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Abstract. Complex network theory has been applied to reveal the transport patterns and cooperative regions of fine (<2.5 um)
particulate matter (PM ) in the whole of China over a long-term record. The results show the degrees, weighted degrees, and
edge lengths of PM cities follow power-law distributions. Cities in the Beijing-Tianjin-Hebei-Henan-Shandong (BTHHS)
region have a strong ability to import PM_ s pollution to other cities. By analyzing the transport routes, we show that a mass
of links extends southward from the BTHHS to the Yangtze River Delta (YRD) regions with one- or two-day time lags.
Hence, we conclude that earlier emission reduction in BTHHS and early-warning measures in YRD will help to improve air
quality in both regions. Moreover, significant links are concentrated in wintertime, suggesting the impact of the winter
monsoon. In addition, cities have been divided into nine clusters according to their synchronicity characteristics. Cities in the
same clusters should be regarded as a whole to control the level of air pollution. The results are derived by an economic
approach of complex network theory, which avoids the time-consuming of traditional model simulation approach and
suggests a highly efficient approach to the studies of transport and cluster of PM,s. This approach, beyond doubt, is certainly
also applicable to the studies of other air pollutants such as o0zone, NOx, and so on.

1 Introduction

The Earth behaves as a complex self-regulating system comprised of atmosphere, hydrosphere, cryosphere, lithosphere and
biosphere, with highly nonlinear interactions and feedbacks between the component parts (Steffen et al 2015). With the
increasing understanding of interactions between physical, chemical, biological and human processes, a new ‘science of the
Earth’-Earth System Science (ESS) has been initiated (Steffen et al 2020). Facilitated by its various tools and approaches, ESS
has introduced some new concepts and theories, the most important of which is the concept of Anthropocene (Malm and
Hornborg, 2015). In the Anthropocene era, haze events have occurred frequently in China, and the problem of air pollution
has received wide attention from the government, scholars and the public (Huang et al 2014, Sheehan et al 2014).
Atmospheric fine particulate matter (PM_s) is the primary cause of haze pollution (Ding et al 2016, Cai et al 2017). It has
adverse influences on human health, atmospheric visibility and global climate change (Liang et al 2016, Liao et al 2017).
PMas pollution is generated from both anthropogenic and natural sources, including primary aerosols as well as secondary

aerosols that are produced in the atmosphere through the chemistry of precursor gases (Squizzato et al 2012). In recent years,



40

45

50

55

60

65

https://doi.org/10.5194/esd-2022-9 Earth System
Preprint. Discussion started: 9 March 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License.

Discussions

it has also been increasingly recognized that air pollution in a given area is influenced not only by the air pollutant emissions
there but also by the transport of air pollutants from other regions. Based on trajectory clustering methods, Li et al (2015)
concluded that regional PM_s transmission has become the key factor driving severe haze in Beijing. By using the positive
matrix factorization approach, Khuzestani et al (2017) revealed that remote transmission accounted for approximately 77% of
the PM2s concentration in the Ordos region. Furthermore, PM; s transmissions are also examined using model simulations.
For example, Wang et al (2014) quantified the regional contribution of PM, s in southern Hebei by using Mesoscale Modeling
System Generation 5(MMB5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system; Zhang et al
(2017) investigated the effect of regional pollution transport based on the GEOS-Chem chemical transport model and its adjoint.
These studies suggest that curbing air pollution has not been a local issue, and the regional coordinate could be an effective
approach to improve the air quality of the regional atmospheric environment. In 2012, The 12th Five-Year Plan on Air Pollution
Prevention and Control in Key Regions approved proposed to divide China into three key regions to jointly prevent air pollution,
which is named as the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and the Pearl River Delta (PRD), and major

urban agglomerations such as Lanzhou-Xining, Wuhan and surrounding areas, Shaanxi and Guanzhong city (MEP, 2012).

However, this kind of region division ignores the nonlinear transport characteristics of PM_s concentrations; furthermore,
considerable discrepancies exist in the above studies of PM,s transmission in different cities/regions during different air
pollution periods. Hence, the PM s transports in the whole of China over a long-time period have not been fully understood;
furthermore, the traditional approaches adopted in the above studies dis not fully consider the nonlinear transport processes
between cities.

During the last two decades, complex network theory has been applied to reveal the statistical and dynamic topological
features in complex systems (Fountalis et al 2014, Feldhoff et al 2015). In complex networks, geographical locations are
considered to be nodes. Links represent communications between time series of nodes, and their strength is measured by the
cross-correlation between records (Castrejon-Pita and Read 2010). The network-theory based approach has been used to study
teleconnection patterns (Zhou et al 2015, Boers et al 2019, Ying et al 2019), EI Nifo events (Yamasaki et al 2008, Ludescher
et al 2013, 2014), North Atlantic Oscillation (Guez et al 2012), Atlantic Multidecadal Oscillation (Wyatt et al 2012) and
Rossby waves (Wang et al 2013, Ying et al 2020). This approach is also useful in the studies of atmosphere environment
systems, especially enabling us to investigate the nonlinear spatiotemporal dynamics between air pollution agents. Such
nonlinear relationships are critical for assessing the intrinsic dynamics of atmospheric pollution systems, but traditional
statistical or model simulation methods are difficult to reveal. The network-theory based approach has been used to uncover
the correlation pattern of PM.s concentrations (Zhang et al 2018), to analyze the PM_ s spillover routes in BTH cities (Li et al
2019), to discriminate between urban and rural tropospheric ozone (Rafael et al 2019), and to quantify the interaction between
upper air conditions and surface PM,s concentrations (Zhang et al 2019). It is obvious that complex network methods are

valuable tools for depicting and quantifying air pollution transmission and cluster among cities.
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In the present study, we attempt to explore the transport and cluster of PM, s based on complex networks, and in the next
section, we introduce the data and methods. The patterns of PM, s concentrations and their transport features and demarcation

regions are presented in section 3. Finally, the summary and discussion are detailed in Section 4.

2 Data and methods
2.1 Data

The PM_ 5 concentrations data for 336 cities of China with a daily average from 1 January 2015 to 31 December 2019 are
used in this study. These raw data were acquired from the China National Environmental Monitoring Centre (CNEMC). Then
we pre-processed these data according to the needs of the Ambient Air Quality Standard on the validity of air pollutant
concentration data. Specifically, the missing values in the PM,s data are excluded; then the negative values and those larger
than 900 mg/m? on a given day for a given year are removed and for these years we deleted the data corresponding to those
days. As aresult, we obtained data for 360 valid days per year (data on January 9, April 1, July 6, September 5, and November
29 are removed) and the total length is 5 <360 (1800 days).

The anomalies records of PM, 5 are adopted, where the anomalies are obtained by subtracting the daily averages and dividing
them by the corresponding standard deviations and the function of the denominator is used to eliminate the effects of

autocorrelations in the records.

2.2 Methods

The network construction includes three steps. First, we calculate the weight of the edges between nodes. Second, we apply
a shuffled procedure to identify a certain threshold. Third, we calculate network typological metrics to determine the
interaction strength between two nodes. Below, we detail each step.

Step 1. The calculation of the weight links between nodes

The anomalous PM s time series of each node i is represented as oS, (t) , where i is the node index. Similar to earlier studies
(Gozolchiani et al 2011, Ying et al 2020), we define Xi’j(T) as the time-delayed cross-correlation function for PMzs node (i
and j), 65;(t) and §S, (t) . For t> 0,

X )= <§Si(t—r)5Sj(t)>—§58i (t-0)(55,1)) 2 ()
\/<(55j(t—r)—<5sj(t—f)>) >-\/<(5sj(t)—<5sj(t)>) >

where 7 denotes the time lag, which is in the range between —30 and +30 days. Xi; (r)=X i (-7) - The bracket is the average

over the time period of our concerned. We quantify the strength of the correlations as follows (Gozolchiani et al 2011, Guez
et al 2014):
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pos _ max(Xi,j)—mean(Xi'j) .
VT sd(X,)

min(X; ;) —mean(X; ;)
std(X, ;)

W = ©)

In this approach, max(), mean(), min(), and std() denote the maximum, minimum, mean, and standard deviation of

the cross-correlation function X;.(r) ., respectively. The deviations in the link identification caused by persistence or
autocorrelation in the records are reduced through dividing the std(Xi;). We defined the maximum and minimum oin‘j as
Pif}"s and Pfj.eg , respectively; rif’}’s and z_:ejg represent the maximum and minimum values of Xi‘j(r), respectively; and the sign
of Ti'f;’s (or Ti“jg) represent the direction of each positive (or negative) link. When rif’}’s >0, the link is regarded as from node i
pointing to node j. When rif’}’s <0, the link is regarded as pointing away from node j to node i. The direction is undefined when

rf}’s =0. The definitions are similar for the negative weighted links.
The adjacency matrix is defined as:
pos __ pos
AM. —(1_5i,j)H(Wi,j _Q) 4)
where o is the Kronecker delta introduced to avoid self-loops in the network and H(x) is the Heaviside step function (H(x >

0) =1 and H(x < 0) = 0). Q denotes a certain threshold value. The definitions are similar for the negative weighted links. We
constructed networks by pruning the links for which the statistical significance was below a certain threshold (Guez et al.
2014). The threshold is determined according to the shuffle method, which is explained in detail in the next section.

Step 2. The identification of the critical threshold

In the shuffled case, the order of years is permutated and the order of days within each year is maintained for each pair of
nodes (Ying et al 2020). For each link, we selected one of two nodes randomly, then shuffled this time series by persisting
the order of days in each year and changing the permutation of years several times. We then calculated the cross-correlation
function and weight links for the shuffled datasets. The shuffling procedure represents the properties of statistical quantities
and the autocorrelations of the original records, which may introduce unrealistic links. We only considered the link weights in
the original network that are significantly higher than values in the shuffled case as a real link; otherwise, they are classed as
spurious links. According to the principles mentioned above, figure 1 depicts a description of the research process and
integration of analytical tools.

Step 3. The determination of network typological metrics

The degree is the most common application for measuring complex networks. A link that points toward a node is referred

to as an in-degree link, and a link that points away from a node is considered as an out-degree link. The in- (or out-) weights
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degrees of node i is denoted as In(w), and Out(w),, representing the total in-coming (or out-going) weighted links,

respectively

In(w), =ZJ— AW, (®)

Out(w), =D A W, ; Q)

The In and Out fields represent a node’s dependence on its surrounding nodes, and the influence of the node on the
surroundings nodes, respectively. Nodes with higher values in the network indicate a larger amount of connection with other
nodes, whereas lower values indicate that the node is isolated.

The Girvan Newman algorithm is used to explore regional division in the networks. In binary networks, the quality of
community structure is typically measured by the modularity (Q) function (Newman, 2006). A high value of Q suggests a
strong division of a network into clusters. Nodes in the same community may have the same properties. The Q in networks is

defined as follows:

1 kK.
Q=—=D [(A;—-)5(01,09)] ™
2M ,Z,: Al 2M v
where ki, kj is the weight if node i and j, A ; is the adjacency matrix, ¢ is the membership function and M is the number of
edges.
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Figure 1. The flow chart of the method with complex network analysis.



140

145

150

https://doi.org/10.5194/esd-2022-9 Earth System
Preprint. Discussion started: 9 March 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License.

Discussions
oY

3. Results

3.1 Characteristics of the PM2.5 network
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Figure 2. Positive link weights as a function of geographical distances D;; for (a) W, and (b) P} for rea (blue)and shuffled

(red) data. (c), (d) Same as (a), (b) but for negative links.

The function of positive link weightsW‘,ffS and geographical distances D;; for the original and the shuffled networks are
shown in figures 2(a). Wf’fs values in the original network are greater than those in the shuffled network, indicating that the
stronger positive links are the result of information transport of PM_s concentrations. For the relation between the largest
cross-correlation Pfjsversus D;;, we observe that the values in the shuffled case are smaller than those in the original case
(figures 2(b)), which is in agreement with the pattern of Wf’j‘” In the negative case (figures 2 (c) and (d)), there is no distinct
difference between the original network and the shuffled network.

Figure 3 shows the probability density function (PDF) of links in the original network and the shuffled network. The PDF

of positive links weights has a long tail in the original data, which is not presented in the link weights of the shuffled networks.
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The PDF of negative link weights is a signature of random behavior, which continues to indicate that the many significant
positive links are not likely to occur by chance. As a result, we consider links that are separated from the shuffled links. Both

W/ and P{}" can be used as a measure of the strength of links. In our analysis, positive link weights of 4.2 are the threshold,

and accordingly, gain the adjacency matrix of the network.

In the network, 284 cities are connected by PM, s concentrations with 3930 links among cities. The clustering coefficient,
which indicates the degree of connection of the network, is 0.46. We also analyze the shuffled network with the same number
of edges. 337 cities are connected and the value in the shuffled network is 0.07, suggesting PM s cities are more connected to
each other. The density of networks is 0.05 in the original network, while the value is 0.03 in the shuffled network. It reflects
the degree of completeness of the network, and high values mean strong connections between cities. The average path length
is 4.61 and 3.15 for the original and shuffled network, indicating that cities transport the PM2s concentrations to other cities
crossed almost three other cities. PM_s cities have a higher clustering coefficient and lower average path length, compared

with the shuffled network, demonstrating cities with higher PM; s concentrations can quickly affect their surrounding cities.
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Figure 3. PDF of positive (a) and negative (b) link weights for original data and shuffled data. The blue lines represent the

original data and the red dash lines denote the shuffled cases.

The degree of a node is one of the most important statistical properties in networks. The weighted degree characterizes the
total strength of correlation of the node with surrounding cities. The PDF of degrees, weighted degrees, and edge lengths of
the nodes are shown in figure 4. It is found that the degrees, weighted degrees, and edge lengths conform to power-law
distributions. The power-law exponents are 1.3, 1.2, and 1.5, with R-squared values 0.71, 0.70, and 0.63, respectively. These
links are heterogeneous, with few nodes possessing the majority of links in the network. Most of the PM_ s concentration links
remain confined to a handful of cities. Moreover, these links are mainly short distances (<1000 km), whereas long distances

(>1000 km) show few connections.
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Figure 4. (a) the PDF of degree (red dots) and the power law fit curve (black line); (b) PDF of weighted degrees (red dots)

and the power law fit curve (black line). (c) PDF of edge lengths (km) (red dots) and the power law fit curve (black line).
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Figure 5. Distribution of in- weighted degree (a) and out- weighted degree (b) in the network of each node for positive cases.

To examine a node’s dependence or influencing role on the other nodes, we analyze the patterns of in- and out-weighted
degrees. The direction of links is determined by the sign of the time delay, which quantifies the incoming or outgoing nodes.
Links with zero-time delay represent bidirectional links. The in-weighted degree of each node measures incoming links
towards the target city and high values indicate a stronger export effect from source cities to the target city. Out-weighted
degrees denote the strength of outgoing links to other cities, and higher values suggest that more cities transfer their PMzs
concentrations to the target city. Figure 6 presents the spatial distribution of in- and out-weighted degrees for the whole years.
Different colors represent the ability to transmission. Regions in BTHHS, YRD, and northwest China show significant
synchronicity with the rest of the provinces in terms of PMzs mass concentrations. These regions correspond to regions with
high mean PM, s concentrations. Furthermore, we observe that the distribution of the in-weighted degree is similar to that of
the out-weighted degree, which indicates these cities are both recipients and senders in the networks. This suggests that their
pollution is not only due to the local emissions but also imported from other cities. Therefore, solving air pollution should not

only rely on reducing emissions in a single city, but rather on developing inter-city cooperation. Compared with the out-
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weighted degrees, in-weighted degrees are stronger over the BTHHS region. These cities (sending cities) can also export PM. s
concentrations to other cities (recipient cities). In addition, the values of in-/out- weighted degrees display remarkable

200 differences in different seasons, as shown in figure 7. The weighted degrees in summer and autumn are small (figure 7(b) and
(c)). In winter and spring, especially in wintertime the values of in-/out- weighted degrees are significant, and their patterns
are similar to that of the whole year.
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Figure 6. Distribution of in- weighted degree (a) and out- weighted degree (b) in the network of each node for positive cases.
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3.2 Routes and clustering of the PM2.5

Both in- and out-weighted degrees offer information in terms of nodes (cities). It is reported that urban air quality can be
substantially influenced by atmospheric transport of PM, s pollution from distant cities. An analysis of the edges can contribute
to revealing the transport routes of PM2s among cities. A recent study found that PM, s concentrations over a distance of 1000
km were related to a typical cyclonic scale within the Rossby waves (Zhang et al 2019). Here we discuss the transport path
within 1000 km and only focus on positive time lags. This is since they are typical links that are related to different climate
processes, and they enable detailed comparisons with the previous literature. The transport routes show that southward
propagation is predominant in the sub-network (figure 7(a) (Zhang and Cao 2015)). We focus on two groups of connections
that belong to different regions. The first one is links traveled from the Gobi Desert over southwestern parts of Mongolia and
the Badain Jaran Desert to the BTH regions. The second one is links transported from the BTHHS to the YRD regions and
these links show a 1- or 2-day time lag. This is consistent with previous studies obtained from the WRF-Chem model (Huang
et al 2020). The outbreak of YRD pollution usually peaks with a time lag of 1-2 days after that in the BTHHS. The government
in YRD should implement early warning measures to prevent the negative influence from BTHHS, while the government in
BTHHS should take steps to improve air quality by re-adjusting and optimizing the industrial structure, reducing the ratio of

heavy industry and developing clean energy.
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Figure 7. (2) Map of PM s transport links among the monitoring cities in China. (b) The cluster regions of PM, s concentrations.

Different colors represent different communities.
In addition, we also analyzed the transport routes in different seasons (figure 8). The transport routes are significant in

autumn and winter, especially in wintertime. It means the routes features in winter are dominant over the whole year. Hence,

the southwestern links are related to the East Asia winter monsoon.

10
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Figure 8. Distribution of transport paths in the network for spring (a), summer (b), autumn (c) and winter (d).

In complex networks, nodes that are closely related to each other are more likely to be grouped in the same cluster. Hence,
cities are tightly bound to cities in the same cluster and uncorrelated to cities in other clusters. The pollution transport routes
presented above indicate that curbing air pollution is more than just a local issue. In the following, we investigate the cluster
features of our networks by utilizing the modularity algorithm described above. Considering a larger Q value means a more
accurate community structure for network segmentation, we calculate the Q value at each division to obtain a better result.
Here, 284 cities are divided into 9 clusters, where the Q value obtains the maximum value (0.56). The results present a strong
regional character regional division, shown in figures 7(b). Cities having the same color represent the same cluster, which
could be considered for collaborative governance. These nine regions include the above-mentioned three key regions: BTH
regions, YRD region (containing Shanghai, Jiangsu, Anhui and Zhejiang province), and the PRD area (including Guangdong
and Guangxi). The other interconnected areas are Heilongjiang and Jilin provinces, Jilin and Liaoning province (northeast
China), Hunan and Hubei province (central China), and Jiangxi-Fujian, Guizhou-Chongging-Sichuan, and Shanxi-Shaanxi-

Ningxia-Gansu.

4. Summary and discussion

In the Anthropocene era, the atmospheric environment issue is increasingly prominent, which brings challenges to the
realization of sustainable development. Despite great efforts has been taken by the Chinese government, some cities in China

are still plagued by haze pollution. Air pollution was partly related to the transmission from other regions, controlling air

11
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pollution needs to consider regional transmission and cooperation. The emergence and application of complex networks could
enhance our understanding of the dynamics process of PM_s. This paper analyses the transport routes and joint clusters over
China based on a network theory-based approach.

By constructing PM2 s networks based on complex network approaches, it is found that the PDF of the degrees, weighted
degrees, and edge lengths of PM,s cities follow a power-law distribution, which indicates the variability of PMys
concentrations in China is not random. Hence, it is reasonable to analyze the transmission and cooperation regions of PMz s
from the perspective of whole national evolution over a long period of time. To quantify the relations of PM_s among cities,
the patterns of weighted degree are investigated. Higher weighted degrees are overserved in the BTH regions, which is
consistent with the patterns of high levels of PM.s concentrations. Cites in the BTH region have stronger strength to export
their PM2s pollution to other cities. The distributions of weighted degrees exhibit significant differences in seasons, with the
largest in winter and the least in summer.

Based on the PMzs networks, the transport links and collaborative regions are analyzed. It showed that a dense of links
traveled from the Gobi Desert over southwestern parts of Mongolia and the Badain Jaran Desert to the BTH regions. The other
group extends southward from BTH to the YRD regions and then south to Fujian province with a one- or two-day time lag.
This is consistent with previous studies obtained from the WRF-Chem model (Huang et al 2014). In winter, although we get
a similar transmission pattern, it possesses a strong intensity. We demonstrate that the possible reason is resulted from the
influence of cold fronts, which, exactly, disperses the PM. s accumulated in the North China Plain to the Yangtze River Delta
region and thus, leads to the propagation of PM;s from the BTH region to the YRD region. Hence, links BTH to the YRD
region obtained from the whole year are related to the cold front occurring in wintertime.

Besides, we also performed the communities detection based on the synchronicity of PM;s concentrations, and obtained 9
clusters. Cities in the same regions should join together to control air pollution. This result provides theoretical support for the
JPCAP proposed by the national government. Regional cooperation should be promoted in these regions to implement regional
policies to improve air quality.

A central implication of this study is that the transmission and collaborative regions can be explored via the complex
network approach. For traditional model simulation, numerous parameters are needed in the simulation process. In contrast,
complex network theory is performed based on time series of field observations, so the estimation process is faster and more
economic. As our analysis is based on long-time PMz s records in China, rather than a particular region or period of air pollution,
it may provide reference and basis for the development of effective regulatory policies for government to improve air quality.
In this paper, we demonstrate the applicability of complex network methodology for the studies of the transport and cluster of
air pollutants in faster and more economic ways. It is expected that complex network methods are also potential in the studies

of other air pollutants such as ozone, NOx, and so on.

12



280

285

290

295

300

https://doi.org/10.5194/esd-2022-9 Earth System
Preprint. Discussion started: 9 March 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License.

Discussions

Data availability

The study is based on publicly available data sets as described in the Methods section. Model and analysis scripts and outputs
are available on request from the corresponding author.

Author contributions

NY developed the research idea, NY developed the model and performed the analysis. All authors discussed the results and

contributed to the writing of the paper.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

This study is supported by Budget Surplus of Central Financial Science and Technology Plan (Grant No. 2021-JY-15) and
National Key Research and Development Program of China (Grant No. 2019YFC0214201).

References

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and Kurths J.: Complex networks reveal global pattern
of extreme-rainfall teleconnections, Nature, 566, 373-377, https://doi.org/10.1038/s41586-018-0872-x, 2019.

Cai, S., Wang, Y., Zhao, B., Wang, S., Chang, X., and Hao, J.: The impact of the "Air Pollution Prevention and Control Action
Plan" on PMg2s concentrations in Jing-Jin-Ji region during 2012-2020, Sci. Total. Environ., 580, 197-209,
https://doi.org/10.1016/j.scitotenv.2016.11.188, 2017.

Castrejon-Pita, A. A. and Read, P. L.: Synchronization in a Pair of Thermally Coupled Rotating Baroclinic Annuli:
Understanding Atmospheric Teleconnections in the Laboratory, Phys. Rev. Lett., 104,
https://doi.org/10.1103/PhysRevL ett.104.204501, 2010.

Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. -M., Petaja, T., Su, H., Cheng, Y. F,, Yang, X. -Q., Wang, M. H.,
Chi, X. G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J. Wang, S. Y., Zhang, R. J., Wu, Y. F., Song, Y. Zhu, T., Zilitinkevich,
S. Kulmala, M., and Fu, C. B.: Enhanced haze pollution by black carbon in megacities in China, Geophys. Res. Lett., 43,
2873-79, https://doi.org/10.1002/2016GL067745, 2016.

13



305

310

315

320

325

330

335

https://doi.org/10.5194/esd-2022-9 Earth System

Preprint. Discussion started: 9 March 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License. Di .
Iscussions

Feldhoff, J. H., Lange, S., Volkholz, J., Donges, J. F., Kurths, J., and Gerstengarbe, F-W.: Complex networks for climate
model evaluation with application to statistical versus dynamical modeling of South American climate, Clim. Dynam., 44,
1567-81, https://doi.org/10.1007/s00382-014-2182-9, 2015.

Fountalis, 1., Bracco, A., and Dovrolis, C.: Spatio-temporal network analysis for studying climate patterns, Clim. Dynam., 42,
879-99, https://doi.org/10.1007/s00382-013-1729-5, 2014.

Gozolchiani, A., Havlin, S., and Yamasaki, K.: Emergence of El Nino as an autonomous component in the climate network,
Phys. Rev. Lett., 107, 148501, https://doi.org/10.1103/PhysRevLett.107.148501, 2011.

Guez, O., Gozolchiani, A., Berezin, Y., Brenner, S., and Havlin, S.: Climate network structure evolves with North Atlantic
Oscillation phases, Epl, 98, 38006, https://doi.org/10.1209/0295-5075/98/38006, 2012.

Guez, O. C., Gozolchiani, A., and Havlin, S.: Influence of autocorrelation on the topology of the climate network, Phys. Rev.
E, 90, https://doi.org/10.1103/PhysRevE.90.062814, 2014.

Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J., and Zhang,
R.: Elucidating severe urban haze formation in China, Proc. Natl Acad. Sci. USA, 111, 17373-78,
https://doi.org/10.1073/pnas.1419604111, 2014.

Huang, R-J., Zhang, Y., Bozzetti, C., Ho, K-F., Cao, J-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco,
F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade,
G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Pr&@, A. S. H.: High
secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218-22,
https://doi.org/10.1038/nature13774, 2014.

Li, H., Qi, Y., Li, C., and Liu, X.: Routes and clustering features of PM2.5 spillover within the Jing-Jin-Ji region at multiple
timescales  identified using complex  network-based methods, J. Clean. Prod., 209, 1195-205,
https://doi.org/10.1016/j.jclepro.2018.10.284, 2019.

Liang, C. S., Duan, F. K., He, K. B., and Ma, Y. L.: Review on recent progress in observations, source identifications and
countermeasures of PM, s, Environ. Int., 86, 150-70, https://doi.org/10.1016/j.envint.2015.10.016, 2016.

Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X., Jiang, W., and Sun, Y.: Heavy pollution episodes, transport
pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China), Sci. Total Environ., 584, 1056-65,
https://doi.org/10.1016/j.scitotenv.2017.01.160, 2017.

Ludescher, J., Gozolchiani, A., Bogachev, M. I., Bunde, A., Havlin, S., and Schellnhuber, H. J.: Improved EI Nino forecasting
by cooperativity detection, Proc. Natl Acad. Sci. USA, 110, 11742-45, https://doi.org/10.1073/pnas.1309353110, 2013.
Ludescher, J., Gozolchiani, A., Bogachev, M. I., Bunde, A., Havlin, S., and Schellnhuber, H. J.: Very early warning of next
El Nino, Proc. Natl Acad. Sci. USA, 111, 2064-66, https://doi.org/10.1073/pnas.1323058111, 2014.

Rafael, C. C., Javier, G. G., Ariza-Villaverde, A. B., Gutierrez, de. Rave. E., and Jimenez-Hornero, F. J.: Can complex
networks describe the urban and rural tropospheric Oz dynamics?, Chemosphere, 230, 59-66,
https://doi.org/10.1016/j.chemosphere.2019.05.057, 2019.

14



340

345

350

355

360

365

https://doi.org/10.5194/esd-2022-9 Earth System

Preprint. Discussion started: 9 March 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License. Di .
Iscussions

Sheehan, P., Cheng, E., English, A., and Sun, F.: China's response to the air pollution shock, Nat Clim Chang, 4, 306-09,
https://doi.org/10.1038/nclimate2197, 2014.

Squizzato, S., Masiol, M., Innocente, E., Pecorari, E., Rampazzo, G., and Pavoni, B.: A procedure to assess local and long-
range transport contributions to PM,s and secondary inorganic aerosol, J. Aerosol Sci., 46, 64-76,
https://doi.org/10.1016/j.jaerosci.2011.12.001, 2012.

Wang, S., Zhou, C., Wang, Z., Feng, K., and Hubacek, K.: The characteristics and drivers of fine particulate matter (PM2.5)
distribution in China, J. Clean. Prod., 142, 1800-09, https://doi.org/10.1016/j.jclepro.2016.11.104, 2017.

Wang, Y., Gozolchiani, A., Ashkenazy, Y., Berezin, Y., Guez, O., and Havlin, S.: Dominant Imprint of Rossby Waves in the
Climate Network, Phys. Rev. Lett., 111, https://doi.org/10.1103/PhysRevLett.111.138501, 2013.

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and Kurths, J.: Complex networks reveal global pattern
of extreme-rainfall teleconnections, Nature, 566, 373-77, https://doi.org/10.1038/s41586-018-0872-x, 2019.

Cai, S., Wang, Y., Zhao, B., Wang, S., Chang, X., and Hao, J.: The impact of the "Air Pollution Prevention and Control Action
Plan" on PM2.5 concentrations in Jing-Jin-Ji region during 2012-2020, Sci. Total Environ., 580, 197-209,
https://doi.org/10.1016/j.scitotenv.2016.11.188, 2017.

Castrejon-Pita, A. A., and Read, P. L.: Synchronization in a Pair of Thermally Coupled Rotating Baroclinic Annuli:
Understanding Atmospheric Teleconnections in the Laboratory, Phys. Rev. Lett., 104,
https://doi.org/10.1103/PhysRevL ett.104.204501, 2010.

Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. -M., Petaja, T., Su, H., Cheng, Y. F.,, Yang, X. -Q., Wang, M. H.,
Chi, X. G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R. J.,, Wu, Y. F, Song, Y., Zhu, T.,
Zilitinkevich, S., Kulmala, M., and Fu, C. B.: Enhanced haze pollution by black carbon in megacities in China, Geophys. Res.
Lett., 43, 2873-79, https://doi.org/10.1002/2016GL067745, 2016.

Feldhoff, J. H., Lange, S., Volkholz, J., Donges, J. F., Kurths, J., and Gerstengarbe F-W.: Complex networks for climate model
evaluation with application to statistical versus dynamical modeling of South American climate, Clim. Dynam., 44, 1567-81,
https://doi.org/10.1007/s00382-014-2182-9, 2015.

Fountalis, 1., Bracco, A., and Dovrolis, C.: Spatio-temporal network analysis for studying climate patterns, Clim. Dynam., 42,
879-99, https://doi.org/10.1007/s00382-013-1729-5, 2014.

Gozolchiani, A., Havlin, S., and Yamasaki, K.: Emergence of El Nino as an autonomous component in the climate network,
Phys. Rev. Lett., 107, 148501, https://doi.org/10.1103/PhysRevLett.107.148501, 2011.

Guez, O., Gozolchiani, A., Berezin, Y., Brenner, S., and Havlin, S.: Climate network structure evolves with North Atlantic
Oscillation phases, Epl, 98, 38006, https://doi.org/10.1209/0295-5075/98/38006, 2012.

Guez, O. C., Gozolchiani, A,, and Havlin, S.: Influence of autocorrelation on the topology of the climate network, Phys. Rev.
E, 90, 062814, https://doi.org/10.1103/PhysRevE.90.062814, 2014.

15



370

375

380

385

390

395

400

https://doi.org/10.5194/esd-2022-9 Earth System

Preprint. Discussion started: 9 March 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License. Di .
Iscussions

Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J., and Zhang,
R.: Elucidating severe urban haze formation in China, Proc. Natl Acad. Sci. USA, 111, 17373-78,
https://doi.org/10.1073/pnas.1419604111, 2014.

Hu, W., Downward, G. S., Reiss, B., Xu, J., Bassig, B. A., Hosgood 3rd, H. D., Zhang, L., Seow, W. J., Wu, G., Chapman, R.
S., Tian, L., Wei, F., Vermeulen, R., and Lan, Q.: Personal and Indoor PM, s Exposure from Burning Solid Fuels in Vented
and Unvented Stoves in a Rural Region of China with a High Incidence of Lung Cancer, Environ. Sci. Technol., 48, 8456-64,
https://doi.org/10.1021/es502201s, 2014.

Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J.,, Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco,
F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade,
G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Pr&@&, A. S. H.: High
secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218-22,
https://doi.org/10.1038/nature13774, 2014.

Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.: Amplified transboundary transport of haze by aerosol-
boundary layer interaction in China, Nat. Geosci., 13, 428-34, https://doi.org/10.1038/s41561-020-0583-4, 2020.

Li, H., Qi, Y., Li, C., and Liu, X.: Routes and clustering features of PM2.5 spillover within the Jing-Jin-Ji region at multiple
timescales  identified using complex  network-based  methods, J. Clean Prod., 209, 1195-205,
https://doi.org/10.1016/j.jclepro.2018.10.284, 2019

Liang, C., Duan, F. K., He, K., and Ma, Y.: Review on recent progress in observations, source identifications and
countermeasures of PM;s, Environ Int., 86, 150-70, https://doi.org/10.1016/j.envint.2015.10.016, 2016.

Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X., Jiang, W., and Sun, Y.: Heavy pollution episodes, transport
pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China), Sci. Total Environ., 584, 1056-65,
https://doi.org/10.1016/j.scitotenv.2017.01.160, 2017.

Liu, H., Fang, C., Zhang, X., Wang, Z., Bao, C., and Li, F.: The effect of natural and anthropogenic factors on haze pollution
in Chinese cities: A spatial econometrics approach, J. Clean Prod., 165, 323-33, https://doi.org/10.1016/j.jclepro.2017.07.127,
2017.

Ludescher, J., Gozolchiani, A., Bogachev, M. I., Bunde, A., Havlin, S., Schellnhuber, H. J.: Improved El Nino forecasting by
cooperativity detection, Proc. Natl Acad. Sci. USA, 110, 11742-45, https://doi.org/10.1073/pnas.1309353110, 2013
Ludescher, J., Gozolchiani, A., Bogachev, M. I., Bunde, A., Havlin, S., and Schellnhuber, H. J.: Very early warning of next
El Nino, Proc. Natl Acad. Sci. USA, 111, 2064-66, https://doi.org/10.1073/pnas.1323058111, 2014.

Rafael, C. C., Javier, G. G., Ariza-Villaverde, A. B., Gutierrez, de. Rave. E., Jimenez-Hornero, F. J.: Can complex networks
describe the urban and rural tropospheric O3 dynamics?, Chemosphere, 230, 59-66,
https://doi.org/10.1016/j.chemosphere.2019.05.057, 2019.

Sheehan, P., Cheng, E., English, A., and Sun, F.: China's response to the air pollution shock, Nat. Clim. Change, 4, 306-09,
https://doi.org/10.1038/nclimate2197, 2014.

16



405

410

415

420

425

430

435

https://doi.org/10.5194/esd-2022-9 Earth System

Preprint. Discussion started: 9 March 2022 Dynamics
(© Author(s) 2022. CC BY 4.0 License. Di .
Iscussions

Squizzato, S., Masiol, M., Innocente, E., Pecorari, E., Rampazzo, G., and Pavoni, B.: A procedure to assess local and long-
range transport contributions to PM2.5 and secondary inorganic aerosol, J. Aerosol Sci., 46, 64-76,
https://doi.org/10.1016/j.jaerosci.2011.12.001, 2012.

Wang, S., Zhou, C., Wang, Z., Feng, K., and Hubacek, K.: The characteristics and drivers of fine particulate matter (PM2.5)
distribution in China, J. Clean Prod., 142, 1800-09, https://doi.org/10.1016/j.jclepro.2016.11.104, 2017.

Wang, Y., Gozolchiani, A., Ashkenazy, Y., Berezin, Y., Guez, O., and Havlin, S.: Dominant Imprint of Rossby Waves in the
Climate Network, Phys. Rev. Lett, 111, https://doi.org/10.1103/PhysRevLett.111.138501, 2013.

Wyatt, M. G., Kravtsov, S., and Tsonis, A. A.: Atlantic Multidecadal Oscillation and Northern Hemisphere's climate variability,
Clim. Dyn., 38, 929-49, https://doi.org/10.1007/s00382-011-1071-8, 2012.

Yamasaki, K., Gozolchiani, A., and Havlin, S.: Climate networks around the globe are significantly affected by El Nino, Phys.
Rev. Lett., 100, https://doi.org/10.1103/PhysRevLett.100.228501, 2008.

Ying, N., Zhou, D., Chen, Q., Ye, Q., and Han, Z.: Long-term link detection in the CO2 concentration climate network, J.
Clean Prod., 208, 1403-08, https://doi.org/10.1016/j.jclepro.2018.10.093, 2019.

Ying, N., Zhou, D., Han, Z. G., Chen, Q. H., Ye, Q., Xue, Z. G.: Rosshy Waves Detection in the CO2 and Temperature
Multilayer Climate Network, Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL086507, 2020.

Zhang, Y. L. and Cao, F.: Fine particulate matter (PM2s) in China at a city level, Sci. Rep., 5,
https://doi.org/10.1038/srep14884, 2015

Zhang, Y., Chen, D., Fan, J., Havlin, S., Chen, X.: Correlation and scaling behaviors of fine particulate matter (PM.s)
concentration in China, Epl, 122, https://doi.org/10.1209/0295-5075/122/58003, 2018.

Zhang, Y., Fan, J., Chen, X., Ashkenazy, Y., and Havlin, S.: Significant Impact of Rossby Waves on Air Pollution Detected
by Network Analysis, Geophys. Res. Lett., 46, 12476-85, https://doi.org/10.1029/2019GL 084649, 2019.

Zhou, D., Gozolchiani, A., Ashkenazy, Y., and Havlin, S.: Teleconnection Paths via Climate Network Direct Link Detection,
Phys. Rev. Lett., 115, 268501, https://doi.org/10.1103/PhysRevL ett.115.268501, 2015.

Wyatt, M. G., Kravtsov, S., and Tsonis, A. A.: Atlantic Multidecadal Oscillation and Northern Hemisphere's climate variability,
Clim. Dynam., 38, 929-49, https://doi.org/10.1007/s00382-011-1071-8, 2012.

Xu, B., and Lin, B.: Regional differences of pollution emissions in China: contributing factors and mitigation strategies, J.
Clean. Prod., 112, 1454-63, https://doi.org/10.1016/j.jclepro.2015.03.067, 2016.

Yamasaki, K., Gozolchiani, A., and Havlin, S.: Climate networks around the globe are significantly affected by EI Nino, Phys.
Rev. Lett., 100, https://doi.org/10.1103/PhysRevLett.100.228501, 2008.

Ying, N., Zhou, D., Chen, Q., Ye, Q., and Han, Z.: Long-term link detection in the CO2 concentration climate network, J.
Clean. Prod., 208, 1403-08, https://doi.org/10.1016/j.jclepro.2018.10.093, 2019

Ying, N., Zhou, D., Han, Z. G., Chen, Q. H., Ye, Q., and Xue, Z. G.: Rosshy Waves Detection in the CO, and Temperature
Multilayer Climate Network, Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL086507, 2020.

17



440

445

https://doi.org/10.5194/esd-2022-9 Earth System

Preprint. Discussion started: 9 March 2022 Dynamics

(© Author(s) 2022. CC BY 4.0 License. oI -
IScussions

Zhang, Y. L., and Cao, F.: Fine particulate matter (PM2.5) in China at a city level, Sci. Rep., 5,
https://doi.org/10.1038/srep14884, 2015.

Zhang, Y., Chen, D., Fan, J., Havlin, S., and Chen, X.: Correlation and scaling behaviors of fine particulate matter (PM2.5)
concentration in China, Epl, 122, https://doi.org/10.1209/0295-5075/122/58003, 2018.

Zhang, L., Liu, L., Zhao, Y., Gong, S., Zhang, X., Henze, D. K., Capps, S. L., Fu, T. M., Zhang, Q., and Wang, Y.: Source
attribution of particulate matter pollution over North China with the adjoint method, Environ. Res. Lett., 10,
https://doi.org/10.1088/1748-9326/10/8/084011, 2015

Zhang, Y., Fan, J., Chen, X., Ashkenazy, Y., and Havlin, S.: Significant Impact of Rossby Waves on Air Pollution Detected
by Network Analysis, Geophys. Res. Lett., 46, 12476-85, https://doi.org/10.1029/2019GL084649, 2019.

Zhou, D., Gozolchiani, A., Ashkenazy, Y., and Havlin, S.: Teleconnection Paths via Climate Network Direct Link Detection,
Phys. Rev. Lett., 115, 268501, https://doi.org/10.1103/PhysRevLett.115.268501, 2015.

18



