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Abstract. Here complex network theory has been applied to reveal the transport patterns and cooperative regions of fine 

particulate matter (PM2.5) over China from 2015 to 2019. The results show that the degrees, weighted degrees, and edge 

lengths of PM2.5 cities follow power-law distributions. We find that the cities in the Beijing-Tianjin-Hebei-Henan-Shandong 15 

(BTHHS) region have a strong ability to export PM2.5 pollution to other cities. By analyzing the transport routes, we show 

that a mass of links extends southward from the BTHHS to the Yangtze River Delta (YRD) regions with one- or two-day 

time lags. Hence, we conclude that earlier emission reduction in BTHHS and early-warning measures in YRD will provide 

better air pollution mitigation in both regions. Moreover, significant links are concentrated in wintertime, suggesting the 

impact of the winter monsoon. In addition, all cities have been divided into nine clusters according to their spatial correlations. 20 

We suggest that the cities in the same clusters should be regarded as a whole to control the level of air pollution. This approach 

is able to characterize the transport and cluster for other air pollutants such as ozone, NOx, and so on. 

1 Introduction 

The Earth system behaves as a complex self-regulating system comprised of atmosphere, hydrosphere, cryosphere, lithosphere 

and biosphere, with highly nonlinear interactions and feedbacks between the component parts (Steffen et al 2015). With the 25 

more understanding of interactions between physical, chemical, biological and human processes, a new ‘science of the Earth’–

Earth System Science (ESS) has been initiated (Steffen et al 2020). Facilitated by its various tools and approaches, ESS has 

introduced some new concepts and theories, the most important of which is the concept of Anthropocene (Malm and Hornborg, 

2015). In the Anthropocene era, haze events have occurred frequently in China, and the problem of air pollution has received 

wide attention from the government, scholars and the public in China (Huang et al 2014, Sheehan et al 2014).  30 

PM2.5 is the primary cause of haze pollution (Ding et al 2016, Cai et al 2017). It has adverse influences on human health, 

atmospheric visibility and global climate change (Liang et al 2016, Liao et al 2017). PM2.5 pollution is generated from both 

anthropogenic and natural sources, including primary aerosols as well as secondary aerosols that are produced in the 

atmosphere through the chemistry of precursor gases (Squizzato et al 2012). In recent years, it has also been highly recognized 
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that air pollution in a given area is influenced not only by the air pollutant emissions there but also by the transport of air 35 

pollutants from other regions. Based on trajectory clustering methods, Li et al (2015) concluded that regional PM2.5 

transmission has become the key factor driving severe haze in Beijing. By using the positive matrix factorization approach, 

Khuzestani et al (2017) revealed that remote transmission accounted for approximately 77% of the PM2.5 concentration in the 

Ordos region. Furthermore, PM2.5 transmissions are also examined using model simulations. For example, Wang et al (2014) 

quantified the regional contribution of PM2.5 in southern Hebei by using Mesoscale Modeling System Generation 5(MM5) and 40 

the Models-3/Community Multiscale Air Quality (CMAQ) modeling system; Zhang et al (2017) investigated the effect of 

regional pollution transport based on the GEOS-Chem chemical transport model and its adjoint. These studies suggest that 

curbing air pollution has not been a local issue, and the regional coordination could be an effective approach to improve the 

air quality of the regional atmospheric environment. In 2012, The 12th Five-Year Plan on Air Pollution Prevention and Control 

in Key Regions approved proposed to divide China into three key regions to jointly prevent air pollution, which is named the 45 

Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and the Pearl River Delta (PRD), and major urban agglomerations 

such as Lanzhou-Xining, Wuhan and surrounding areas, Shaanxi and Guanzhong city (MEP, 2012). However, this kind of 

region division ignores the nonlinear transport characteristics of PM2.5 concentrations; furthermore, considerable discrepancies 

exist in the above studies of PM2.5 transmission in different cities/regions during different air pollution periods. For example, 

the transport from BTH region to the YRD is significant during the hazing periods (Huang et al., 2020). High PM2.5 in the 50 

southwest and south of Beijing is related to the PM2.5 transmission in Baoding and Hengshui in Hebei Province, and Dezhou, 

Liaocheng, Heze, Jining, and Zaozhuang in Shandong Province (Li et al., 2015). Hence, the PM2.5 transport in the whole of 

China over a long-time period have not been fully understood; furthermore, the traditional approaches adopted in the above 

studies dis not fully consider the nonlinear transport processes between cities. 

Methods are required that help to unveil the transport processes at the national scale. Also, it is important to quantify their 55 

spatial and temporary interactions between cities. During the last two decades, complex network theory has been applied to 

reveal the statistical and dynamic topological features in complex systems (Fountalis et al 2014, Feldhoff et al 2015). In 

complex networks, geographical locations are considered to be nodes. Links represent communications between time series of 

nodes, and their strength is measured by the cross-correlation between records (Castrejon-Pita and Read 2010). The network-

theory based approach has been used to study teleconnection patterns (Zhou et al 2015, Boers et al 2019, Ying et al 2019), El 60 

Niño events (Yamasaki et al 2008, Ludescher et al 2013, 2014), North Atlantic Oscillation (Guez et al 2012), Atlantic 

Multidecadal Oscillation (Wyatt et al 2012) and Rossby waves (Wang et al 2013, Ying et al 2020). This approach is also 

useful in the studies of atmosphere environment systems, especially enabling us to investigate the nonlinear spatiotemporal 

dynamics between air pollution agents. Such nonlinear relationships are critical for assessing the intrinsic dynamics of 

atmospheric pollution systems, but traditional statistical or model simulation methods are difficult to reveal. The network-65 

theory based approach has been used to uncover the correlation pattern of PM2.5 concentrations (Zhang et al 2018), to analyze 

the PM2.5 spillover routes in BTH cities (Li et al 2019), to discriminate between urban and rural tropospheric ozone (Rafael et 

al 2019), and to quantify the interaction between upper air conditions and surface PM2.5 concentrations (Zhang et al 2019). It 

https://www.sciencedirect.com/science/article/pii/S0045653518314073#bib14
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is obvious that complex network methods are valuable tools for depicting and quantifying air pollution transmission and cluster 

among cities. In addition, for traditional model simulation, numerous parameters are needed in the simulation process. In 70 

contrast, complex network theory is performed based on time series of field observations, so the estimation process is faster 

and more economic. 

In the present study, we attempt to explore the transport and cluster of PM2.5 based on complex networks, and in the next 

section, we introduce the data and methods. The patterns of PM2.5 concentrations and their transport features and demarcation 

regions are presented in section 3. Finally, the summary and discussion are detailed in Section 4. 75 

2 Data and methods 

2.1 Data 

The daily PM2.5 concentrations data for 336 cities over China from 1 January 2015 to 31 December 2019 are used in this 

study. These raw data were acquired from the China National Environmental Monitoring Centre (CNEMC). Then we pre-

processed these data according to the needs of the Ambient Air Quality Standard on the validity of air pollutant concentration 80 

data. Specifically, the missing values in the PM2.5 data are excluded; then the error values like negative values and those larger 

than 900 mg/m3 on a given day for a given year are removed and for these years we deleted the data corresponding to those 

days.  As a result, we obtained data for 360 valid days per year (data on January 9, April 1, July 6, September 5, and November 

29 are removed) and the total length is 5 × 360 (1800 days).  

The anomalies records of PM2.5 are adopted, where the anomalies are obtained by subtracting the daily averages and dividing 85 

them by the corresponding standard deviations and the function of the denominator is used to eliminate the effects of 

autocorrelations in the records. The anomalies records of PM2.5 are adopted, where the anomalies are obtained by subtracting 

the daily averages and dividing them by the corresponding standard deviations to remove the seasonal cycle. 

2.2 Methods 

The network construction includes three steps. First, we calculate the weight of the edges between nodes. Second, we apply 90 

a shuffled procedure to identify a certain threshold.  Third, we calculate network typological metrics to determine the 

interaction strength between two nodes. Below, we detail each step. 

Step 1. The calculation of the weight links between nodes 

The anomalous PM2.5 time series of each node i is represented as ( )iS t , where i is the node index. Similar to earlier studies 

(Gozolchiani et al 2011, Ying et al 2020), we define 
, ( )i jX   as the time-delayed cross-correlation function for PM2.5 node (i 95 

and j), ( )iS t and ( )jS t . For τ＞0, 
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where τ denotes the time lag, which is in the range between 0 and +30 days. 
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In this approach, max() , mean() , min() , and ()std  denote the maximum, minimum, mean, and standard deviation of 

the cross-correlation function 
, ( )i jX  , respectively. The deviations in the link identification caused by persistence or 

autocorrelation in the records are reduced through dividing the std(Xi,j). We defined the maximum and minimum of
,i jX  as 105 

,

pos

i jP  and 
,

neg

i jP , respectively; 
,

pos

i j  and 
,

neg

i j  represent the maximum and minimum values of 
, ( )i jX  , respectively; and the sign 

of 
,

pos

i j  (or 
,

neg

i j ) represent the direction of each positive (or negative) link. When
,

pos

i j  >0, the link is regarded as from node i 

pointing to node j. When 
,

pos

i j   <0, the link is regarded as pointing away from node j to node i. The direction is undefined when 

,

pos

i j   =0. The definitions are similar for the negative weighted links.  

The adjacency matrix is defined as: 110 

, , ,(1 ) ( )
i j

pos pos

i j i jA H W Q= − −                                                                                                                                (4) 

where 
,i j is the Kronecker delta introduced to avoid self-loops in the network and H(x) is the Heaviside step function (H(x > 

0) = 1 and H(x < 0) = 0). Q denotes a certain threshold value. The definitions are similar for the negative weighted links. We 

constructed networks by pruning the links for which the statistical significance was below a certain threshold (Guez et al. 

2014). The threshold is determined according to the shuffle method, which is explained in detail in the next section. 115 

Step 2. The identification of the critical threshold 

In the shuffled case, the order of years is permutated and the order of days within each year is maintained for each pair of 

nodes (Ying et al 2020).  For each link, we selected one of two nodes randomly, then shuffled this time series by persisting 

the order of days in each year and changing the permutation of years several times. We then calculated the cross-correlation 

function and weight links for the shuffled datasets. The shuffling procedure represents the properties of statistical quantities 120 

and the autocorrelations of the original records, which may introduce unrealistic links. We only considered the link weights in 

the original network that are significantly higher than values in the shuffled case as a real link; otherwise, they are classed as 
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spurious links. According to the principles mentioned above, figure 1 depicts the research process and integration of analytical 

tools. 

Step 3. The determination of network typological metrics 125 

The degree is the most common application for measuring complex networks. A link that points toward a node is referred 

to as an in-degree link, and a link that points away from a node is considered as an out-degree link. The in- (or out-) weights 

degrees of node i is denoted as In( )iw  and Out( )iw , representing the total in-coming (or out-going) weighted links, 

respectively. 

, ,In( )i j i j ij
w A W=

                                                                                                                                             (5)130 

, ,Out( )i i j i jj
w A W=                                                                                                                                          (6) 

The In and Out weighted degrees represent a node’s dependence on its surroundings nodes, and the influence of the node 

on the surroundings nodes, respectively. Nodes with higher values in the network indicate a larger amount of connection with 

other nodes, whereas zero values indicate that the node is isolated. 

The Girvan Newman algorithm is used to explore regional division in the networks. In binary networks, the quality of 135 

community structure is typically measured by the modularity (Q) function (Newman, 2006). A high value of Q suggests a 

strong division of a network into clusters. Nodes in the same community may have the same properties. The Q in networks is 

defined as follows: 

,

,

1
[( ) ( , )]

2 2

i j

i j i j

i j

k k
Q A

M M
  = −                                                                                                                 (7) 

where ki, kj is the weight of node i and j, ,i jA is the adjacency matrix, is the membership function and M is the number of 140 

edges.  
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 145 
Figure 1. The flow chart of the method with complex network analysis. 
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3. Results 

3.1 Characteristics of the PM2.5 network 

 150 
 

Figure 2. Positive link weights as a function of geographical distances Di,j  for (a) 𝑊i,j

pos
 and (b) Pi,j

pos
  for real (blue)and shuffled 

(red) data. (c), (d) Same as (a), (b) but for negative links. 

 

The function of positive link weightsWi,j
pos

 and geographical distances Di,j for the original and the shuffled networks are 155 

shown in figures 2(a). Wi,j
pos

 values in the original network are greater than those in the shuffled network, indicating that the 

stronger positive links are the result of information transport of PM2.5 concentrations and the similarity of weather 

patterns (Liu et al., 2022). For the relation between the largest cross-correlation Pi,j
pos

versus Di,j, we observe that the values in 

the shuffled case are smaller than those in the original case (figures 2(b)), which is in agreement with the pattern of Wi,j
pos

. In 

the negative case (figures 2 (c) and (d)), there is no distinct difference between the original network and the shuffled network. 160 
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Figure 3 shows the probability density function (PDF) of links in the original network and the shuffled network. The PDF 

of positive link weights has a long tail in the original data, which is not presented in the link weights of the shuffled networks. 

The PDF of negative link weights is a signature of random behavior, which further indicates that the many significant positive 

links are not likely to occur by chance. As a result, we consider links that are separated from the shuffled links. Both 𝑊i,j

pos
 and 

Pi,j
pos

 can be used as a measure of the strength of links. In our analysis, positive link weights of 4.2 are the threshold, and 165 

accordingly, gain the adjacency matrix of the network.  

In the network, 284 cities are connected by PM2.5 concentrations with 3930 links among cities. The clustering coefficient 

measures the probability that the adjacent nodes of a node are connected. If one city has a high clustering coefficient, there are 

close connections between its neighbors. In this paper, the clustering coefficient is 0.46. We also analyze the shuffled network 

with the same number of edges. 337 cities are connected and the value in the shuffled network is 0.07, suggesting PM2.5 cities 170 

are more connected to each other. The density of networks is 0.05 in the original network, while the value is 0.03 in the shuffled 

network. It reflects the degree of completeness of the network, and high values mean strong connections between cities. The 

average path length is 3.15 and 4.61 for the original and shuffled network, indicating that cities transport the PM2.5 

concentrations to other cities crossed almost three other cities. PM2.5 cities have a higher clustering coefficient and lower 

average path length, compared with the shuffled network, demonstrating cities with higher PM2.5 concentrations can 175 

quickly affect their surrounding cities. 

 

 
 

Figure 3. PDF of positive (a) and negative (b) link weights for original data and shuffled data. The blue lines represent the 180 

original data and the red dash lines denote the shuffled cases. 

 

The degree of a node is one of the most important statistical properties in networks. The weighted degree characterizes the 

total strength of correlation of the node with surrounding cities. The PDF of degrees, weighted degrees, and edge lengths of 
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the nodes are shown in figure 4. It is found that the degrees, weighted degrees, and edge lengths conform to power-law 185 

distributions which are associated with some climate and weather phenomena such as the tropical circulations and 

cyclones (Pierrehumbert, 1986). The power-law exponents are 1.3, 1.2, and 1.5, with R-squared values 0.71, 0.70, and 0.63, 

respectively. These links are heterogeneous, with few nodes possessing the majority of links in the network. Most of the PM2.5 

concentration links remain confined to a handful of cities.  

 190 

 

Figure 4. (a) the PDF of degree (red dots) and the power law fit curve (black line); (b) PDF of weighted degrees (red dots) 

and the power law fit curve (black line). (c) PDF of edge lengths (km) (red dots) and the power law fit curve (black line). 

 

Figure 5. Distribution of in- weighted degree (a) and out- weighted degree (b) in the network of each node for positive cases. 195 

 

To examine a node’s dependence or influencing role on the other nodes, we analyze the patterns of in- and out-weighted 

degrees. The direction of links is determined by the sign of the time delay, which quantifies the incoming or outgoing nodes. 

Links with zero-time delay represent bidirectional links. The in-weighted degree of each node measures incoming links 

towards the target city and high values indicate a stronger export effect from source cities to the target city. Out-weighted 200 

degrees denote the strength of outgoing links to other cities, and higher values suggest that more cities transfer their PM2.5 

concentrations to the target city. Figure 5 presents the spatial distribution of in- and out-weighted degrees for the whole years. 

Different colors represent the ability to transmit. Regions in BTHHS, YRD, and northwest China show significant 
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synchronicity with the rest of the provinces in terms of PM2.5 mass concentrations. These regions correspond to regions with 

high mean PM2.5 concentrations. Furthermore, we observe that the distribution of the in-weighted degree is similar to that of 205 

the out-weighted degree, which indicates these cities are both recipients and senders in the networks. This suggests that their 

pollution is not only due to the local emissions but also imported from other cities. Therefore, solving air pollution should not 

only rely on reducing emissions in a single city, but rather on developing inter-city cooperation. Compared with the out-

weighted degrees, in-weighted degrees are stronger over the BTHHS region. These cities (sending cities) can also export PM2.5 

concentrations to other cities (recipient cities). In addition, the values of in-/out- weighted degrees display remarkable 210 

differences in different seasons, as shown in figure 6. The weighted degrees in summer and autumn are small (figure 7(b) and 

(c)). In winter and spring, especially in wintertime the values of in-/out- weighted degrees are significant, and their patterns 

are similar to that of the whole year.  

 

215 
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Figure 6. Distribution of in- weighted degree (a) and out- weighted degree (b) in the network of each node for seasons. 

 220 

3.2 Routes and clustering of the PM2.5  

Both in- and out-weighted degrees offer information in terms of nodes (cities). It is reported that urban air quality can be 

substantially influenced by atmospheric transport of PM2.5 pollution from distant cities. An analysis of the edges can contribute 

to revealing the transport routes of PM2.5 among cities. A recent study found that PM2.5 concentrations over a distance of 1000 

km were related to a typical cyclonic scale within the Rossby waves (Zhang et al 2019). Here we discuss the transport path 225 

within 1000 km and only focus on positive time lags. This is since they are typical links that are related to different climate 

processes, and they enable detailed comparisons with the previous literature. The transport routes show that southward 

propagation is predominant in the sub-network (figure 7(a) (Zhang and Cao 2015)). We focus on two groups of connections 

that belong to different regions. The first one is links traveled from the Gobi Desert over southwestern parts of Mongolia and 

the Badain Jaran Desert to the BTH regions. The second one is links transported from the BTHHS to the YRD regions and 230 

these links show a 1- or 2-day time lag. This is consistent with previous studies obtained from the WRF-Chem model 

(Huang et al 2020). The outbreak of YRD pollution usually peaks with a time lag of 1–2 days after that in the BTHHS.  
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Figure 7. (a) Map of PM2.5 transport links among the monitoring cities in China. (b)The cluster regions of PM2.5 concentrations. 235 

Different colors represent different communities. 

 

In addition, we also analyzed the transport routes in different seasons (figure 8). The transport routes are significant in 

autumn and winter, especially in wintertime. It means the route features in winter are dominant over the whole year. Here 

the southwestern links may be related to the East Asia winter monsoon. 240 



13 

 

 

Figure 8. Distribution of transport paths in the network for spring (a), summer (b), autumn (c) and winter (d). 

 

In complex networks, nodes that are closely related to each other are more likely to be grouped in the same cluster. Hence, 245 

cities are tightly bound to cities in the same cluster and uncorrelated to cities in other clusters. The pollution transport routes 

presented above indicate that curbing air pollution is more than just a local issue. In the following, we investigate the cluster 

features of our networks by utilizing the modularity algorithm described above. Considering a larger Q value means a more 

accurate community structure for network segmentation, we calculate the Q value at each division to obtain a better result. 

Here, 284 cities are divided into 9 clusters, where the Q value obtains the maximum value (0.56). The results present a strong 250 

regional character regional division, shown in figures 7(b). Cities having the same color represent the same cluster, which 

could be considered for collaborative governance. These nine regions include the above-mentioned three key regions: BTH 

regions, YRD region (containing Shanghai, Jiangsu, Anhui and Zhejiang province), and the PRD area (including Guangdong 

and Guangxi). The other interconnected areas are Heilongjiang and Jilin provinces, Jilin and Liaoning provinces (northeast 

China), Hunan and Hubei provinces (central China), and Jiangxi-Fujian, Guizhou-Chongqing-Sichuan, and Shanxi-Shaanxi-255 

Ningxia-Gansu.  
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4. Summary and discussion 

In the Anthropocene era, the atmospheric environment issue is increasingly prominent, which brings challenges to the 

realization of sustainable development. Despite great efforts has been taken by the Chinese government, some cities in China 

are still plagued by haze pollution. Air pollution was partly related to the transmission from other regions, controlling air 260 

pollution needs to consider regional transmission and cooperation. The emergence and application of complex networks could 

enhance our understanding of the dynamics process of PM2.5. This paper analyses the transport routes and joint clusters over 

China based on a network theory-based approach.  

By constructing PM2.5 networks based on complex network approaches, it is found that the PDF of the degrees, weighted 

degrees, and edge lengths of PM2.5 cities follow a power-law distribution, which indicates the variability of PM2.5 265 

concentrations in China is not random. Hence, it is reasonable to analyze the transmission and cooperation regions of PM2.5 

from the perspective of the whole national evolution over a long period of time. To quantify the relations of PM2.5 among cities, 

the patterns of weighted degrees are investigated. Higher weighted degrees are overserved in the BTH regions, which is 

consistent with the patterns of high levels of PM2.5 concentrations. Cites in the BTH region have stronger strength to export 

their PM2.5 pollution to other cities. The distributions of weighted degrees exhibit significant differences in seasons, with the 270 

largest in winter and the least in summer.  

Based on the PM2.5 networks, the transport links and collaborative regions are analyzed. It showed that a dense of links 

travelled from the Gobi Desert over southwestern parts of Mongolia and the Badain Jaran Desert to the BTH regions. The 

other group extends southward from BTH to the YRD regions and then south to Fujian province with a one- or two-day time 

lag. This is consistent with previous studies obtained from the WRF-Chem model (Huang et al 2014). In winter, although we 275 

get a similar transmission pattern, it possesses a strong intensity. We demonstrate that the possible reason results from the 

influence of cold fronts, which, exactly, disperses the PM2.5 accumulated in the North China Plain to the Yangtze River Delta 

region and thus, leading to the propagation of PM2.5 from the BTH region to the YRD region. Hence, links BTH to the YRD 

region obtained from the whole year are related to the cold front occurring in wintertime. 

Besides, we also performed the communities detection based on the synchronicity of PM2.5 concentrations and obtained 9 280 

clusters. Cities in the same regions should join together to control air pollution. This result provides theoretical support for the 

JPCAP proposed by the national government. Regional cooperation should be promoted in these regions to implement regional 

policies to improve air quality.  

A central implication of this study is that the transmission and collaborative regions can be explored via the complex 

network approach. For traditional model simulation, numerous parameters are needed in the simulation process. In 285 

contrast, complex network theory is performed based on time series of field observations, so the estimation process is 

faster and more economic. As our analysis is based on long-time PM2.5 records in China, rather than a particular region 

or period of air pollution, it may provide a reference and basis for the development of effective regulatory policies for 

government to improve air quality. Previous researchers have demonstrated that the accumulated pollutants in the NCP 



15 

 

can transport the pollution through the strong wind to the YRD based on traditional model simulation, which is similar 290 

to our study. We also observed links that transported from the BTHHS to the YRD regions show a 1- or 2-day time lag. 

The result is consistent with previous studies obtained from the WRF-Chem model. Hence, complex network 

methodologies are useful for the studies of the transport and cluster of air pollutants in faster and more economic ways. 

Furthermore, they are also potential in the studies of other air pollutants such as ozone, NOx, and so on. 

In addition, the study has some limitations. The relations between PM2.5 cities have been measured based on the lagged 295 

correlations, which have yielded useful results. However, the peak of cross-correlation in a correlogram may be spurious 

due to serial autocorrelation within each time series, which is another common feature in geophysical time series. 

Furthermore, the results cannot reveal causal relationships, which may suffer from problems related to interpretability. 
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