the out-weighted degree, which indicates these cities are both recipients and senders in the networks. This suggests that their 195 

pollution is not only due to the local emissions but also imported from other cities. Therefore, solving air pollution should not 

only rely on reducing emissions in a single city, but rather on developing inter-city cooperation. Compared with the out-
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weighted degrees, in-weighted degrees are stronger over the BTHHS region. These cities (sending cities) can also export PM2.5 

concentrations to other cities (recipient cities). In addition, the values of in-/out- weighted degrees display remarkable 

differences in different seasons, as shown in figure 7. The weighted degrees in summer and autumn are small (figure 7(b) and 200 

(c)). In winter and spring, especially in wintertime the values of in-/out- weighted degrees are significant, and their patterns 

are similar to that of the whole year.  

 

Figure 6. Distribution of in- weighted degree (a) and out- weighted degree (b) in the network of each node for positive cases. 
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 205 

3.2 Routes and clustering of the PM2.5  

Both in- and out-weighted degrees offer information in terms of nodes (cities). It is reported that urban air quality can be 

substantially influenced by atmospheric transport of PM2.5 pollution from distant cities. An analysis of the edges can contribute 

to revealing the transport routes of PM2.5 among cities. A recent study found that PM2.5 concentrations over a distance of 1000 

km were related to a typical cyclonic scale within the Rossby waves (Zhang et al 2019). Here we discuss the transport path 210 

within 1000 km and only focus on positive time lags. This is since they are typical links that are related to different climate 

processes, and they enable detailed comparisons with the previous literature. The transport routes show that southward 

propagation is predominant in the sub-network (figure 7(a) (Zhang and Cao 2015)). We focus on two groups of connections 

that belong to different regions. The first one is links traveled from the Gobi Desert over southwestern parts of Mongolia and 

the Badain Jaran Desert to the BTH regions.  The second one is links transported from the BTHHS to the YRD regions and 215 

these links show a 1- or 2-day time lag. This is consistent with previous studies obtained from the WRF-Chem model (Huang 

et al 2020). The outbreak of YRD pollution usually peaks with a time lag of 1–2 days after that in the BTHHS. The government 

in YRD should implement early warning measures to prevent the negative influence from BTHHS, while the government in 

BTHHS should take steps to improve air quality by re-adjusting and optimizing the industrial structure, reducing the ratio of 

heavy industry and developing clean energy. 220 

 
Figure 7. (a) Map of PM2.5 transport links among the monitoring cities in China. (b)The cluster regions of PM2.5 concentrations. 

Different colors represent different communities. 

 

In addition, we also analyzed the transport routes in different seasons (figure 8). The transport routes are significant in 225 

autumn and winter, especially in wintertime. It means the routes features in winter are dominant over the whole year. Hence, 

the southwestern links are related to the East Asia winter monsoon.  

b a 
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Figure 8. Distribution of transport paths in the network for spring (a), summer (b), autumn (c) and winter (d). 

 230 

In complex networks, nodes that are closely related to each other are more likely to be grouped in the same cluster. Hence, 

cities are tightly bound to cities in the same cluster and uncorrelated to cities in other clusters. The pollution transport routes 

presented above indicate that curbing air pollution is more than just a local issue. In the following, we investigate the cluster 

features of our networks by utilizing the modularity algorithm described above. Considering a larger Q value means a more 

accurate community structure for network segmentation, we calculate the Q value at each division to obtain a better result. 235 

Here, 284 cities are divided into 9 clusters, where the Q value obtains the maximum value (0.56). The results present a strong 

regional character regional division, shown in figures 7(b). Cities having the same color represent the same cluster, which 

could be considered for collaborative governance. These nine regions include the above-mentioned three key regions: BTH 

regions, YRD region (containing Shanghai, Jiangsu, Anhui and Zhejiang province), and the PRD area (including Guangdong 

and Guangxi). The other interconnected areas are Heilongjiang and Jilin provinces, Jilin and Liaoning province (northeast 240 

China), Hunan and Hubei province (central China), and Jiangxi-Fujian, Guizhou-Chongqing-Sichuan, and Shanxi-Shaanxi-

Ningxia-Gansu.  

4. Summary and discussion 

In the Anthropocene era, the atmospheric environment issue is increasingly prominent, which brings challenges to the 

realization of sustainable development. Despite great efforts has been taken by the Chinese government, some cities in China 245 

are still plagued by haze pollution. Air pollution was partly related to the transmission from other regions, controlling air 
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pollution needs to consider regional transmission and cooperation. The emergence and application of complex networks could 

enhance our understanding of the dynamics process of PM2.5. This paper analyses the transport routes and joint clusters over 

China based on a network theory-based approach.  

By constructing PM2.5 networks based on complex network approaches, it is found that the PDF of the degrees, weighted 250 

degrees, and edge lengths of PM2.5 cities follow a power-law distribution, which indicates the variability of PM2.5 

concentrations in China is not random. Hence, it is reasonable to analyze the transmission and cooperation regions of PM2.5 

from the perspective of whole national evolution over a long period of time. To quantify the relations of PM2.5 among cities, 

the patterns of weighted degree are investigated. Higher weighted degrees are overserved in the BTH regions, which is 

consistent with the patterns of high levels of PM2.5 concentrations. Cites in the BTH region have stronger strength to export 255 

their PM2.5 pollution to other cities. The distributions of weighted degrees exhibit significant differences in seasons, with the 

largest in winter and the least in summer.  

Based on the PM2.5 networks, the transport links and collaborative regions are analyzed. It showed that a dense of links 

traveled from the Gobi Desert over southwestern parts of Mongolia and the Badain Jaran Desert to the BTH regions. The other 

group extends southward from BTH to the YRD regions and then south to Fujian province with a one- or two-day time lag. 260 

This is consistent with previous studies obtained from the WRF-Chem model (Huang et al 2014). In winter, although we get 

a similar transmission pattern, it possesses a strong intensity. We demonstrate that the possible reason is resulted from the 

influence of cold fronts, which, exactly, disperses the PM2.5 accumulated in the North China Plain to the Yangtze River Delta 

region and thus, leads to the propagation of PM2.5 from the BTH region to the YRD region. Hence, links BTH to the YRD 

region obtained from the whole year are related to the cold front occurring in wintertime. 265 

Besides, we also performed the communities detection based on the synchronicity of PM2.5 concentrations, and obtained 9 

clusters. Cities in the same regions should join together to control air pollution. This result provides theoretical support for the 

JPCAP proposed by the national government. Regional cooperation should be promoted in these regions to implement regional 

policies to improve air quality.  

A central implication of this study is that the transmission and collaborative regions can be explored via the complex 270 

network approach. For traditional model simulation, numerous parameters are needed in the simulation process. In contrast, 

complex network theory is performed based on time series of field observations, so the estimation process is faster and more 

economic. As our analysis is based on long-time PM2.5 records in China, rather than a particular region or period of air pollution, 

it may provide reference and basis for the development of effective regulatory policies for government to improve air quality. 

In this paper, we demonstrate the applicability of complex network methodology for the studies of the transport and cluster of 275 

air pollutants in faster and more economic ways. It is expected that complex network methods are also potential in the studies 

of other air pollutants such as ozone, NOx, and so on. 
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